
Lecture Notes
on

High Performance Computing

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2
x 10

−7 Times on a 250 MHz SGI

table size

tim
e/

co
m

pa
ris

on

Thomas Ericsson

Mathematics

Chalmers/GU

2011

1

High Performance Computing

Thomas Ericsson, computational mathematics, Chalmers

office: L2075

phone: 772 10 91
e-mail: thomas@chalmers.se

My homepage:

http://www.math.chalmers.se/~thomas

The course komepage:

http://www.math.chalmers.se/Math/Grundutb/CTH/
tma881/1011

Assignments, copies of handouts (lecture notes etc.), schedule

can be found on the www-address.

We have two lectures and two labs per week. No lab today.

Prerequisites:

• a programming course (any language will do)

• the basic numerical analysis course

• an interest in computers and computing; experience of

computers and programming

If you do not have a Chalmers/GU-account, you need to contact

the helpdesk to get a personal account.

2

Why do we need HPC?

• Larger and more complex mathematical models require greater

computer performance. Scientific computing is replacing

physical models, for example.

•When computer performance increases new problems can be

attacked.

To solve problems in a reasonable time using available resources

in a good way we need competence in the following areas:

1. algorithms

2. hardware; limitations and possibilities

3. code optimization

4. parallelization and decomposition of problems and algorithms

5. software tools

This course deals primarily with points 2-5. When it comes to

algorithms we will mostly study the basic building blocks.

The next pages give some, old and new, examples of

demanding problems.

For each problem there is a list of typical HPC-questions,

some of which you should be able to answer after having

passed this course.

3

A real-time application

Simulation of surgery; deformation of organs; thesis work

(examensarbete) Prosolvia. Instead of using a standard

deformation more realistic deformations were required.

Organs have different structure, lung, liver etc.

Requires convincing computer graphics in real time; no flicker

of the screen; refresh rate ≥ 72 Hz.

Using a shell model implies solving a sparse linear system,

Ax = b, in 0.01 s (on a 180 MHz SGI O2 workstation, the typical

customer platform).

•What do we expect? Is there any chance at all?

• Is there a better formulation of the problem?

•What linear solver is fastest? Sparse, band, iterative, ...?

– Datastructures, e.g.

– General sparse: {j, k, aj,k}, aj,k 6= 0, j ≥ k.

– Dense banded.

– Memory accesses versus computation.

• Should we write the program or are there existing ones?

Can we us the high performance library made by SGI?

• If we write the code, what language should we use, and how

should we code in it for maximum performance?

• Can we find out if we get the most out of the CPU? How?

Are we using 20% of top speed or 90%?

•What limits the performance, the CPU (the floating point

unit) or the memory?

4

Integrals and probability

Graduate student in mathematical statistics. What remained of

the thesis work was to make large tables of integrals:
∫ ∞

0

f(x) dx, where f(x)→∞ when x→ 0+

The integrand was complicated and was defined by a Matlab-

program. No chance of finding a primitive function. Using the

Matlab routine quad (plus a substitution), to approximate the

integral numerically, the computer time was estimated to several

CPU-years. Each integral took more than an hour to compute.

• Is this reasonable, is the problem really this hard?

• Are Matlab and quad good tools for such problems?

• How can one handle singularities and infinite intervals?

Solution: Switching to Fortran and Quadpack (a professional

package) the time for one integral came down to 0.02 s (with the

same accuracy in the result).

• Matlab may be quite slow.

• quad is a simple algorithm; there are better methods

available now, e.g. quadl.

5

Mesh generation for PDEs in 3D

require huge amounts of storage and computer time.

Airflow around an aircraft; 3 space dimensions and time.

CFD (Computational Fluid Dynamics).

Discretize (divide into small volume elements) the air in the

box and outside the aircraft. Mesh generation (using m3d, an

ITM-project, Swedish Institute of Applied Mathematics) on one

RS6000 processor:

wed may 29 12:54:44 metdst 1996 So this is old stuff
thu may 30 07:05:53 metdst 1996

183463307 may 2 13:46 s2000r.mu

tetrahedrons in structured mesh: 4 520 413
tetrahedrons in unstructured mesh: 4 811 373

• Choice of programming language and data structures.

• Handling files and disk.

Now we must solve the PDE given the mesh...

6

More PDEs: Weather forecasts

SMHI, Swedish Meteorological and Hydrological Institute.

HIRLAM (HIgh Resolution Limited Area Model).

HIROMB (HIgh Resolution Operational Model of the Baltic).

Must be fast. “Here is the forecast for yesterday.”

Parallel implementation of HIROMB, lic-thesis KTH.

Divide the water volume into pieces and distribute the pieces

onto the CPUs.

• Domain decomposition (MPI, Message Passing).

• Load balancing. Communication versus computation.

• Difficult sub-problems. Implicit solver for the ice equations.

Large (105 equations) sparse Jacobians in Newton’s method.

7

Three weeks runtime

Consultant work, for Ericsson, by a colleague of mine.

Find the shape of a TV-satellite antenna such that the “image”

on the earth has a given form (some TV-programs must no be

shown in certain countries).

Algorithm: shape optimization + ray tracing.

Three weeks runtime (for one antenna) on a fast single-CPU

PC. One of the weeks for evaluating trigonometric functions.

You do not know much about the code (a common situation).

Can you make it faster? How? Where should you optimize?

• Choice of algorithm.

• Profiling.

• Faster trigonometric functions. Vector forms?

• Parallel version? How? Speedup? (OpenMP)

8

A Problem from Medicine

Inject a radionuclide that attacks a tumour.

How does the radioactivity affect the surrounding tissue?

To be realistic the simulation should contain some 7 · 107 cells.

Matlab-program computing a huge number of integrals (absorbed

dose).

The original program would take some 26 000 years runtime.

After switching to Fortran90, changing the algorithm, by

precomputing many quantities (the most important part) and

cleaning up the code, the code solved the problem in 9 hours on

a fast PC (a speedup by a factor of 2.6 · 107).

9

Contents of the Course

There are several short assignments which illustrate typical

problems and possibilities.

• Matlab (get started exercises, not so technical).

• Uniprocessor optimization.

• Low level parallel threads programming.

• MPI, parallel programming using Message Passing.

• OpenMP, more automatic threads programming.

Many small and short programs, matrix- and vector

computations (often the basic operations in applications).

Simple algorithms.

E.g. test how indirect addressing (using pointers) affects

performance:

do k = 1, n
j = p(k) ! p is a pointer array
y(j) = y(j) + a * x(j)

end do

• You will work with C, Fortran and some Matlab and several

software tools and packages.

• Java is not so interesting for HPC.

At most two students per group. Each group should hand in

written reports on paper (Swedish is OK). Not e-mail.

There are deadlines, see www.

10

In more detail...

• A sufficient amount of Fortran90 (77) for the labs.

• There is a tutorial for C (most people know some C and I

have lost one lecture).

• Computer architecture, RISC/CISC, pipelining, caches...

•Writing efficient programs for uniprocessors, libraries,

Lapack, ...

• Necessary tools: make, ld, prof, ...

• Introduction to parallel systems, SIMD, MIMD, shared

memory, distributed memory, network topologies, ...

• POSIX threads, pthreads.

• MPI, the Message Passing Interface.

• Shared memory parallelism, OpenMP.

• Parallel numerical analysis, packages.

Note: this is not a numerical analysis course. We will study

simple algorithms (mainly from linear algebra).

You will not become an expert in any of the above topics

(smörg̊asbord), but you will have a good practical

understanding of high performance computing.

The course will give you a good basis for future work.

11

Literature

You can survive on the lecture notes, web-pages and man-pages.

Below is a list of reference books, some are available as E-books

(Books24x7) through the Chalmers library homepage.

A web-version of Designing and Building Parallel Programs, by

Ian Foster, 1995, can be found at:

http://www-unix.mcs.anl.gov/dbpp.

A few C- and Fortran books (there are many)

• B. W. Kernighan, D. M. Ritchie, The C Programming

Language (2nd ed.), Prentice Hall, 1988. Get the ANSI C

version.

• P. van der Linden, Expert C Programming : Deep C Secrets,

Prentice Hall, 1994.

• M. Metcalf, J. Reid, M. Cohen, Fortran 95/2003 Explained,

3rd ed. (2nd ed., 1999, is OK as well, E-book).

• Suely Oliveira, David E. Stewart, Writing Scientific Software:

A Guide for Good Style, Cambridge UP, 2006. E-book.

Code Optimization

• Randy Allen, Ken Kennedy, Optimizing Compilers for Mod-

ern Architectures: A Dependence-based Approach, Morgan

Kaufmann, 2001.

• Steve Behling, Ron Bell, Peter Farrell, Holger Holthoff, Frank

O’Connell, Will Weir, The POWER4 Processor Introduction

and Tuning Guide, 2001,

IBM Redbook (www.redbooks.ibm.com, free).

• Pascal Getreuer, Writing Fast Matlab Code (PDF), 2009.

http://www.math.ucla.edu/~getreuer

• Kevin Smith, Richard Gerber, Aart J. C. Bik, The Software

Optimization Cookbook, High Performance Recipes for IA

32 Platforms, Intel Press, 2005. E-book.
12

Computers

• John L. Hennessy, David A. Patterson, Andrea C. Arpaci-

Dusseau, Computer Architecture: A Quantitative Approach

(with CDROM), Morgan Kaufmann, 2006. E-book.

•W. R. Stevens, Advanced Programming in the UNIX

Environment, Addison Wesley, 1992.

• A. Oram, S. Talbott, Managing Projects with make, 2nd ed.,

O’Reilly, 1991.

• R. Mecklenburg, Managing Projects with GNU Make, 3rd

ed, O’Reilly, 2004.

• G. Anderson, P. Anderson, Unix C Shell Field Guide, Pren-

tice Hall, 1986.

Parallel Programming

• Yukiya Aoyama, Jun Nakano, RS/6000 SP: Practical MPI

Programming, IBM Redbook (www.redbooks.ibm.com, free).

• D. R. Butenhof, Programming With Posix Threads, Addison

Wesley, 1997.

• Rohit Chandra, Dave Kohr, Ramesh Menon, Leo Dagum,

Dror Maydan, Jeff McDonald, Parallel Programming in OpenMP,

Morgan Kaufmann, 2001. E-book.

• Barbara Chapman, Gabriele Jost, Ruud van der Pas, David

J. Kuck, Using OpenMP: Portable Shared Memory Paral-

lel Programming (Scientific and Engineering Computation),

MIT Press, 2007. E-book.

•William Gropp, Ewing Lusk, and Anthony Skjellum, Using

MPI, 2nd Edition, MIT Press.

• Lucio Grandinetti (ed), Grid Computing: The New Frontier

of High Performance Computing, Elsevier, 2005. E-book.

• David B. Kirk, Wen-mei W. Hwu, Programming Massively

Parallel Processors: A Hands-On Approach, Morgan Kauf-

mann, 2010. E-book.
13

• Timothy G. Mattson, Beverly A. Sanders, and Berna L.

Massingill, Patterns for Parallel Programming, Addison Wes-

ley Professional, 2004.

• Peter Pacheco, Parallel Programming with Mpi, Morgan Kauf-

mann, 1997. (Not MPI-2)

•Wesley Petersen, Peter Arbenz, Introduction to Parallel Com-

puting A practical guide with examples in C, 2004, Oxford

UP (E-book)

• Michael J. Quinn, Parallel Programming in C with MPI and

OpenMP, McGraw-Hill Education, 2003.

• Laurence T. Yang and Minyi Guo (eds), High Performance

Computing: Paradigm and Infrastructure, John Wiley, 2006.

E-book.

Numerical methods

• D. P. Bertsekas, J. N. Tsitsiklis, Parallel and distributed com-

putation, numerical methods, Prentice-Hall, 1989

• P. Bjorstad, Domain Decomposition Methods in Sciences and

Engineering, John Wiley & Sons, 1997.

• J. J. Dongarra, I. S. Duff, D. C. Sorensen, H. A. van der

Vorst, Numerical Linear Algebra on High-performance

Computers, SIAM, 1998.

• Robert A. van de Geijn and Enrique S. Quintana-Ort́ı, The

Science of Programming Matrix Computations, Free down-

load http://www.lulu.com/content/1911788. About FLAME-

project (Formal Linear Algebra Methods Environment).

• V. Eijkhout, Introduction to High Performance Scientific

Computing, 2010.

http://www.lulu.com/product/paperback/introduction-
to-high-performance-scientific-computing/14605649.
It says “Downloads are free, and the printed copy is very af-

fordable”.

14

Programming languages for HPC

The two dominating language groups are Fortran and C/C++.

Fortran90/95/2003 is more adapted to numerical computations.

It has support for complex numbers, array operations,

handling of arithmetic etc. New code is written in

Fortran90/95/2003 (Fortran66/77 is used for existing code only).

Fortran90/95 has simple OO (Object Oriented) capabilities

(modules, overloading, but no inheritance).

C++ is OO and has support for some numerics (standard

library) or can be adapted using classes, overloading etc.

C is less suited for numerical computing (my opinion).

Too few built-in tools and it cannot be modified.

C/C++ is almost the only choice when it comes to low level

unix programming. It is not uncommon to code the computa-

tional part in Fortran and a computer graphics (or unix) part in

C/C++.

Commercial Fortran compilers generate fast code: competition

(benchmarks), simple language, no aliasing. One of Fortran’s

most important advantages. Speed is (almost) everything in

many applications.

It is harder to generate fast code from C/C++.

It is very easy to write inefficient programs in C++.

More about performance later on.

First a word about operating systems and then we look at

programming languages.

15

Operating Systems

Most HPC-systems are Linux-based. Here is a list from

www.top500.org listing the operating systems used on the 500

fastest systems in the world.

OS family Count Share %

Linux 459 91.8 %

Windows 5 1.0 %

Unix 19 3.8 %

BSD Based 1 0.2 %

Mixed 16 3.2 %

Matlab

Matlab is too slow for demanding applications:

• Statements may be interpreted (not compiled, although there

is a Matlab compiler). In Matlab 6.5 (and later) there is a

JIT-accelerator (JIT = Just In Time).

You can switch off/on JIT by feature accel off,
feature accel on. Try it!

• The programmer has poor control over memory.

• It is easy to misuse some language constructs, e.g. dynamic

memory allocation.

• Matlab is written in C, Java and Fortran.

• Matlab is not always predictable when it comes to perfor-

mance.

• The first assignment contains more examples and a case study.

You can start working with the Matlab assignment now.

16

Fortran

The next few pages contain the rudiments of Fortran90 and a

glance at Fortran77. (In 2011 I wrote a C-tutorial, see under

the Diary, so I will not lecture much C.) It is sufficient for the

assignments, but you need more for real programming.

I have not tried to show all the different ways a program can

be written. Both C and Fortran have several forms of some

constructs. Professional code may have many extra details

as well.

I have not shown any C++ code (but my example is available

in C++-form on the web). C++ is too large and complicated

and my labs are not OO. But since C++ means C = C + 1, my

C-program is also a C++-program.

Some people use the C-part of C++ together with some

convenient C++-constructs (e.g. //-comments, reference

variables, simplified I/O).

Fortran90 is much nicer than Fortran77, almost a new language.

Fortran77 is quite primitive. Fortran77 is still used for HPC.

Millions of lines are available in Fortran77 (some of them will be

used in one lab) so it is necessary to understand the basics.

The example code contains one main-program one function and

a procedure (void function). The function computes the inner

product of two vectors and the procedure sums the elements in

an array and returns the sum in a parameter.

17

program main
!
! Comments: everything after !
! Case or blanks (between keywords) are not significant
! (unless they are in strings).
!
! Fortran has an implicit type rule but
! implicit none forces you to declare everything.
!
implicit none ! Highly recommended!
integer :: k, n, in
double precision :: s
double precision :: ddot ! a function

! Arrays start at one by default.
double precision, dimension(100) :: a, b

n = 100
print*, "Type a value for in:"
read*, in
print*, "This is how you write: in = ", in

do k = 1, n ! do when k = 1, 2, ..., n
a(k) = k
b(k) = -sin(dble(k)) ! using sin

end do
!
! Call by reference for all variables.
!
print*, "The inner product is ", ddot(a, b, n)

call sum_array(a, s, n) ! NOTE, call
print*, "The sum of the array is ", s

end program main

18

function ddot(x, y, n) result(s)
!
! You give the function a value by assigning
! something to the result variable, s (in this case).
!
implicit none
integer :: n
double precision, dimension(n) :: x, y
double precision :: s ! The type of the function

integer :: k

s = 0.0
do k = 1, n

s = s + x(k) * y(k)
end do

end function ddot

subroutine sum_array(a, s, n)
implicit none
integer :: n
double precision :: s
double precision, dimension(n) :: a

integer :: k

s = 0.0
do k = 1, n

s = s + a(k)
end do

end subroutine sum_array

19

Some comments. Since Fortran90 has support for array

operations the main program could have been shortened:

print*, "The inner product is ", dot_product(a, b)
print*, "The sum of the array is ", sum(a)

dot_productand sum are built-in.

A long statement can be broken up into several lines.

The continued line should end with a & .

1 is an integer constant.

1.0 is a real constant (single precision) and 1.0d0 is a double

precision constant in Fortran77.

In Fortran90 it is possible to parameterize the real- and integer

types and create more portable code using a module (similar to

a simple class) e.g.:

module floating_point
! sp = at least 5 significant decimals and
! |exponent range| <= 30 which implies
! IEEE single precision.

integer, parameter :: sp = selected_real_kind(5, 30)
integer, parameter :: dp = selected_real_kind(10, 300)
integer, parameter :: prec = dp ! pick one
end module floating_point

program main
use floating_point ! gives access to the module
real (kind = prec) :: x, y
real (kind = prec), dimension(100) :: a, b

x = 1.24_prec ! constant
y = 1.24e-4_prec ! constant

...

20

Here comes the Fortran77-version, but first some comments.

Fortran90 is almost a new language, but in my simple

example the differences are not that striking:

• F77 has a column oriented layout dating back to the

80 column punched card.

• No result-statement in functions.

• Different type declarations:

double precision a(n)

instead of

double precision, dimension(n) :: a

although F77-declarations are allowed in F90 as well.

A Fortran77-program is (essentially) also a Fortran90-program,

so it is possible to mix the two styles.

Fortran90 has array operations, pointers, recursion, prototypes,

modules, overloading of operators (and more). Fortran77 has

none of these.

The example program, coded in F77, is listed on the following

two pages. It violates the ANSI-standard in several ways, the

most important being the use of do/enddo. Here is the proper

way of writing a F77-loop using labels (you will see it in a lab):

do 10 k = 1, n
s = s + x(k) * y(k)

10 continue

21

program main

*
* Comments: c, C or * in column one

* text in columns > 72

* ! F90-comment

* First five columns: labels

* Continuation line: non-blank in column 6

* Statements: columns 7 through 72

* Case or blanks are not significant

* (unless they are in strings).

*
* Arrays start at one by default.

*234567890
integer k, n, in
double precision a(100), b(100), sum
double precision ddot ! a function

n = 100
print*, "Type a value for in:"
read*, in
print*, "This is how you write: in = ", in

do k = 1, n ! do when k = 1, 2, ..., n
a(k) = k
b(k) = -sin(dble(k)) ! using sin

end do

*
* Call by reference for all variables.

*
print*, "The inner product is ", ddot(a, b, n)

call sum_array(a, sum, n) ! NOTE, call
print*, "The sum of the array is ", sum

end

22

double precision function ddot(x, y, n)

*
* Fortran has an implicit type rule but

* implicit none forces you to declare everything.

* Highly recommended!

*
implicit none
integer n
double precision x(n), y(n)

integer k
double precision sum

sum = 0.0
do k = 1, n
sum = sum + x(k) * y(k)

end do

ddot = sum ! give the function its value

end

subroutine sum_array(a, sum, n)
implicit none
integer n
double precision a(n), sum

integer k

sum = 0.0 ! 0.0 is single and 0.0d0 double
do k = 1, n
sum = sum + a(k)

end do

end

23

How to compile

The Fortran compilers available on the student system are: g77
(Fortran77), gfortran and g95 (both Fortran90 and 77).

It would be interesting to use the Intel ifort-compiler, but we

do not have a license. You can fetch a free copy for Linux (pro-

vided you have the disk space, a few hundred Mbyte). See www.

In these handouts I will use g95 and I will assume that a Fortran90-

program has the suffix .f90. Some examples:

% my prompt
% g95 prog.f90 if everything in one prog.f90

prog.f would be Fortran77

Produces the executable file a.out
% a.out run (or ./a.out if no . in the path)

Suppose we have three files main.f90, dot.f90, sum.f90
% g95 main.f90 dot.f90 sum.f90

Can compile the files one by one.
-c means "compile only", do not link.

% g95 -c main.f90 -> object file main.o
% g95 -c dot.f90 -> object file dot.o
% g95 -c sum.f90 -> object file sum.o
% g95 main.o dot.o sum.o link the object files

% g95 main.o dot.f90 sum.o works as well, note .f90

Can give many options (or flags) to the compiler, e.g.

% g95 -O3 prog.f90 optimize the code
not standard names

24

If-statements and logical expressions

double precision :: a, b, c, d
logical :: q

if(a < b .and. c == d .or. .not. q) then
... zero or more statements

else
... zero or more statements

end if

Operation Fortran77 Fortran90

< .lt. <
≤ .le. <=
= .eq. ==
6= .ne. /=
≥ .ge. >=
> .gt. >

and .and. .and.
or .or. .or.
not .not. .not.
true .true. .true.
false .false. .false.

Look at the predence table at the end of this handout.

25

A common Fortran construction

Fortran77 does not have dynamic memory allocation (like For-

tran90 and C). If you need an m by n matrix A you would usually

reserve space for the largest matrix you may need (for a partic-

ular application). If you pass the matrix as an argument to a

procedure the procedure must be told about the extent of the

first dimension (the number of rows) in order to be able to com-

pute the address of an element. If the maximum number of rows

is max_m the address, adr(), of A(j, k) is given by

adr(A(j, k)) = adr(A(1, 1)) + max_m*(k - 1) + j - 1

So, a matrix is stored by columns in Fortran. In C it is stored by

rows (so the compiler must know the number of columns in the

matrix). Since you can allocate the precise number of elements

in C this is less of an issue.

A program may look like this:

integer :: m, n
integer, parameter :: max_m = 1000, max_n = 50
double precision, dimension(max_m, max_n) :: A

call sub (A, max_m, m, n) ! m, n actual sizes
end
subroutine sub (A, max_m, m, n)
integer :: max_m, m, n
double precision, dimension(max_m,*) :: A
... ! can have 1 instead of*

Better (but not necessary) is:

call sub (A, max_m, max_n, m, n)
...
subroutine sub (A, max_m, max_n, m, n)
integer :: max_m, m, n
double precision, dimension(max_m, max_n) :: A

since index checks can be made by the compiler.

26

Part of the manual page for the Lapack routine dgesv:

NAME
dgesv - compute the solution to a real system

of linear equations A * X = B,

SYNOPSIS
SUBROUTINE DGESV(N, NRHS, A, LDA, IPIVOT, B, LDB, INFO)

INTEGER N, NRHS, LDA, LDB, INFO
INTEGER IPIVOT(*)
DOUBLE PRECISION A(LDA,*), B(LDB,*)
...
ARGUMENTS
N (input) The number of linear equations, i.e., the

order of the matrix A. N >= 0.

NRHS (input)
The number of right hand sides, i.e., the
number of columns of the matrix B. NRHS >= 0.

A (input/output)
On entry, the N-by-N coefficient matrix A.
On exit, the factors L and U from the
factorization A = P*L*U; the unit diagonal
elements of L are not stored.

LDA (input)
The leading dimension of the array A.
LDA >= max(1,N).

...

It is possible to construct a nicer interface in Fortran90 (C++).

Essentially subroutine gesv(A, B, ipiv, info) where

gesv is polymorphic, (for the four types S, D C, Z) and where

the size information is included in the matrices.

27

Array operations for Fortran90

program array_example
implicit none

! works for other types as well
integer :: k
integer, dimension(-4:3) :: a ! Note -4
integer, dimension(8) :: b, c ! Default 1:8
integer, dimension(-2:3, 3) :: M

a = 1 ! set all elements to 1
b = (/ 1, 2, 3, 4, 5, 6, 7, 8 /) ! constant array
b = 10 * b

c(1:3) = b(6:8)
print*, ’size(a), size(c) = ’, size(a), size(c)
print*, ’lbound(a), ubound(a) = ’,lbound(a),ubound(a)
print*, ’lbound(c), ubound(c) = ’,lbound(c),ubound(c)

c(4:8) = b(8:4:-1) ! almost like Matlab
print*, ’c = ’, c ! can print a whole array

print*, ’minval(c) = ’, minval(c) ! a builtin func.
a = a + b * c ! elementwise *
print*, ’a = ’, a
print*, ’sum(a) = ’, sum(a) ! another builtin

28

M = 0
M(1, :) = b(1:3) ! Row with index one
print*, ’M(1, :) = ’, M(1, :)

M(:, 1) = 20 ! The first column
where (M == 0) ! instead of two loops

M = -1
end where

print*, ’lbound(M) = ’, lbound(M) ! an array

do k = lbound(M, 1), ubound(M, 1) ! print M
print ’(a, i2, a, i2, 2i5)’, ’ M(’, k, ’, :) = ’, &

M(k, :)
end do

end

% ./a.out
size(a), size(c) = 8 8
lbound(a), ubound(a) = -4 3
lbound(c), ubound(c) = 1 8
c = 60 70 80 80 70 60 50 40
minval(c) = 40
a = 601 1401 2401 3201 3501 3601 3501 3201
sum(a) = 21408
M(1, :) = 10 20 30
lbound(M) = -2 1
M(-2, :) = 20 -1 -1
M(-1, :) = 20 -1 -1
M(0, :) = 20 -1 -1
M(1, :) = 20 20 30
M(2, :) = 20 -1 -1
M(3, :) = 20 -1 -1

29

Some dangerous things

Actual and formal parameters lists: check position, number and

type. Can use interface blocks (“prototypes”).

program main
double precision :: a, b

a = 0.0
call sub(a, 1.0, b)
print*, a, b

end
subroutine sub(i, j)
integer :: i, j

i = i + 1
j = 10.0

end

% a.out
Segmentation fault % result depends on the compiler

Remove the line j = 10.0 and run again:

% a.out
2.1219957909653-314 0. % depends on the compiler

30

C- and Fortran compilers do not usually check array bounds.

#include <stdio.h>
void sub(double a[]);

int main()
{

double b[10], a[10];

b[0] = 1;
sub(a);
printf("%f\n", b[0]);

return 0;
}

void sub(double a[])
{

a[10] = 12345.0;
}

Running this program we get:

% a.out
12345.000000

Changing a[10] to a[1000000] gives Segmentation fault.

31

Some Fortran-compilers can check subscripts (provided you do

not lie):

program main
double precision, dimension(10) :: a

call lie(a)
print*, ’a(1) = ’, a(1)

end program main
subroutine lie(a)
double precision, dimension(10) :: a

do j = 1, 100 !!! NOTE
a(j) = j

end do

end subroutine lie

% ifort -CB lie.f90
% ./a.out
forrtl: severe (408): fort: (2): Subscript #1 of the
array A has value 11 which is greater than the upper
bound of 10

Change dimension(10) to
dimension(100) in lie

% ifort -CB lie.f90
% a.out
a(1) = 1.0000000000000

For gfortran or g95, type

% gfortran -fbounds-check lie.f90
% g95 -fbounds-check lie.f90

32

Precedence of Fortran 90-operators

Operators between horizontal lines have the same precedence.

Operator Meaning

unary user-defined operator

** power

* multiplication

/ division

+ unary addition

- unary subtraction

+ binary addition

- binary subtraction

// string concatenation

== .EQ. equality

/= .NE. inequality

< .LT. less than

<= .LE. less or equal

> .GT. greater than

>= .GE. greater or equal

.NOT. logical negation

.AND. logical and

.OR. logical or

.EQV. logical equivalence

.NEQV. logical non-equivalence

binary user-defined operator

Comments:

== is the Fortran90 form and .EQ. is the Fortran77 form, etc.

In Fortran90 lower case is permitted, .e.g .not. .

About the user defined operators. In Fortran90 it is possible

to define ones own operators by overloading existing operators

or by creating one with the name .name. where name consists

of at most 31 letters.

33

Using make

Make keeps track of modification dates and recompiles

the routines that have changed.

Suppose we have the programs main.f90 and sub.f90 and that

the executable should be called run. Here is a simple makefile

(it should be called Makefile or makefile):

run: main.o sub.o
g95 -o run main.o sub.o

main.o: main.f90
g95 -c main.f90

sub.o: sub.f90
g95 -c sub.f90

A typical line looks like:

target: files that the target depends on
^Ia rule telling make how to produce the target

Note the tab character. Make makes the first target in the make-

file. -c means compile only (do not link) and -o gives the name

of the executable.

To use the makefile just give the command make.

% make
g95 -c main.f90
g95 -c sub.f90
g95 -o run main.o sub.o

To run the program we would type run .

34

If we type make again nothing happens (no file has changed):

% make
‘run’ is up to date.

Now we edit sub.f90 and type make again:

% make
g95 -c sub.f90
g95 -o run main.o sub.o

Note that only sub.f90 is compiled. The last step is to link

main.o and sub.o together (g95 calls the linker, ld).

Writing makefiles this way is somewhat inconvenient if we have

many files. make may have some builtin rules, specifying how to

get from source files to object files, at least for C. The following

makefile would then be sufficient:

run: main.o sub.o
gcc -o run main.o sub.o

Fortran90 is unknown to some make-implementations and on the

student system one gets:

% make
make: *** No rule to make target ‘main.o’,

needed by ‘run’. Stop.

We can fix that by adding a special rule for how to produce an

object file from a Fortran90 source file.

run: main.o sub.o
g95 -o run main.o sub.o

.SUFFIXES: .f90

.f90.o:
g95 -c $<

35

$<, a so called macro, is short for the Fortran file.

One can use variables in make, here OBJS and FFLAGS.

OBJS = main.o sub.o
FFLAGS = -O3

run: $(OBJS)
g95 -o run $(FFLAGS) $(OBJS)

.SUFFIXES: .f90

.f90.o:
g95 -c $(FFLAGS) $<

OBJS (for objects) is a variable and the first line is an assignment

to it. $(OBJS) is the value (i.e. main.o sub.o) of the variable

OBJS. FFLAGS is a standard name for flags to the Fortran com-

piler. I have switched on optimization in this case. Note that

we have changed the suffix rule as well.

Make knows about certain variables, like FFLAGS. Suppose we

would like to use the ifort-compiler instead. When compiling

the source files, make is using the compiler whose name is stored

in the variable FC (or possible F90 or F90C). We write:

OBJS = main.o sub.o
FC = ifort
FFLAGS = -O3

run: $(OBJS)
$(FC) -o run $(FFLAGS) $(OBJS)

.SUFFIXES: .f90

.f90.o:
$(FC) -c $(FFLAGS) $<

It is usually important to use the same compiler for compiling

and linking (or we may get the wrong libraries). It may also be

important to use the same Fortran flags.

36

Sometimes we wish the recompile all files (we may have changed

$(FFLAGS)for example). It is common to have the target clean.
When having several targets we can specify the one that should

be made:

OBJS = main.o sub.o
FC = g95
FFLAGS = -O3

run: $(OBJS)
$(FC) -o run $(FFLAGS) $(OBJS)

Remove objects and executable
clean:

rm -f $(OBJS) run

.SUFFIXES: .f90

.f90.o:
$(FC) -c $(FFLAGS) $<

Without -f, rm will complain if some files are missing.

We type:

% make clean
rm -f main.o sub.o run

37

Suppose we like to use a library containing compiled routines.

The new makefile may look like:

OBJS = main.o sub.o
FC = g95
FFLAGS = -O3
LIBS = -lmy_library

run: $(OBJS)
$(FC) -o run $(FFLAGS) $(OBJS) $(LIBS)

.SUFFIXES: .f90

.f90.o:
$(FC) -c $(FFLAGS) $<

If you are using standard functions in C sin, exp etc. you must

use the math-library:

cc ... -lm

The equivalent makefile for C-programs looks like:

OBJS = main.o sub.o
CC = cc
CFLAGS = -O3
LIBS = -lmy_library -lm

run: $(OBJS)
$(CC) -o run $(CFLAGS) $(OBJS) $(LIBS)

clean:
rm -f $(OBJS) run

38

For the assignments it is easiest to have one directory and one

makefile for each. It is also possible to have all files in one

directory and make one big makefile.

OBJS1 = main1.o sub1.o
OBJS2 = main2.o sub2.o
CC = cc
CFLAGS = -O3
LIBS1 = -lm
LIBS2 = -lmy_library

all: prog1 prog2

prog1: $(OBJS1)
$(CC) -o $@ $(CFLAGS) $(OBJS1) $(LIBS1)

prog2: $(OBJS2)
$(CC) -o $@ $(CFLAGS) $(OBJS2) $(LIBS2)

clean:
rm -f $(OBJS1) $(OBJS2) prog1 prog2

When one is working with (and distributing) large projects it

is common to use make in a recursive fashion. The source code

is distributed in several directories. A makefile on the top-level

takes care of descending into each sub-directory and invoking

make on a local makefile in each directory.

39

A few words about header files. Suppose main.c depends on

defs.h and params.h. main.c calls sub1.c and sub2.c, where

sub2.c depends on defs.h and constants.h, which in turn

includes const.h. A suitable makefile might be:

OBJS = main.o sub1.o sub2.o
CC = gcc
CFLAGS = -O3
LIBS = -lm

a.out: $(OBJS)
$(CC) -o $@ $(CFLAGS) $(OBJS) $(LIBS)

main.o: defs.h params.h
sub2.o: defs.h constants.h const.h

Remove objects and executable
clean:

rm -f $(OBJS) a.out

In can be complicated to create the header file dependencies,

the makedepend-program may help. Say we have this makefile

(named makefile or Makefile, with no header file dependen-

cies):

OBJS = main.o sub1.o sub2.o
CC = gcc
CFLAGS = -O3
LIBS = -lm

a.out: $(OBJS)
$(CC) -o $@ $(CFLAGS) $(OBJS) $(LIBS)

Remove objects and executable
clean:

rm -f $(OBJS) a.out

40

makedependon the source files will append the dependencies on

the existing makefile:

% makedepend *.c
% cat Makefile
OBJS = main.o sub1.o sub2.o
CC = gcc
CFLAGS = -O3
LIBS = -lm

a.out: $(OBJS)
$(CC) -o $@ $(CFLAGS) $(OBJS) $(LIBS)

Remove objects and executable
clean:

rm -f $(OBJS) a.out
DO NOT DELETE

main.o: defs.h params.h
sub2.o: defs.h constants.h const.h

This is how the new makefile works:

% make let us assume a.out is up to date
‘a.out’ is up to date.

% touch defs.h changing defs.h
% make
gcc -O3 -c -o main.o main.c
gcc -O3 -c -o sub2.o sub2.c
gcc -o a.out -O3 main.o sub1.o sub2.o -lm

makedependworks for Fortran as well provided you use #include.

There is much more to say about make. See e.g. the O’Reilly-

book, Robert Mecklenburg, Managing Projects with GNU Make,

3rd ed, 2004.

41

Computer Architecture

Why this lecture?

Some knowledge about computer architecture is necessary:

• to understand the behaviour of programs

• in order to pick the most efficient algorithm

• to be able to write efficient programs

• to know what computer to run on

(what type of architecture is your code best suited for)

• to read (some) articles in numerical analysis

The change of computer architecture has made it necessary to

re-design software, e.g Linpack ⇒ Lapack.

42

A very simple (and traditional) model of a computer:

CPU Memory devices
I/O

bus
I/O busMemory

The CPU contains the ALU, arithmetic and logic unit and the

control unit. The ALU performs operations such as +, -, *, / of

integers and Boolean operations.

The control unit is responsible for fetching, decoding and

executing instructions.

The memory stores instructions and data. Instructions are fetched

to the CPU and data is moved between memory and CPU using

buses.

I/O-devices are disks, keyboards etc.

The CPU contains several registers, such as:

• PC, program counter, contains the address of the next

instruction to be executed

• IR, instruction register, the executing instruction

• address registers

• data registers

The memory bus usually consist of one address bus and one data

bus. The data bus may be 64 bits wide and the address bus may

be ≥ 32 bits wide. With the introduction of 64-bit computers,

buses tend to become increasingly wider. The Itanium 2 uses

128 bits for data and 44 bits for addresses.

Operations in the computer are synchronized by a clock.

A modern CPU may run at a few GHz (clock frequency). The

buses are usually a few (4-5) times slower.

43

A few words on 64-bit systems

Why 64 bit?

• A larger address range, can address more memory.

With 32 bits we can (directly) address 4 Gbyte, which is

rather limited for some applications.

•Wider busses, increased memory bandwidth.

• 64-bit integers.

Be careful when mixing binaries (object libraries) with your own

code. Are the integers 4 or 8 bytes?

% cat kind.c
#include <stdio.h>

int main()
{
printf("sizeof(short int) = %d\n", sizeof(short int));
printf("sizeof(int) = %d\n", sizeof(int));
printf("sizeof(long int) = %d\n", sizeof(long int));

return 0;
}

% gcc kind.c On the 32-bit student system
% a.out
sizeof(short int) = 4
sizeof(int) = 4
sizeof(long int) = 4

% a.out On the 64-bit student system
sizeof(short int) = 4
sizeof(int) = 4
sizeof(long int) = 8 4 if gcc -m32

Running the 32-bit binary on the 64-bit system behaves like the

32-bit system. One cannot run the 64-bit binary om the 32-bit

system.
44

CISC (Complex Instruction Set Computers) before ≈ 1985.

Each instruction can perform several low-level operations, such

as a load from memory, an arithmetic operation, and a memory

store, all in a single instruction.

Why CISC?

For a more detailed history, see the literature.

• Advanced instructions simplified programming

(writing compilers, assembly language programming).

Software was expensive.

• Memory was limited and slow so short programs were good.

(Complex instructions ⇒ compact program.)

Some drawbacks:

• complicated construction could imply a lower clock frequency

• instruction pipelines hard to implement

• long design cycles

• many design errors

• only a small part of the instructions was used

According to Sun: Sun’s C-compiler uses about 30% of the

available 68020-instructions (Sun3 architecture). Studies show

that approximately 80% of the computations for a typical

program requires only 20% of a processor’s instruction set.

When memory became cheaper and faster, the decode and

execution on the instructions became limiting.

Studies showed that it was possible to improve performance with

a simple instruction set and where instructions would execute in

one cycle.

45

RISC - Reduced Instruction Set Computer

• IBM 801, 1979 (publ. 1982)

• 1980, David Patterson, Berkeley, RISC-I, RISC-II

• 1981, John Hennessy, Stanford, MIPS

• ≈ 1986, commercial processors

A processor whose design is based on the rapid execution of a

sequence of simple instructions rather than on the provision of

a large variety of complex instructions.

Some RISC-characteristics:

• load/store architecture; C = A + B

LOAD R1,A
LOAD R2,B
ADD R1,R2,R3
STORE C,R3

• fixed-format instructions (the op-code is always in the same

bit positions in each instruction which is always one word

long)

• a (large) homogeneous register set, allowing any register to

be used in any context and simplifying compiler design

• simple addressing modes with more complex modes replaced

by sequences of simple arithmetic instructions

• one instruction/cycle

• hardwired instructions and not microcode

• efficient pipelining

• simple FPUs; only +, -, *, / and √ .

sin, exp etc. are done in software.

46

Advantages: Simple design, easier to debug, cheaper to

produce, shorter design cycles, faster execution,

easier to write optimizing compilers

(easier to optimize many simple instructions than a few

complicated with dependencies between each other).

CISC - short programs using complex instructions.

RISC - longer programs using simple instructions.

So why is RISC faster?

The simplicity and uniformity of the instructions make it

possible to use pipelining, a higher clock frequency and to write

optimizing compilers.

Will now look at some techniques used in all RISC-computers:

• instruction pipelining

work on the fetching, execution etc. of instructions in parallel

• cache memories

small and fast memories between the main memory and the

CPU registers

• superscalar execution

parallel execution of instructions (e.g. two integer

operations, *, + floating point)

The most widely-used type of microprocessor, the x86 (Intel), is

CISC rather than RISC, although the internal design of newer

x86 family members is said to be RISC-like. All modern CPUs

share some RISC characteristics, although the details may differ

substantially.

47

Pipelining - performing a task in several
steps, stages

Analogy: building cars using an assembly line in a factory.

Suppose there are five stages (can be more), .e.g

IF Fetch the next instruction from memory.

ID Instruction decode.

EX Execute.

M, WM Memory access, write to registers.

IF ID MEX WB

IF ID MEX WB

IF ID MEX WB

IF ID MEX WB

IF ID MEX WB

Clock cycle number

1 2 3 4 5 6 7 8 9

Instruction

k+1

k+2

k+3

k+4

k

48

So one instruction completed per cycle once the pipeline is filled.

Not so simple in real life: different kind of hazards, that pre-

vent the next instruction from executing during its designated

clock cycle. Can make it necessary to stall the pipeline (wait

cycles).

• Structural hazards arise from resource conflicts, e.g.

• two instructions need to access the system bus (fetch data,

fetch instruction),

• not fully pipelined functional units (division usually takes

10-20 cycles, for example).

• Data hazards arise when an instruction depends on the

results of a previous instruction (will look at some cases in

later lectures) e.g.

a = b + c
d = a + e d depends on a

The second addition must not start until a is available.

• Control hazards arise from the pipelining of branches

(if-statements).

An example of a control hazard:

if (a > b - c * d) then
do something

else
do something else

end if

Must wait for the evaluation of the logical expression.

If-statements in loops may cause poor performance.

49

Several techniques to minimize hazards (look in the literature

for details) instead of just stalling. Some examples:

Structural hazard:

Add hardware. If the memory has only one port LOAD adr,R1
will stall the pipeline (the fetch of data will conflict with a later

instruction fetch). Add a memory port (separate data and

instruction caches).

Data hazards:

• Forwarding: b + c available after EX, special hardware

“forwards” the result to the a + e computation (without in-

volving the CPU-registers).

• Instruction scheduling. The compiler can try and rearrange

the order of instruction to minimize stalls.

Try to change the order between instructions using the wait-

time to do something useful.

a = b + c
d = a + e

load b
load c
add b + c has to wait for load c to complete

load b
load c
load e give the load c time to complete
add b + c in parallel with load e

50

Control hazards: (many tricks)

• Add hardware; can compute the address of the branch target

earlier and can decide whether the branch should be taken

or not.

• Branch prediction; try to predict, using “statistics”, the way

a branch will go. Compile-time/run-time. Can work very

well. The branch att the end of a for-loops is taken all the

times but the last.

• Speculative execution: assume the branch not taken and con-

tinue executing (no stall). If the branch is taken, must be

able do undo.

51

Superscalar CPUs

Fetch, decode and execute more than one instruction in parallel.

More than one finished instruction per clock cycle. There may,

e.g. be two integer ALUs, one unit for floating point addition

and subtraction one for floating point multiplication. The units

for +, - and * are usually piplined (they need several clock cycles

to execute).

There are also units for floating point division and square root;

these units are not (usually) pipelined.

MULT xxxxxxxx
MULT xxxxxxxx
MULT xxxxxxxx

Compare division; each xxxxxxxxxx is 10-20 cycles:

DIV xxxxxxxxxx
DIV xxxxxxxxxx
DIV xxxxxxxxxx

How can the CPU keep the different units busy?

The CPU can have circuits for arranging the instructions in

suitable order, dynamic scheduling (out-of-order-execution).

To reduce the amount of hardware in the CPU we can let the

compiler decide a suitable order. Groups of instructions (that

can be executed in parallel) are put together in packages. The

CPU fetches a whole package and not individual instructions.

VLIW-architecture, Very Long Instruction Word.

The Intel & HP Itanium CPU uses VLIW (plus RISC ideas).

Read the free chapter from: W. Triebel, Itanium Architecture

for Software Developers. See the first chapter in: IA-32 Intel

Architecture Optimization Reference Manual for details aboute

the Pentium 4. Read Appendix A in the Software Optimization

Guide for AMD64 Processors. See the web-Diary for links.
52

More on parallel on floating point operations.

flop = floating point operation.

flops = plural of flop or flop / second.

In numerical analysis a flop may be an addition-multiplication

pair. Not unreasonable since (+, *) often come in pairs, e.g. in

an inner product.

Top floating point speed =

of cores × flop / s =

of cores × # flop / clock cycle × clock frequency

Looking in instruction_tables.pdfat www.agner.org one

can find out the performance of several CPUs. One core in the

student machines (Intel Pentium Dual-core, E6300, Wolfdale-

3M) can, in the best of cases, finish 1 addition and 0.5 multipli-

cation per clock cycle using x87-instructions. Divisions, which

are not pipelined, may take up to 20 cycles.

It is, however, common with vector units, like Intel’s SSE, in

modern CPUs. These units can work in parallel on short vec-

tors of numbers.

To use the the vector unit you need a compiler that can vec-

torize. The vector unit may not be IEEE 754 compliant (not

correctly rounded). So results may differ between the vector-

ized and unvectorized versions of the same code.

Each core in the lab-computers can execute a vectorized add

and a vectorized multiply operation per cycle. Each operation

can work on two double (or four single) precision numbers in

parallel. Division is still slow.

See www.spec.org for benchmarks with real applications.

53

Memory is the problem - caches

1980 1985 1990 1995 2000 2005 2010
10

0

10
1

10
2

10
3

10
4

year

pe
rf

or
m

an
ce

Performance of CPU and memory (Patterson & Hennessy)

CPU

Memory

CPU: increase 1.35 improvement/year until 1986,

and a 1.55 improvement/year thereafter.

DRAM (dynamic random access memory), slow and cheap,

1.07 improvement/year.

Use SRAM (static random access memory) fast & expensive for

cache.

54

Direct mapped cache

Memory devices
I/O

CPU

C
ache

The cache is a small and fast memory used for storing both

instructions and data.

This is the simplest form of cache-construction.

variable, e.g. 4 bytes

�����
�����
�����
�����

�����
�����
�����
�����

��
��
��
��

��
��
��
��

Main memoryCache

these lines
occupy the
the same place
in the cache

cache line

bytes are needed

even if only a few

copy the whole line

55

There are more general cache constructions.

This is a two-way set associative cache:

��������
��������
��������

��������
��������
��������

��������
��������
��������

��������
��������
��������

�������� ��������Set

Data

A direct mapped cache is one-way set associative.

In a fully associative cache data can be placed anywhere.

���������
���������
���������

���������
���������
���������

���������
���������
���������

���������
���������
���������

���������
���������
���������

���������
���������
���������

���������
���������
���������

���������
���������
���������

���������
���������
���������

���������
���������
���������������

������
������

������
������
������

�������
�������
�������
�������

������������������
������
������
������

�������
�������
�������

�������
�������
�������

Data

56

To use a cache efficiently locality is important.

• instructions: small loops, for example

• data: use part of a matrix (blocking)

Instructions

Data

Good
locality

Main memory

Not necessarily good locality together.

Make separate caches for data and instructions.

Can read instructions and data in parallel.

57

L1 and L2 caches

Faster

Larger

L1 caches

Instruction

Data

DisksL2 cache memory
Main

CPU

O(10) kbyte O(1) Mbyte O(1) GbyteO(10) bytes O(100) Gbyte

Memory hierarchy.

Newer machines even have an L3 cache.

58

The student machines

(Some) Intel and AMD cpu:s have an instruction, cpuid, that

gives details about the CPU, such as model, SSE-features, L1-

and L2-cache properties. These values can be hard to find just

reading manuals.

Unfortunately one has to code in assembler to access this

information. gcc supports inlining of assembly code using the

asm-function. asm makes it possible to “connect” registers with

C-variables. There is a cpu id-code available from

http://linux.softpedia.com/(search for cpuid) .

You find info. in /proc/cpuinfoand /proc/meminfoas well.

These files and the above program provide the following

information (and more) about the student machines:

Model: Intel Core i5-650, 3.20 GHz.

L1 Data Cache: 32 k, 8-way
L2 Cache: 256 k, 8-way
L3 Cache: 4 M, 16-way

All the cashes have a 64-byte line size.

The TLB has several levels (like the ordinary caches).
data TLB: 4-way, 64 entries
instruction TLB: 4-way, 64 entries
L2 TLB: 4-way, 512 entries

The system has a pagesize of 4 kbyte.
% getconf PAGESIZE
4096

4 Gbyte main memory

Two cores and hyper-threading, so /proc/cpuinfo and
top report four cores.

59

A note on reading assembly output

In the lecture and during the labs I said it was sometimes useful

to look at the assembler code produced by the compiler.

Here comes a simple example. Let us look at the the following

function.

double dot(double x[], double y[], int n)
{
double s;
int k;

s = 0.0;
for (k = 0; k < n; k++)

s += x[k] * y[k];

return s;
}

First some typical RISC-code from a Sun ULTRA-Sparc CPU.

I used gcc and compiled the code by:

gcc -S -O3 dot.c

-S produces the assembler output on dot.s.
Here is the loop (code for passing parameters, setting up for the

loop, and returning the result is not included).

.LL5: My translation
ldd [%o0+%g1], %f8 %f8 = x[k]
ldd [%o1+%g1], %f10 %f10 = y[k]
add %g2, 1, %g2 k = k + 1
fmuld %f8, %f10, %f8 %f8 = %f8* %f10
cmp %o2, %g2 k == n? Set status reg.
faddd %f0, %f8, %f0 %f0 = %f0 + %f8
bne .LL5 if not equal, go to .LL5
add %g1, 8, %g1 increase offset

60

Some comments.

%f8 and %f10 are registers in the FPU. When entering the

function, the addresses of the first elements in the arrays are

stored in registers %o0 and %o1. The addresses of x[k] and

y[k] are given by %o0 + 8k and %o1 + 8k. The reason for the

factor eight is that the memory is byte addressable (each byte

has an address). The offset, 8k, is stored in register %g1.

The offset, 8k, is updated in the last add. It looks a bit strange

that the add comes after the branch, bne. The add-instruction is,

however, placed in the branch delay slot of the branch-instruction,

so it is executed in parallel with the branch.

add is an integer add. faddd is a “floating point add double”. It

updates %f0, which stores the sum. %f0 is set to zero before the

loop. cmp compares k with n (the last index) by subtracting the

numbers. The result of the compare updates the Z-bit (Z for

zero) in the integer condition code register. The branch instruc-

tion looks at the Z-bit to see if the branch should be taken or not.

We can make an interesting comparison with code produced on

the AMD64. The AMD (Intel-like) has both CISC- and RISC-

characteristics. It has fewer registers than the Sparc and it does

not use load/store in the same way. The x87 (the FPU) uses

a stack with eight registers. In the code below, eax etc. are

names of 32-bit CPU-registers. (in the assembly language a % is

added).

.L5:
fldl (%ebx,%eax,8)
fmull (%ecx,%eax,8)
faddp %st, %st(1)
incl %eax
cmpl %eax, %edx
jne .L5

61

When the loop is entered %ebx and %ecx contain the addresses

of the first elements of the arrays. Zero has been pushed on the

stack as well (corresponds to s = 0.0).

fldl (%ebx,%eax,8)loads a 64 bit floating point number. The

address is given by %ebx + %eax*8. The number is pushed on

the top of the stack, given by the stackpointer %st.

Unlike the Sparc, the AMD can multiply with an operand in

memory (the number does not have to be fetched first). So the

fmull multiplies the top-element on the stack with the number

at address %ecx + %eax*8 and replaces the top-element with

the product.

faddp %st, %st(1)adds the top-elements on the stack

(the product and the sum, s), pops the stack, the p in faddp,
and replaces the top with the new value of s.

incl increases k (stored in %eax) and cmpl compares it to n.
jne stands for jump if not equal.

62

Virtual memory
Use disk to “simulate” a larger memory. The virtual address

space is divided into pages e.g. 4 kbytes. A virtual address is

translated to the corresponding physical address by hardware

and software; address translation.

A

B

C

D

B

C

A

D

Physical memoryVirtual memory

Disk

A page is copied from disk to memory when an attempt is made

to access it and it is not already present (page fault). When the

main memory is full, pages must be stored on disk (e.g. the least

recently used page since the previous page fault). Paging.

(Swapping; moving entire processes between disk and memory.)

Some advantages of virtual memory:

• simplifies relocation (loading programs to memory),

independece of physical addresses;

several programs may reside in memory

• security, can check access to protected pages, e.g. read-only

data; can protect data belonging to other processes

• allows large programs to run on little memory; only used

sections of programs need be present in memory; simplifies

programming (e.g. large data structures where only a part

is used)
63

Virtual memory requires locality (re-use of pages) to work well,

or thrashing may occur.

A few words on address translation

The following lines sketch one common address translating

technique.

A virtual address is made up by two parts, the virtual page

number and the page offset (the address from the top of the

page).

The page number is an index into a page table:

physical page address =
page_table(virtual page number)

The page table is stored in main memory (and is sometimes

paged). To speed up the translation (accessing main memory

takes time) we store part of the table in a cache, a transla-

tion lookaside buffer, TLB which resides in the CPU (O(10) −
O(1000) entries).

Once again we see that locality is important. If we can keep

the references to a few pages, the physical addresses can found

in the TLB and we avoid a reference to main memory. If the

address is not available in the TLB we get a TLB miss (which is

fairly costly, taking tens of clock cycles).

Reading the actual data may require a reference to main

memory, but we hope the data resides in the L1 cache.

Second best is the L2 cache, but we may have to make an

access to main memory, or worse, we get a page fault and

have to make a disk access (taking millions of clock cycles).

64

Code optimization

• How does one get good performance from a computer

system?

• Focus on systems with one CPU (with one core) and floating

point performance.

• To get maximum performance from a parallel code it is

important to tune the code running on each CPU.

• General advice and not specific systems.

• Fortran, some C (hardly any C++) and some Matlab.

Some Java in the compendium.

65

Your situation

• A large and old code which has to be optimized. Even a

slight speedup would be of use, since the code may be run

on a daily basis.

• A new project, where language and data structures have to

be chosen.

C/C++ usually slower than Fortran for floating point.

Java? Can be slow and use large amounts of memory.

See the article (compendium) for an example.

Should it be parallel?

Test a simplified version of the computational kernel.

Fortran for floating point, C/C++ for the rest.

• Things that are done once. Let the computer work.

Unix-tools, Matlab, Maple, Mathematica ...

66

More about unix-tools:

• shell scripts (sh, csh, tcsh, ksh, bash)
(for, if, | pipes and lots more)

• awk (developed by Alfred Aho, Peter Weinberger, and Brian

Kernighan in 1978)

• sed (stream editor)

• grep (after the qed/ed editor subcommand ”g/re/p”, where

re stands for a regular expression, to Globally search for the

Regular Expression and Print)

• tr (translate characters)

• perl (Larry Wall in 1987; contains the above)

• etc.

Some very simple examples:

Counting the number of lines in a file(s):

% wc file or wc -l file
% wc files or wc -l files

Finding a file containing a certain string

% grep string files e.g.
% grep ’program matrix’ *.f90 or
% grep -i ’program matrix’*.f90 etc.

The grep-command takes many flags.

67

Example: interchange the two blank-separated columns of

numbers in a file:

% awk ’{print $2, $1}’ file

Example: sum the second columns of a set of datatfiles. Each

row contains: number number text text
The files are named data.01, data.02, ...

foreach? is the prompt.

% foreach f (data.[0-9][0-9])
foreach? echo -n $f’: ’
foreach? awk ’{s += $2} END {print s}’ $f
foreach? end
data.01: 30
data.02: 60
data.03: 77
data.20: 84

Another possibility is:

awk ’{s += $2} END {print FILENAME ": " s}’ $f

68

Just the other day (two years ago) ...

You have ≈ 600 files each consisting of ≈ 24000 lines (a total of

≈ 14 · 106 lines) essentially built up by:

<DOC>
<TEXT>
Many lines of text (containing no DOC or TEXT)
</TEXT>
</DOC>
<DOC>
<TEXT>
Many lines of text
</TEXT>
</DOC>
etc.

There is a mismatch between the number of DOC and TEXT.
Find it!

We can localize the file this way:

% foreach f (*)
foreach? if (‘grep -c "<DOC>" $f‘ != \

‘grep -c "<TEXT>" $f‘) echo $f
foreach? end

Not so efficient; we are reading each file twice.

Takes ≈ 3.5 minutes.

We used binary search to find the place in the file.

69

The optimization process

Basic: Use an efficient algorithm.

Simple things:

• Use (some of) the optimization options of the compiler.

Optimization can give large speedups

(and new bugs, or reveal bugs).

– Save a copy of the original code.

– Compare the computational results before and

after optimization.

Results may differ in the last bits and still be OK.

• Read the manual page for your compiler.

Even better, read the tuning manual for the system.

• Switch compiler and/or system.

The next page lists the compiler options, flags, of the Intel

Fortran90-compiler. There are more than 300 flags. The names

are not standardized, but it is common that -c means “compile

only, do not link”. To produce debug information -g is used.

Some of the flags are passed on to the preprocessor (locations

and names of header files) and to the linker (locations and names

of libraries). The most important flags in this course are those

for optimization. -O[n] usually denotes optimization on level n.
There may be an option, like -fast, that gives a combination

of suitable optimization options. Here a few av the more than

1000 lines produced by icc -help and ifort -help.

There is a user and reference guide, PDF (> 3800 pages, for

Fortran, C++-manual 1894 pages).

70

• Optimization

...
-O2 optimize for maximum speed (DEFAULT)

-O3 optimize for maximum speed and enable more aggressive

optimizations that may not improve performance on some

programs

-O same as -O2
...
-O0 disable optimizations

-fast enable -xHOST -O3 -ipo -no-prec-div -static, ...
-fno-alias assume no aliasing in program

...
• Code Generation

-x<code1> generate specialized code to run exclusively on pro-

cessors indicated by <code> as described below

• Interprocedural Optimization (IPO)

-[no-]ip enable(DEFAULT)/disable single-file IP optimization

within files

-ipo[n]enable multi-file IP optimization between files

...

• Advanced Optimizations

...
-[no-]vec enables(DEFAULT)/disables vectorization

...
Here is an incomplete list of the remaining categories:

• Profile Guided Optimization (PGO)

• Optimization Reports

• OpenMP* and Parallel Processing

• Floating Point

• Inlining

• Output, Debug, PCH (pre compiled header files)

• Preprocessor

• Compiler Diagnostics

• Linking/Linker

71

If you are willing to work more...

• Decrease number of disk accesses (I/O, virtual memory)

• (LINPACK, EISPACK) → LAPACK

• Use numerical libraries tuned for the specific system, BLAS

Find bottlenecks in the code (profilers).

Attack the subprograms taking most of the time.

Find and tune the important loops.

Tuning loops has several disadvantages:

• The code becomes less readable and it is easy to introduce

bugs. Compare computational results before and after tuning.

• Detailed knowledge about the system, such as cache

configuration, may be necessary.

•What is optimal for one system need not be optimal for

another; faster on one machine may actually be slower on

another.

This leads to problems with portability.

• Code tuning is not a very deterministic business.

The combination of tuning and the optimization done by the

compiler may give an unexpected result.

• The computing environment is not static; compilers become

better and there will be faster hardware of a different

construction.

The new system may require different (or no) tuning.

72

What should one do with the critical loops?

The goal of the tuning effort is to keep the FPU(s) busy.

Accomplished by efficient use of the

• memory hierarchy

• parallel capabilities

L1 caches

Instruction

Data

DisksL2 cache memory
Main

CPU

Size

Speed

Superscalar: start several instructions per cycle.

Pipelining: work on an instruction in parallel.

Vectorization: parallel computation on short arrays.

• Locality of reference, data reuse

• Avoid data dependencies and other constructions
that give pipeline stalls

73

What can you hope for?

• Many compilers are good.

May be hard to improve on their job.

We may even slow the code down.

• Depends on code, language, compiler and hardware.

• Could introduce errors.

• But: can give significant speedups.

Not very deterministic, in other words.

• Do not rewrite all the loops in your code.

• Save a copy of the original code. If you make large changes

to the code, use som kind of version control system.

• Compare computational results before and after tuning.

74

Choice of language

Fortran, C/C++ dominating languages for high performance

numerical computation.

There are excellent Fortran compilers due to the competition

between manufacturers and the design of the language.

It may be harder to generate fast code from C/C++ and it is

easy to write inefficient programs in C++

void add(const double a[], const double b[],
double c[], double f, int n)

{
int k;

for(k = 0; k < n; k++)
c[k] = a[k] + f * b[k];

}

n, was chosen such that the three vectors would fit in the L1-

cache, all at the same time.

On the two systems tested (in 2005) the Fortran routine was

twice as fast.

From the Fortran 90 standard (section 12.5.2.9):

“Note that if there is a partial or complete overlap be-

tween the actual arguments associated with two different

dummy arguments of the same procedure, the overlapped

portions must not be defined, redefined, or become un-

defined during the execution of the procedure.”

Not so in C. Two pointer-variables with different names may

refer to the same array.

75

A Fortran compiler may produce code that works on several

iterations in parallel.

c(1) = a(1) + f * b(1)
c(2) = a(2) + f * b(2) ! independent

Can use the pipelining in functional units for addition and

multiplication.

The assembly code is often unrolled this way as well.

The corresponding C-code may look like:

/* This code assumes that n is a multiple of four*/
for(k = 0; k < n; k += 4) {
c[k] = a[k] + f * b[k];
c[k+1] = a[k+1] + f * b[k+1];
c[k+2] = a[k+2] + f * b[k+2];
c[k+3] = a[k+3] + f * b[k+3];

}

A programmer may write code this way, as well. Unrolling gives:

• fewer branches (tests at the end of the loop)

• more instructions in the loop; a compiler can change the

order of instructions and can use prefetching

If we make the following call in Fortran, (illegal in Fortran, legal

in C), we have introduced a data dependency.

call add(a, c, c(2), f, n-1)
| | |
a b c

c(2) = a(1) + f * c(1) ! b and c overlap
c(3) = a(2) + f * c(2) ! c(3) depends on c(2)
c(4) = a(3) + f * c(3) ! c(4) depends on c(3)

76

If that is the loop you need (in Fortran) write:

do k = 1, n - 1
c(k + 1) = a(k) + f * c(k)

end do

This loop is slower than the first one (slower in C as well).

In C, aliased pointers and arrays are allowed which means that

it may be harder for a C-compiler to produce efficient code.

The C99 restrict type qualifier can be used to inform

the compiler that aliasing does not occur.

void add(double * restrict a, double * restrict b,
double * restrict c, double f, int n)

It is not supported by all compilers and even if it is supported it

may not have any effect (you may need a special compiler flag,

e.g. -std=c99).

An alternative is to use compiler flags, -fno-alias, -xrestrict
etc. supported by some compilers. If you “lie” (or use a Fortran

routine with aliasing) you may get the wrong answer!

According to an Intel article, their C/C++-compiler can gener-

ate dynamic data dependence testing (checking addresses using

if-statements) to decrease the problem with aliasing.

To see the effects of aliasing one may need more complicated

examples than add. I have kept it because it is easy to under-

stand. On the next page is a slightly more complicated example

(Horner’s method for polynomials), but still only a few lines of

code, i.e. far from a real code.

77

subroutine horner(px, x, coeff, n)
integer j, n
double precision px(n), x(n), coeff(0:4), xj

do j = 1, n
xj = x(j)
px(j) = coeff(0) + xj*(coeff(1) + xj*(coeff(2) &

+ xj*(coeff(3) + xj*coeff(4))))
end do

end

Using n = 1000 and calling the routine 106 times the speed

advantage of Fortran was a factor of 1 up to 4.

If -fno-alias is used, C ≈ Fortran.

It is easy to fix the C-code without using -fno-alias

...
double xj, c0, c1, c2, c3, c4;

/* no aliasing with local variables*/
c0 = coeff[0]; c1 = coeff[1]; c2 = coeff[2];
c3 = coeff[3]; c4 = coeff[4];

for (j = 0; j < n; j++) {
xj = x[j];
px[j] = c0 + xj*(c1 + xj*(c2 + xj*(c3 + xj*c4)));

}
...

It is instructive to compare the assembly ouput of the two Horner

routines. gcc -O3 -S horner.cgives assembly on horner.s.

78

Original routine (just the loop)
.L4:

movl 12(%ebp), %edx
fldl (%edx,%eax,8)
movl -16(%ebp), %edx
fld %st(0)
fmull (%edx)
movl 8(%ebp), %edx
faddl (%ecx)
fmul %st(1), %st
faddl (%esi)
fmul %st(1), %st
faddl (%edi)
fmulp %st, %st(1)
faddl (%ebx)
fstpl (%edx,%eax,8)
addl $1, %eax
cmpl 20(%ebp), %eax
jne .L4

Modified code
.L11:

fldl (%ecx,%eax,8)
fld %st(0)
fmul %st(2), %st
fadd %st(3), %st
fmul %st(1), %st
fadd %st(4), %st
fmul %st(1), %st
fadd %st(5), %st
fmulp %st, %st(1)
fadd %st(5), %st
fstpl (%ebx,%eax,8)
addl $1, %eax
cmpl %edx, %eax
jne .L11

79

I used gcc instead of icc which vectorizes the code and makes

it very hard to read.

Now to Horner with complex numbers using Fortran (complex

is built-in) and C++ (using “C-arrays” of complex<double>).

I got the following times, on three systems using n = 1000 and

calling the routine 105 times.

Compiling using -O2 or -O3, whatever is best.

i = Intel, pg = Portland Group, g = GNU.

ifort icpc pgf90 pgCC g95 g++

0.6 7.4 na na 5.0 (†) 5.4

1.9 4.5 2.3 14.1 3.1 7.0

1.0 1.9 1.2 3.9 1.2 (‡) 2.6

(†) g77 instead of g95. (‡) gfortran instead of g95.

The tables do show that is important to test different systems,

compilers and compile-options.

The behaviour in the above codes changes when n becomes very

large. CPU-bound (the CPU limits the performance) versus

Memory bound (the memory system limits the performance).

80

Basic arithmetic and elementary functions

Many modern CPUs have vector units which can work in par-

allel on the elements of short arrays, e.g. adding two vectors.

Intel has the SSE (Streaming SIMD Extensions,

SIMD = Single Instruction Multiple Data).

The arrays usually consist of two double precision numbers or

four single precision numbers.

The arithmetic may have different roundoff properties compared

to the usual FPU (x87 in an Intel CPU) since the x87 uses

extra digits (to satisfy the requirements in the IEEE floating

point standard).

• Common that the (x87) FPU can perform + and * in parallel.

• a+b*c can often be performed with one round-off,

multiply-add MADD or FMA.

• + and * usually pipelined, so one sum and a product per clock

cycle in the best of cases (not two sums or two products).

Often one sum every clock cycle and one product every other.

• / not usually pipelined and may require 15-40 clock cycles.

• Two FMAs in a few machines.

• Many modern CPUs have several computational cores as well

as vector units.

81

Floating point formats

Type min min max bits in

denormalized normalized mantissa

IEEE 32 bit 1.4 · 10−45 1.2 · 10−38 3.4 · 1038 24

IEEE 64 bit 4.9 · 10−324 2.2 · 10−308 1.8 · 10308 53

• Using single- instead of double precision can give better

performance. Fewer bytes must pass through the memory

system.

• The arithmetic may not be done more quickly since several

systems will use double precision for the computation

regardless.

The efficiency of FPUs differ (this on a 2 GHz Opteron).

>> A = rand(1000); B = A;
>> tic; C = A * B; toc
Elapsed time is 0.780702 seconds.

>> A = 1e-320 * A;
>> tic; C = A * B; toc
Elapsed time is 43.227665 seconds.

82

For better performance it is sometimes possible to replace a

division by a multiplication.

vector / scalar vector * (1.0 / scalar)

Integer multiplication and multiply-add are often slower than

their floating point equivalents.

...
integer, dimension(10000) :: arr = 1
integer :: s = 0

do k = 1, 100000
s = s + dot_product(arr, arr)

end do
...

Change types to real and then to double precision.
here are the times on three systems:

integer single double

1.7 0.58 0.39

1.0 1.6 1.6

0.92 0.22 0.44

83

Elementary functions

Often coded in C, may reside in the libm-library.

• argument reduction

• approximation

• back transformation

Can take a lot of time.

>> v = 0.1 * ones(1000, 1);
>> tic; for k = 1:1000, s = sin(v); end; toc
elapsed_time =

0.039218

>> v = 1e10 * ones(1000, 1);
>> tic; for k = 1:1000, s = sin(v); end; toc
elapsed_time =

0.717893

84

program ugly
double precision :: x = 2.5d1
integer :: k

do k = 1, 17, 2
print’(1p2e10.2)’, x, sin(x)
x = x * 1.0d2

end do

end program ugly

% a.out
2.50E+01 -1.32E-01
2.50E+03 -6.50E-01
2.50E+05 -9.96E-01
2.50E+07 -4.67E-01
2.50E+09 -9.92E-01
2.50E+11 -1.64E-01
2.50E+13 6.70E-01
2.50E+15 7.45E-01
2.50E+17 4.14E+07 <---

Some compilers are more clever than others, which is shown on

the next page.

You should know that, unless x is an integer, vx is computed

using something like:

vx = elog(vx) = ex log v, 0 < v, x

85

subroutine power(vec, n)
integer :: k, n
double precision, dimension(n) :: vec

do k = 1, n
vec(k) = vec(k)**1.5d0 ! so vec(k)^1.5

end do

end

Times with n = 10000 and called 10000 on a 2 GHz AMD64.

Compiler -O3 power opt. power

Intel 1.2 1.2

g95 8.2 1.6

gfortran 8.1 1.6

Looking at the assembly output from Intel’s compiler:

...
fsqrt <---- NOTE
fmulp %st, %st(1) <---- NOTE

...

g95 and gfortran call pow (uses exp and log).

In “opt. power” I have written the loop this way:

...
do k = 1, n

vec(k) = sqrt(vec(k)) * vec(k)
end do

86

There may be vector versions of elementary functions as well as

slightly less accurate versions. AMD’s ACML and Intel’s MKL

both have vector-versions.

Here an example using MKL’s VML (Vector Mathematics

Library). Read the manual for details (how to use vmlSetMode
to set the accuracy mode, for example).

...
include mkl_vml.fi

integer, parameter :: n = 100000
double precision, dimension(n) :: v, sinv

v = ...
call vdsin(n, v, sinv) ! vector-double-sin

...

Performance depends on the type of function, range of argu-

ments and vector length. Here are a few examples runs (1000

repetitions with n as above). The routines are threaded but

seemed to perform best on one thread.

Function loop vec less acc. vec prec

sin 2.3 0.49 0.40 single

exp 1.6 0.36 0.33

atan 2.1 0.83 0.51

sin 3.0 1.3 1.3 double

exp 2.1 0.8 0.8

atan 7.2 2.2 2.0

loop means using the standard routine and a loop

(or equivalently sinv = sin(v)). vec uses the vector routine

from VML and less acc. uses the less accurate version.

Newer Intel compilers use vectorized routines automatically.

87

An SSE-example

We need an optimizing compiler that produces code using the

special vector instructions (or we can program in assembly). For

example (using the default compiler):

% ifort -O3 -xSSE3 -vec_report3 files...
dot_ex.f90(34) : (col. 3) remark: LOOP WAS VECTORIZED.

! A simple benchmark
s = 0.0
do k = 1, 10000

s = s + x(k) * y(k)
end do

Called 100000 times. Here are some typical times on two

systems:

single double

no vec vec no vec vec

1.60 0.38 1.80 0.92

0.83 0.41 0.99 0.80

Some compilers vectorize automatically.

Sppedup may differ, also not all codes can be vectorized.

Disadvantage: the x87-FPU uses double extended precision, 64

bit mantissa. SSE2 uses 24 bits (single precision) or 53 bits

(double precision). You may get different results.

88

Eliminating constant expressions from loops

pi = 3.14159265358979d0
do k = 1, 1000000

x(k) = (2.0 * pi + 3.0) * y(k) ! eliminated
end do

do k = 1, 1000000
x(k) = exp(2.0) * y(k) ! probably eliminated

end do

do k = 1, 1000000
x(k) = my_func(2.0) * y(k) ! cannot be eliminated

end do

Should use PURE functions, my_funcmay have side-effects.

89

Virtual memory and paging

• Simulate larger memory using disk.

• Virtual memory is divided into pages, perhaps 4 or 8 kbyte.

• Moving pages between disk and physical memory is known

as paging.

• Avoid excessive use. Disks are slow.

• Paging can be diagnosed by using your ear (if you have a

local swap disk), or using the sar-command,

sar -B interval count, so e.g. sar -B 1 3600 .

vmstat works on some unix-systems as well and the time-
command built into tcsh reports a short summary.

90

Input-output

We need to store 108 double precision numbers in a file.

A local disk was used for the tests. Intel’s Fortran compiler on

an Intel Core Duo. Roughly the same times in C.

Test Statement time (s) size (Gbyte)

1 write(10, ’(1pe23.16)’) x(k) 415.1 2.24

2 write(10) x(k) 274.4 1.49

3 write(10) (vec(j), j = 1, 10000) 1.1 0.74

In the third case we write 108/104 records of 104 numbers each.

File sizes:

1 : 108
︸︷︷︸

of numbers

· (23 + 1)
︸ ︷︷ ︸

characters + newline

/ 230
︸︷︷︸
Gbyte

≈ 2.24

2 : 108
︸︷︷︸

of numbers

· (8 + 4 + 4)
︸ ︷︷ ︸

number + delims

/ 230
︸︷︷︸
Gbyte

≈ 1.49

3 :



 108
︸︷︷︸

of numbers

· 8︸︷︷︸
number

+(108/104) · (4 + 4)
︸ ︷︷ ︸

delims



 / 230
︸︷︷︸
Gbyte

≈ 0.74

91

Portability of binary files?

• Perhaps

• File structure may differ

• Byte order may differ

• Big-endian, most significant byte has the lowest address

(“big-end-first”).

• The Intel processors are little-endian (“little-end-first”).

On a big-endian machine
write(10) -1.0d-300, -1.0d0, 0.0d0, 1.0d0, 1.0d300

Read on a little-endian
2.11238712E+125 3.04497598E-319 0.
3.03865194E-319 -1.35864115E-171

92

Optimizing for locality, a few examples
Data re-use; loop fusion

v_min = v(1)
do k = 2, n

if (v(k) < v_min) v_min = v(k) ! fetch v(k)
end do

v_max = v(1)
do k = 2, n

if (v(k) > v_max) v_max = v(k) ! fetch v(k) again
end do

Merge loops data re-use, less loop overhead.

v_min = v(1)
v_max = v(1)
do k = 2, n

if (v(k) < v_min) then ! v(k) is fetched here
v_min = v(k)

elseif (v(k) > v_max) then ! and re-used here
v_max = v(k)

end if
end do

On some systems the following loop body is faster

vk = v(k) ! optional
if(v_min < vk) v_min = vk ! can use v(k) instead
if(v_max > vk) v_max = vk

or

vk = v(k)
v_min = min(v_min, vk)
v_max = max(v_max, vk)

93

When dealing with large, but unrelated, data sets it may be

faster to split the loop in order to use the caches better. Here

is a contrived example:

integer, parameter :: n = 5000
double precision, dimension(n, n) :: A, B, C, D
...
sum_ab = 0.0
sum_cd = 0.0
do col = 1, n

do row = 1, n ! the two sums are independent
sum_ab = sum_ab + A(row, col)* B(col, row)
sum_cd = sum_cd + C(row, col)* D(col, row)

end do
end do

!
! Split the computation
!
sum_ab = 0.0
do col = 1, n

do row = 1, n
sum_ab = sum_ab + A(row, col)* B(col, row)

end do
end do

sum_cd = 0.0
do col = 1, n

do row = 1, n
sum_cd = sum_cd + C(row, col)* D(col, row)

end do
end do

When n = 5000 the first loop requires 4.9 s and the second two

0.84 s (together) on a 2.4 GHz, 4 Gbyte, Opteron.

94

The importance of small strides

If no data re-use, try to have locality of reference.

Small strides.

v(1), v(2), v(3),..., stride one

v(1), v(3), v(5),..., stride two

slower faster
s = 0.0 s = 0.0
do row = 1, n do col = 1, n

do col = 1, n do row = 1, n
s = s + A(row, col) s = s + A(row, col)

end do end do
end do end do

A(1, 1)
A(2, 1)

... first column
A(n, 1)

A(1, 2)
A(2, 2)

... second column
A(n, 2)

....

A(1, n)
A(2, n)

... n:th column
A(n, n)

Some compilers can switch loop order (loop interchange).

In C the leftmost alternative will be the faster.

95

Performance on three systems. Compiling using -O3 in the first

test and using -O3 -ipo in the second.

C Fortran C Fortran C Fortran

By row 0.7 s 2.9 s 0.6 s 2.4 s 0.5 s 1.5 s

By column 4.6 s 0.3 s 2.4 s 0.6 s 1.6 s 0.5 s

By row -ipo 0.3 s 0.3 s 0.6 s 0.6 s 0.5 s 0.5 s

By column -ipo 2.9 s 0.3 s 0.6 s 0.6 s 1.5 s 0.5 s

-ipo, interprocedural optimization i.e. optimization between

routines (even in different files) gives a change of loop order, at

least for Fortran, in this case. Some Fortran compilers can do

this just specifying -O3, and this happens Ferlin if we put the

main-program and the subroutines in the same file.

ferlin > ifort -O3 main.f90 sub.f90 Separate files
sub.f90(27): remark: LOOP WAS VECTORIZED.

ferlin > ifort -O3 -ipo main.f90 sub.f90
ipo: remark #11000: performing multi-file optimizations
ipo: remark #11005: generating object file /tmp/ipo_ifortcMYhTV.o
main.f90(13): remark: PERMUTED LOOP WAS VECTORIZED.
main.f90(19): remark: LOOP WAS VECTORIZED.

ferlin > ifort -O3 all.f90 One file
all.f90(13): remark: PERMUTED LOOP WAS VECTORIZED.
all.f90(20): remark: LOOP WAS VECTORIZED.
all.f90(52): remark: LOOP WAS VECTORIZED.

96

Blocking and large strides

Sometimes loop interchange is of no use.

s = 0.0
do row = 1, n

do col = 1, n
s = s + A(row, col) * B(col, row)

end do
end do

Blocking is good for data re-use, and when we have large strides.

Partition A and B in square sub-matrices each having the same

order, the block size.

Treat pairs of blocks, one in A and one in B such that we can use

the data which has been fetched to the L1 data cache.

Looking at two blocks:

cache line

block size

block (k, j) inblock (j, k) in A B

The block size must not be too large. Must be able to hold all

the grey elements in A in cache (until they have been used).

97

This code works even if n is not divisible by the block size).

! first_row = the first row in a block etc.

do first_row = 1, n, block_size
last_row = min(first_row + block_size - 1, n)
do first_col = 1, n, block_size
last_col = min(first_col + block_size - 1, n)
do row = first_row, last_row ! sum one block
do col = first_col, last_col

s = s + A(row, col) * B(col, row)
end do

end do
end do

end do

The left plot shows timings for n = 5000 and different block

sizes using ifort -O3 on an Intel Core Duo. The second figure

shows the speedup for n = 103, 2 · 103, . . . , 104 using the optimal

block size.

0 200 400

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

block size

tim
e

(s
)

n = 5000

no blocking

1000 5000 10000

2

4

6

8

10

12

14

n

m
ax

. s
pe

ed
up

speedup

98

One can study the behaviour in more detail.

PAPI = Performance Application Programming Interface

http://icl.cs.utk.edu/papi/index.html.
PAPI uses hardware performance registers, in the CPU, to count

different kinds of events, such as L1 data cache misses and TLB-

misses.

TLB = Translation Lookaside Buffer, a cache in the CPU that is

used to improve the speed of translating virtual addresses into

physical addresses.

See the Springer article for an example.

99

Two important libraries

BLAS (the Basic Linear Algebra Subprograms) are the

standard routines for simple matrix computations.

(s single, d double, c complex, z double complex). Examples:

BLAS1: y := a*x + y one would use daxpy

BLAS2: dgemv can compute y := a*A*x + b*y

BLAS3: dgemm forms C := a*A*B + b*C

daxpy: O(n) data, O(n) operations

dgemv: O(n2) data, O(n2) operations

dgemm: O(n2) data, O(n3) operations, data re-use

Multiplication of n× n-matrices, Intel Core Duo.

0 500 1000 1500 2000
0

1

2

3

4

5

6

Goto 1 thr

textb. vec

textb. novec

MKL

Goto 2 thr

textb. gfortran

n

tim
e

(s
)

100

Tested textbook “row times column” using gfortran and ifort
with and without vectorization. MKL is Intel’s MKL-library.

Goto is Goto-BLAS by Kazushige Goto.

The fast codes use blocking and other tricks. A goal of Goto-

BLAS is to minimize the number of TLB-misses.

Goto-BLAS on two threads is roughly equal to MKL on two

threads.

The following figure shows the number of (+, *)-pairs executed

per second. The dashed lines show the clock frequency and twice

the frequency.

0 500 1000 1500 2000
0

1

2

3

4

5

6

7

8

9

Goto 1 thr

textb. vec
textb. novec

MKL

Goto 2 thr

textb. gfortran

n

10
9 (

+,
*)

−p
ai

rs
 /

s

101

LAPACK is the standard library for (dense):

• linear systems

• eigenvalue problems

• linear least squares problems

There is no support for large sparse problems, although there

are routines for banded matrices of different kinds.

LAPACK is built on top of BLAS (BLAS3 where possible).

When using LAPACK, it is important to have optimized BLAS.

You are going to test this in one of the assignments.

102

Inlining
moving the body of a short procedure to the calling routine.

Calling a procedure or a function takes time and may break

the pipelining. So the compiler (or the programmer) can move

the body of a short subprogram to where it is called. Some

compilers do this automatically when the short routine resides

in the same file as the calling routine. A compiler may have

a flag telling the compiler to look at several files. Using some

compilers you can specify which routines are to be inlined.

Indirect addressing, pointers

Sparse matrices, PDE-meshes...

Bad memory locality, poor cache performance.

do k = 1, n
j = ix(k)
y(j) = y(j) + a * x(j)

end do

system random ix ordered ix no ix
1 39 16 9

2 56 2.7 2.4

3 83 14 10

103

If-statements

If-statements in a loop may stall the pipeline. Modern CPUs

and compilers are rather good at handling branches, so there

may not be a large delay.

Original version Optimized version

do k = 1, n take care of k = 1
if (k == 1) then do k = 2, n
statements statements for k = 2 to n

else end do
statements

end if
end do

if (most probable) then
...

else if (second most probable) then
...

else if (third most probable) then
...

if (a(k) .and. b(k)) then, least likely first

if (a(k) .or. b(k)) then, most likely first

104

Alignment

integer*1 work(100001)
...
! work(some_index) in a more general setting
call do_work(work(2), 12500) ! pass address of work(2)
...
end

subroutine do_work(work, n)
integer n
double precision work(n)

work(1) = 123
...

May produce “Bus error”.

Alignment problems.

It is usually required that double precision variables are stored

at an address which is a multiple of eight bytes (multiple of four

bytes for a single precision variable).

The slowdown caused by misalignment may easily be a factor

of 10 or 100.

105

Closing notes

Two basic tuning principles:

• Improve the memory access pattern

– Locality of reference

– Data re-use

Stride minimization, blocking, proper alignment and the

avoidance of indirect addressing and aliasing.

• Use parallel capabilities of the CPU

– Avoid data dependencies and aliasing

– Loop unrolling

– Inlining

– Elimination of if-statements

Choosing a good algorithm and a fast language, handling files

in an efficient manner, getting to know ones compiler and using

tuned libraries are other very important points.

106

Low level profiling

valgrind and PAPI are two tools for counting cache misses.

http://valgrind.org/, man valgrind, and

/usr/share/doc/valgrind-3.1.1/html/index.html.

From 22nd stanza in “Gŕımnismál” (poetic Edda). In old Ice-

landic and Swedish:

Valgrind heitir, Valgrind den heter,

er stendr velli á som varsnas p̊a slätten,

heilög fyr helgum dyrum; helig framför helig dörrg̊ang;

forn er sú grind, forn̊aldrig är grinden,

en at fáir vitu, och f̊a veta,

hve hon er ı́ lás lokin. hur hon i l̊as är lyckt.

and a reasonable (I believe) English translation:

Valgrind is the lattice called,

in the plain that stands,

holy before the holy gates:

ancient is that lattice,

but few only know

how it is closed with lock.

The main gate of Valhall (Eng. Valhalla), hall of the heroes slain

in battle.

From the manual:

“valgrind is a flexible program for debugging and profiling Linux

executables. It consists of a core, which provides a synthetic

CPU in software, and a series of ”tools”, each of which is a de-

bugging or profiling tool.”

The memcheck tool performs a range of memory-checking func-

tions, including detecting accesses to uninitialized memory, mis-

use of allocated memory (double frees, access after free, etc.)

and detecting memory leaks.

107

We will use the cachegrind tool:

cachegrind is a cache simulator. It can be used to annotate every

line of your program with the number of instructions executed

and cache misses incurred.

valgrind --tool=toolname program args

Call the following routine

void sub0(double A[1000][1000], double*s)
{
int j, k, n = 1000;

*s = 0;

for (j = 0; j < n; j++)
for (k = 0; k < n; k++)

*s += A[k][j];
}

Compile with -g:

% gcc -g main.c sub.c

I have edited the following printout:

% valgrind --tool=cachegrind a.out

==5796== Cachegrind, an I1/D1/L2 cache profiler.
==5796== Copyright (C) 2002-2005, and GNU GPL’d,

by Nicholas Nethercote et al.
==5796== For more details, rerun with: -v
9.990000e+08 6.938910e-01

108

I refs: 46,146,658
I1 misses: 756
L2i misses: 748
I1 miss rate: 0.00%
L2i miss rate: 0.00%

D refs: 21,073,437 (18,053,809 rd+3,019,628 wr)
D1 misses: 255,683 (130,426 rd+ 125,257 wr)
L2d misses: 251,778 (126,525 rd+ 125,253 wr)
D1 miss rate: 1.2% (0.7% + 4.1%)
L2d miss rate: 1.1% (0.7% + 4.1%)

L2 refs: 256,439 (131,182 rd+ 125,257 wr)
L2 misses: 252,526 (127,273 rd+ 125,253 wr)
L2 miss rate: 0.3% (0.1% + 4.1%)

valgrind produced the file, cachegrind.out.5796
(5796 is a pid). To see what source lines are responsible for the

cache misses we use cg_annotate -pid source-file. I have

edited the listing and removed the columns dealing with the

instruction caches (the lines are too long otherwise).

% cg_annotate --5796 sub.c
Dr D1mr D2mr Dw D1mw D2mw
. void sub0(double
0 0 0 2 0 0 {
0 0 0 1 0 0 int j, k,
1 0 0 2 0 0 *s = 0;

3,002 0 0 1 0 0 for (j = 0;
3,002,000 0 0 1,000 0 0 for (k = 0;
7,000,000 129,326 125,698 1,000,000 0 0 *s += A[k][j];

3 0 0 0 0 0 }

Dr: data cache reads (ie. memory reads), D1mr: L1 data cache

read misses D2mr: L2 cache data read misses Dw: D cache writes

(ie. memory writes) D1mw: L1 data cache write misses D2mw: L2

cache data write misses

109

To decrease the number of Dw:s we use a local summation variable

(no aliasing) and optimze, -O3.

double local_s = 0;
for (j = 0; j < n; j++)

for (k = 0; k < n; k++)
local_s += A[k][j];

*s = local_s;

We can also interchange the loops. Here is the counts for the

summation line:

Dr D1mr D2mr
7,000,000 129,326 125,698 *s += A[k][j]; previous
1,000,000 125,995 125,696 local_s, -O3
1,000,000 125,000 125,000 above + loop interchange

Dw = D1mw = D2mw = 0.

valgrind cannot count TLB-misses, so switch to PAPI, which

can.

PAPI = Performance Application Programming Interface

http://icl.cs.utk.edu/papi/index.html.
PAPI requires root privileges to install, so I have tested the code

at PDC.

PAPI uses hardware performance registers, in the CPU, to count

different kinds of events, such as L1 data cache misses and TLB-

misses. Here is (a shortened example):

110

% icc main.c sub.c
% papiex -m -e PAPI_L1_DCM -e PAPI_L2_DCM \

-e PAPI_L3_DCM -e PAPI_TLB_DM -- ./a.out

Processor: Itanium 2
Clockrate: 1299.000732
Real usecs: 880267
Real cycles: 1143457807
Proc usecs: 880000
Proc cycles: 1143120000

PAPI_L1_DCM: 2331
PAPI_L2_DCM: 3837287
PAPI_L3_DCM: 3118846
PAPI_TLB_DM: 24086796

Event descriptions:
Event: PAPI_L1_DCM: Level 1 data cache misses
Event: PAPI_L2_DCM: Level 2 data cache misses
Event: PAPI_L3_DCM: Level 3 data cache misses
Event: PAPI_TLB_DM: Data TLB misses

The values change a bit between runs, but the order of magni-

tude stays the same. Here are a few tests. I call the function 50

times in a row. time in seconds. cycl = 109 process cycles. L1,
L2, L3 and TLB in kilo-misses. local using a local summation

variable.

icc -O0 icc -O3 icc -O3 icc -O3
local loop interc

time: 3.5 0.6 0.07 0.3
cycl: 4.6 0.8 0.09 0.4 Giga
L1: 13 4 3 4 kilo
L2: 3924 3496 1923 2853 kilo
L3: 3169 3018 1389 2721 kilo
TLB: 24373 24200 24 24 kilo

111

time and cycl are roughly the same, since the clockrate is 1.3

GHz. Note that the local summation variable, in column three,

makes a dramatic difference. This is the case for loop interchange

as well (column four) where we do not have a local summation

variable (adding one gives essentially column three).

Note the drastic reduction of TLB-misses in the fast runs.

Here comes PAPI on the blocking example,

s = s + A(i, k) * B(k, j), with ifort -O3.
n = 5000 and ten calls.

On the Itanium:

bs: NO BL 16 32 40 64 128
time: 5.6 2.0 1.6 1.5 1.6 5.1
L1: 69 46 41 43 44 52 kilo
L2: 306 51 48 52 54 59 Mega
L3: 31 33 38 38 36 35 Mega
TLB: 257 19 12 10 15 267 Mega

Note again the drastic reduction of TLB-misses.

112

Profiling on a higher level

Most unix systems have prof and gprof which can be used to

find the most time consuming routines. gcov (Linux) (tcov Sun)

can find the loops (statements), in a routine, that are executed

most frequently.

man prof, man gprof, man gcov for details.

This is how you use gprof on the student system.

The flags are not standardised, so you have to read the

documentation, as usual.

ifort -O3 -qp prog.f90 sub.f90
icc -O3 -qp prog.c sub.f90

gfortran -O3 -pg prog.f90 sub.f90
g95 -O3 -pg prog.f90 sub.f90
gcc -O3 -pg prog.c sub.c
g++ -O3 -pg prog.cc sub.c

./a.out produces gmon.out
gprof

One can use other options, of course, and have more than two

files. One should link with the profiling options as well since it

may include profiled libraries.

Profiling disturbs the run; it takes more time.

The Intel compilers have support for “Profile-guided Optimiza-

tion”, i.e. the information from the profiled run can be used by

the compiler (the second time you compile) to generate more

efficient code.

113

A few words about gcov. This command tells us:

• how often each line of code executes

• what lines of code are actually executed

Compile without optimization. It works only with gcc. So it

should work with g95 and gfortran as well. There may, how-

ever, be problems with different versions of gcc and the gcc-
libraries. See the web-page for the assignment for the latest

details.

To use gcov on the student system (not Intel in this case) one

should be able to type:

g95 -fprofile-arcs -ftest-coverage prog.f90 sub.f90
./a.out

gcov prog.f90 creates prog.f90.gcov
gcov sub.f90 creates sub.f90.gcov

less prog.f90.gcov etc.

and for C

gcc -fprofile-arcs -ftest-coverage prog.c sub.c

similarly for gfortran and g++.

114

Example: Arpack, a package for solving large and sparse eigen-

value problems, Ax = λx and Ax = λBx. I fetched a com-

pressed tar-file, unpacked, read the README-file, edited the

configuration file, and compiled using make. After having cor-

rected a few Makefiles everything worked. I then recompiled

using the compiler options for gprof and tcov (on a Sun; I have

not run this one the AMD-system).

I used the f90-compiler even though Arpack is written in For-

tran77. (There is also Arpack++, a collection of classes that

offers C++ programmers an interface to Arpack.)

First gprof:

% gprof | less (1662 lines, less is a pager)
or
% gprof | more (or m with alias m more)

(I have alias m less)
or
% gprof > file_name (emacs file_name, for example)
etc.

The first part of the output is the flat profile, such a profile can

be produced by prof as well. Part of it, in compressed form,

comes on the next page. The flat profile may give a sufficient

amount of information.

115

Each sample counts as 0.01 seconds.
% cumulative self self total
time seconds seconds calls s/call s/call name
79.10 8.10 8.10 322 0.03 0.03 dgemv_
8.50 8.97 0.87 60 0.01 0.01 dger_
4.10 9.39 0.42 58 0.01 0.01 dgttrs_
3.22 9.72 0.33 519 0.00 0.00 dcopy_
2.25 9.95 0.23 215 0.00 0.00 dnrm2_
0.49 10.00 0.05 562 0.00 0.00 __open

... lots of lines deleted ...
0.00 10.24 0.00 1 0.00 10.14 main

... lots of lines deleted ...
0.00 10.24 0.00 1 0.00 0.00 strchr

name is the name of the routine (not the source file). The Sun-

compiler converts the routine name to lower case and adds _ .

___open is a system (compiler?) routine.

The columns are:

% time the percentage of the total running time of the program

used by this function. Not the one it calls, look at main.

cumulative secondsa running sum of the number of seconds

accounted for by this function and those listed above it.

self secondsthe number of seconds accounted for by this func-

tion alone. This is the major sort for this listing.

calls the number of times this function was invoked, if this

function is profiled, else blank.

self ms/call the average number of milliseconds spent in this

function per call, if this function is profiled, else blank.

total ms/callthe average number of milliseconds spent in this

function and its descendents per call, if this function is profiled,

else blank. Note main.

116

dgemv is a BLAS routine, double general matrix vector multiply:

dgemv - perform one of the matrix-vector operations
y := alpha*A*x + beta*y or y := alpha*A’*x + beta*y

I have compiled the Fortran code instead of using a faster

performance library so we can look at the source code.

Let us run tcov on dgemv.

Part of the output (compressed):
...

168 -> DO 60, J = 1, N
4782 -> IF(X(JX).NE.ZERO)THEN
4740 -> TEMP = ALPHA*X(JX)

DO 50, I = 1, M
77660160 -> Y(I) = Y(I) + TEMP*A(I, J)

50 CONTINUE
END IF

4782 -> JX = JX + INCX
60 CONTINUE

Top 10 Blocks

Line Count

211 77660160
238 50519992
177 871645

...

Note that this code is very poor. Never use the simple Fortran

BLAS- or Lapack routines supplied with some packages. One

lab deals with this issue.

117

More about gprof
gprof produces a call graph as well. It shows, for each function,

which functions called it, which other functions it called, and

how many times. There is also an estimate of how much time

was spent in the subroutines called by each function. This list

is edited.

index %time self children called name
... rm lines

--
0.01 10.13 1/1 main [1]

[3] 99.0 0.01 10.13 1 MAIN_ [3]
0.00 7.19 59/59 dsaupd_ [5]
0.00 2.45 1/1 dseupd_ [8]
0.42 0.00 58/58 dgttrs_ [14]

... lines deleted

0.83 0.00 33/322 dsapps_ [11]
1.48 0.00 59/322 dlarf_ [9]
5.79 0.00 230/322 dsaitr_ [7]

[4] 79.1 8.10 0.00 322 dgemv_ [4]
0.00 0.00 1120/3179 lsame_ [50]

Each routine has an index (see table at the end) and is presented

between ---lines. 8.10s was spent in dgemv itself, 79.1% of

total (including calls from dgemv). dsapps, dlarf, dsaitr
(parents) called dgemvwhich in turn called lsame, a child. dsapps
made 33 out of 322 calls and dgemv took 0.83s for the calls.

dgemv called lsame 1120 of 3179 times, which took no

measurable time (self).

children: For dgemv it is the total amount of time spent in

all its children (lsame). For a parent it is the amount of that

time that was propagated, from the function’s children (lsame),
into this parent. For a child it is the amount of time that was

propagated from the child’s children to dgemv.

118

Profiling in Matlab

Matlab has a built-in profiling tool. help profile for more

details. Start Matlab (must use the GUI).

>> profile on
>> run % The assignment
Elapsed time is 1.337707 seconds.
Elapsed time is 13.534952 seconds.
>> profile report % in mozilla or netscape
>> profile off

You can start the profiler using the GUI as well

(click in “Profiler” using “Desktop” under the main meny). The

output comes in a new window and contains what looks like the

flat profile from gprof.

One can see the details in individual routines by clicking on

the routine under Function Name. This produces a gcov-type

of listing. It contains the number of times a line was executed

and the time it took.

119

Using Lapack from Fortran and C

Use Lapack to solve a problem like:









1 −1 −2 −3 −4

1 1 −1 −2 −3

2 1 1 −1 −2

3 2 1 1 −1

4 3 2 1 1










x =










−9

−4

1

6

11










The solution is the vector of ones. We use the Lapack-routine

dgesv from Lapack. Here is a man-page:

NAME
DGESV - compute the solution to a real system of

linear equations A * X = B,

SYNOPSIS
SUBROUTINE DGESV(N, NRHS, A, LDA, IPIV, B, LDB, INFO)
INTEGER INFO, LDA, LDB, N, NRHS
INTEGER IPIV(*)
DOUBLE PRECISION A(LDA,*), B(LDB, *)

PURPOSE
DGESV computes the solution to a real system of linear
equations A * X = B, where A is an N-by-N matrix and X
and B are N-by-NRHS matrices.
The LU decomposition with partial pivoting and row
interchanges is used to factor A as A = P* L * U,
where P is a permutation matrix, L is unit lower
triangular, and U is upper triangular. The factored
form of A is then used to solve the system of equations
A * X = B.

ARGUMENTS
N (input) INTEGER

The number of linear equations, i.e., the order
of the matrix A. N >= 0.

120

NRHS (input) INTEGER
The number of right hand sides, i.e., the number
of columns of the matrix B. NRHS >= 0.

A (input/output) DOUBLE PRECISION array, dimension
(LDA,N) On entry, the N-by-N coefficient matrix
A. On exit, the factors L and U from the
factorization A = P*L*U; the unit diagonal
elements of L are not stored.

LDA (input) INTEGER
The leading dimension of the array A.
LDA >= max(1,N).

IPIV (output) INTEGER array, dimension (N)
The pivot indices that define the permutation
matrix P; row i of the matrix was interchanged
with row IPIV(i).

B (input/output) DOUBLE PRECISION array, dimension
(LDB,NRHS) On entry, the N-by-NRHS matrix of
right hand side matrix B. On exit, if INFO = 0,
the N-by-NRHS solution matrix X.

LDB (input) INTEGER
The leading dimension of the array B.
LDB >= max(1,N).

INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an

illegal value
> 0: if INFO = i, U(i,i) is exactly zero. The

factorization has been completed, but the
factor U is exactly singular, so the
solution could not be computed.

121

In Fortran90, but using the F77 interface, and F77-type

declarations (to get shorter lines) this may look like:

program main
integer, parameter :: n = 10, lda = n, &

ldb = n, nrhs = 1
integer :: info, row, col, ipiv(n)
double precision :: A(lda, n), b(ldb)

do col = 1, n
do row = 1, n
A(row, col) = row - col

end do
A(col, col) = 1.0d0
b(col) = 1 + (n * (2 * col - n - 1)) / 2

end do

call dgesv (n, nrhs, A, lda, ipiv, b, ldb, info)

if (info == 0) then
print*, "Maximum error = ", maxval(abs(b - 1.0d0))

else
print*, "Error in dgesv: info = ", info

end if

end program main

% Compile and link, somehow, to Lapack
% a.out
Maximum error = 4.218847493575595E-15

Where can we find dgesv? There are several options. Fetching

the Fortran-code from Netlib, using a compiled (optimized)

library etc. One of the assignments, Lapack (Uniprocessor

optimization), deals with these questions.

122

The following optimized libraries contain Lapack and BLAS (and

perhaps routines for fft, sparse linear algebra, etc. as well).

• AMD: ACML (AMD Core Math Library).

• Intel: MKL (Intel Math Kernel library).

• SGI: complib.sgimath (Scientific and Mathematical Library).

• IBM: ESSL (Engineering and Scientific Subroutine Library).

• Sun: Sunperf (Sun Performance Library).

There may be parallel versions.

Now for C and C++

Fairly portable (do not use local extensions of the compiler).

Think about: In C/C++

• matrices are stored by row (not by column as in Fortran)

• matrices are indexed from zero

• call by reference for arrays, call by value for scalars

• the Fortran compiler MAY add an underline to the name

• you may have to link with Fortran libraries

(mixing C and Fortran I/O may cause problems, for example)

• C++ requires an extern-declaration, in C you do not have

to supply it (but do)

• make sure that C and Fortran types are compatible (number

of bytes)

• some systems have C-versions of Lapack

In the example below I have linked with the Fortran-version since

not all systems have C-interfaces. Make sure not to call dgesv
from C on the Sun, if you want the Fortran-version (dgesv gives

you the C-version).

123

#include <math.h>
#include <stdio.h>
#define _N 10

#ifdef __cplusplus
extern "C" void /* For C++ */
#else
extern void /* For C */
#endif

dgesv_(int *, int *, double *, int *, int[],
double[], int *, int *);

/*
* int [] or int *. double [][] is NOT OK but

* double [][10] is, provided we

* call dgesv_ with A and not &A[0][0].

*/

int main()
{
int n = _N, lda = _N, ldb = _N, nrhs = 1,

info, row, col, ipiv[_N];
double A[_N][_N], b[_N], s, max_err;

/* Make sure you have the correct mix of types.*/
printf("sizeof(int) = %d\n", sizeof(int));

/* Indexing from zero. */
for (col = 0; col < n; col++) {

for (row = 0; row < n; row++)
A[col][row] = row - col; /* Note TRANSPOSE */

b[col] = 1 + (n * (1 + 2 * col - n)) / 2;
A[col][col] = 1;

}

124

/* Note underline and & for the scalar types.

* &A[0][0] not to get a

* conflict with the prototype.

*/
dgesv_(&n, &nrhs, &A[0][0], &lda, ipiv, b,

&ldb, &info);

if (info) {
printf("Error in dgesv: info = %d\n", info);
return 1;

} else {
max_err = 0.0;
for (row = 0; row < n; row++) {
s = fabs(b[row] - 1.0);
if (s > max_err)
max_err = s;

}
printf("Maximum error = %e\n", max_err);
return 0;

}
}

125

Interfacing Matlab with C

It is not uncommon that we have a program written in C (or

Fortran) and need to communicate between the program and

Matlab.

The simplest (but not the most efficient) way the fix the commu-

nication is to use ordinary text files. This is portable and cannot

go wrong (in any major way). The drawback is that it may be a

bit slow and that we have to convert between the internal binary

format and text format. We can execute programs by using the

unix-command (or ! or system).

One can do more, however:

• Reading and writing binary MAT-files from C

• Calling Matlab as a function (Matlab engine)

• Calling a C- or Fortran-function from Matlab (using MEX-

files, compiled and dynamically linked C- or Fortran-routines)

In the next few pages comes a short example on how to use

MEX-files.

MEX-files

Let us write a C-program that can be called as a Matlab-function.

The MEX-routine will call a band solver, written in Fortran,

from Lapack for solving an Ax=b-problem. The routine uses a

Cholesky decomposition, where A is a banded, symmetric and

positive definite matrix.

b contains the right hand side(s) and x the solution(s).

I fetched the routines from www.netlib.org.

Matlab has support for solving unsymmetric banded systems,

but has no special routines for the positive definite case.

126

We would call the function by typing:

>> [x, info] = bandsolve(A, b);

where A stores the matrix in compact form. info returns some

status information (A not positive definite, for example).

bandsolve can be an m-file, calling a MEX-file. Another alter-

native is to let bandsolvebe the MEX-file. The first alternative

is suitable when we need to prepare the call to the MEX-file or

clean up after the call.

The first alternative may look like this:

function [x, info] = bandsolve(A, b)
A_tmp = A; % copy A
b_tmp = b; % copy b
% Call the MEX-routine
[x, info] = bandsolve_mex(A_tmp, b_tmp);

I have chosen to make copies of A and b. The reason is that

the Lapack-routine replaces A with the Cholesky factorization

and b by the solution. This is not what we expect when we

program in Matlab. If we have really big matrices, and if we do

not need A and b afterwards we can skip the copy (although the

Matlab-documentation says that it “may produce undesired side

effects”).

I will show the code for the second case where we call the MEX-

file directly. Note that we use the file name, bandsolve, when

invoking the function. There should always be a mexFunctionin

the file, which is the entry point. This is similar to a C-program,

there is always a main-routine.

It is possible to write MEX-files in Fortran, but is more

natural to use C.

127

First some details about how to store the matrix (for the band

solver). Here an example where we store the lower triangle. The

dimension is six and the number of sub- (and super-) diagonals

is two.

a11 a22 a33 a44 a55 a66
a21 a32 a43 a54 a65 *
a31 a42 a53 a64 * *

Array elements marked * are not used by the routine.

The Fortran-routine, dpbsv, is called the following way:

call dpbsv(uplo, n, kd, nB, A, lda, B, ldb, info)

where

uplo = ’U’: Upper triangle of A is stored
’L’: Lower triangle of A is stored

We will assume that uplo = ’L’ from now on

n = the dimension of A
kd = number of sub-diagonals
nB = number of right hand sides (in B)
A = packed form of A
lda = leading dimension of A
B = contains the right hand side(s)
ldb = leading dimension of B
info = 0, successful exit

< 0, if info = -i, the i-th argument had
an illegal value

> 0, if info = i, the leading minor of order i
of A is not positive definite, so the
factorization could not be completed,
and the solution has not been computed.

Here comes bandsolve.c (I am using C99-style comments).

I will assume we use a 62-bit system.

128

#include <math.h>
// For Matlab
#include "mex.h"

void dpbsv_(char *, int *, int *, int *, double *,
int *, double *, int *, int *);

void mexFunction(int nlhs, mxArray*plhs[],
int nrhs, const mxArray *prhs[])

{
double *px, *pA, *pb, *pA_tmp;
mxArray *A_tmp;
char uplo = ’L’;
int k, A_rows, A_cols, b_rows, b_cols, kd, info;

// Check for proper number of arguments
if (nrhs != 2) {

mexErrMsgTxt("Two input arguments required.");
} else if (nlhs > 2) {

mexErrMsgTxt("Too many output arguments.");
}

A_rows = mxGetM(prhs[0]);
kd = A_rows - 1; // # of subdiags
A_cols = mxGetN(prhs[0]); // = n

b_rows = mxGetM(prhs[1]);
b_cols = mxGetN(prhs[1]);

if (b_rows != A_cols || b_cols <= 0)
mexErrMsgTxt("Illegal dimension of b.");

129

// Create a matrix for the return argument
// and for A. dpbsv destroys A and b).
// Should check the return status.
plhs[0]=mxCreateDoubleMatrix(b_rows, b_cols, mxREAL);
if (nlhs == 2) // if two output arguments

plhs[1] = mxCreateDoubleMatrix(1, 1, mxREAL);
A_tmp = mxCreateDoubleMatrix(A_rows, A_cols, mxREAL);

px = mxGetPr(plhs[0]); // Solution x
pA = mxGetPr(prhs[0]); // A
pA_tmp = mxGetPr(A_tmp); // temp for A
pb = mxGetPr(prhs[1]); // b

for (k = 0; k < b_rows * b_cols; k++) // b -> x

*(px + k) = *(pb + k);

for (k = 0; k < A_rows * A_cols; k++) // A -> A_tmp

*(pA_tmp + k) = *(pA + k);

dpbsv_(&uplo, &A_cols, &kd, &b_cols, pA_tmp,
&A_rows, px, &b_rows, &info);

if (info)
mexWarnMsgTxt("Non zero info from dpbsv.");

if (nlhs == 2)

mxGetPr(plhs[1]) = info; // () higher prec. than

// Should NOT destroy plhs[0] or plhs[1]
mxDestroyArray(A_tmp);

}

130

Some comments:

nrhs is the number of input arguments to the MEX-routine.

prhs is an array of pointers to input arguments. prhs[0]points

to a so-called, mxArray, a C-struct containing size-information

and pointers to the matrix-elements.

prhs[0] corresponds to the first input variable, A etc.

Since one should not access the member-variables in the struct

directly, there are routines to extract size and elements.

A_rows = mxGetM(prhs[0]);extracts the number of rows and

A_cols = mxGetN(prhs[0]);extracts the number of columns.

The lines

plhs[0]=mxCreateDoubleMatrix(b_rows, b_cols, mxREAL);
plhs[1]=mxCreateDoubleMatrix(1, 1, mxREAL);

allocate storage for the results (of type mxREAL, i.e. ordinary

double).

A_tmp = mxCreateDoubleMatrix(A_rows, A_cols, mxREAL);
allocates storage for a copy of A, since the Lapack-routine de-

stroys the matrix.

px = mxGetPr(plhs[0]);extracts a pointer to the (real-part)

of the matrix elements and stores it in the pointer variable, px.

The first for-loop copies b to x (which will be overwritten by the

solution). The second loop copies the matrix to the temporary

storage, pointed to by A_tmp. This storage is later deallocated

using mxDestroyArray.

Note that neither the input- nor the output-arguments should

be deallocated.

131

It is now time to compile and link (updated 2011-04-15, to work

on the 64-bit student machines). This is done using the Bourne-

shell script mex. Since we would like to change some param-

eters when compiling, we will copy and edit an options file,

mexopts.sh.

% which matlab
/chalmers/sw/sup/matlab-2009b/bin/matlab
(ls -ld /chalmers/sw/sup/matlab* to see the versions)

% cp /chalmers/sw/sup/matlab-2009b/bin/mexopts.sh .

Edit mexopts.sh and search for glnxa64, change

CFLAGS=’-ansi -D_GNU_SOURCE’
to
CFLAGS=’-Wall -std=c99 -D_GNU_SOURCE’

to get more warnings and to use C99-style comments.

You can choose between using g95 (default) and gfortran.
If you use g95, continue editing and change

CLIBS="$CLIBS -lstdc++"
to

CLIBS="$CLIBS -L. -lstdc++"

Then save the file and give the Linux-command:

% ln -s /usr/lib64/libstdc++.so.6.0.8 libstdc++.so

If you want to use gfortran instead, change FC to

FC=’gfortran’

in which case none of the libstdc++-stuff above is necessary.

Now it is time to compile, I assume we have the Fortran-files

available:

% mex -f ./mexopts.sh bandsolve.c*.f

which creates bandsolve.mexa64.

132

We can now test a simple example in Matlab:

>> A = [2 * ones(1, 5); ones(1, 5)]
A =

2 2 2 2 2
1 1 1 1 1

>> [x, info] = bandsolve(A, [3 4 4 4 3]’);
>> x’
ans = 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00
>> info
info = 0

Here a case when A is not positive definite:

>> A(1, 1) = -2; % Not positive definite
>> [x, info] = bandsolve(A, [3 4 4 4 3]’)
Warning: Non zero info from dpbsv.
% x equals b, since b is copied to x
>> info
info = 1

Note that the first call of bandsolvemay take much more time,

since the mex-file has to be loaded. Here a small test when

n=10000, kd=50:

>> tic; [x, info] = bandsolve(A, b); toc
Elapsed time is 0.099192 seconds.

>> tic; [x, info] = bandsolve(A, b); toc
Elapsed time is 0.055137 seconds.

>> tic; [x, info] = bandsolve(A, b); toc
Elapsed time is 0.055036 seconds.

Now to some larger problems:

With n=1000000 and kd=10, dpbsv takes 0.9 s and sparse

backslash 1.3 s on the 64-bit math compute server.

kd=20 gives the times 1.3 s and 2.5 s respectively.

133

More on 32- and 64-bit systems

There is a potential problem with 32- and 64-bit integers.

Matlab will crash hard if we get this wrong.

First a program in Fortran (one could use kind for this).

% cat test_int.F90 NOTE: F90, the preprocessor is run
#ifdef _INT_64
#define _INT integer*8
#else
#define _INT integer
#endif
program test_int
integer :: k
_INT :: s = 1

do k = 1, 32
s = 2 * s
if (k >= 30) then
print*, k, s

end if
end do

end

% gfortran test_int.F90
% a.out

30 1073741824
31 -2147483648 called integer overflow
32 0

% gfortran -D_INT_64 test_int.F90
% a.out

30 1073741824
31 2147483648
32 4294967296

The same happens on the 64-bit math compute server.
134

Let us get this to work for Mex-files as well using the same files

for the 32- and 64-bit versions.

First mexopts.sh, change under glnxa64. Change -Wall as

above. You need to fix, stdc++ (as for 32-bit) if you use g95
(default). If you set FC=’gfortran’ it is not necessary.

Add -D_INT_64 to CFLAGS and FFLAGS.

Here comes an example, first the C-program:

% cat sixty_four.c
#include "mex.h"

#if _INT_64
#define _INT long int
#else
#define _INT int
#endif

void test_(_INT *);

void mexFunction(int nlhs, mxArray*plhs[],
int nrhs, const mxArray *prhs[])

{
_INT temp;

temp = *mxGetPr(prhs[0]);
plhs[0] = mxCreateDoubleMatrix(1, 1, mxREAL);

test_(&temp);

*mxGetPr(plhs[0]) = temp;
}

and then the Fortran code:

135

% cat test.F90
#ifdef _INT_64
#define _INT integer*8
#else
#define _INT integer
#endif

subroutine test(i)
_INT :: i

i = 2 * i
end

Compiling (the same way on both systems):

% mex -f ./mexopts.sh sixty_four.c test.F90
% ls sixty_four.mex*
sixty_four.mexa64* sixty_four.mexglx*

In Matlab on the 32-bit system:

>> sixty_four(2^30) % so, shold be 2^31
ans = -2.1475e+09

and on the 64-bit system

>> sixty_four(2^30)
ans = 2.1475e+09

>> sixty_four(2^61)
ans = 4.6117e+18
>> 2^62
ans = 4.6117e+18

>> sixty_four(2^62)
ans = -9.2234e+18
>> 2^63
ans = 9.2234e+18

136

Libraries, ar, ld

Numerical (and other software) is often available in libraries. To

use a subroutine from a library one has to use the linker to

include the routine. Advantages:

• Fewer routines to keep track of.

• There is no need to have source code for the library routines

that a program calls.

• Only the required modules are loaded.

These pages deal with how one can make libraries and use the

linker, link-editor, ld.

% cat sub1.f90
subroutine sub1
print*, ’in sub1’

end

% cat sub2.f90
subroutine sub2
print*, ’in sub2’

end

% cat sub3.f90
subroutine sub3
print*, ’in sub3’
call sub2

end

% cat main.f90
program main
call sub3

end

137

% ls sub*.f90
sub1.f90 sub2.f90 sub3.f90

% g95 -c sub*.f90
sub1.f90:
sub2.f90:
sub3.f90:

% ls sub*
sub1.f90 sub1.o sub2.f90 sub2.o sub3.f90 sub3.o

% ar -r libsubs.a sub*.o

% ar -t libsubs.a
sub1.o
sub2.o
sub3.o

% g95 main.f90 -L. -lsubs
% a.out
in sub3
in sub2

g95 calls the link-editor, ld, to combine main.o and the object

files in the library to produce the executable a.out-file. Note

that the library routines become part of the executable.

If you write -lname the link-editor looks for a library file with

name libname.a (or libname.so).

On some systems you may have to give the location of the

library using the flag -L (ld does not look everywhere). . means

current working directory, but you could have a longer path, of

course. You can have several -L flags.

138

From man ar:

ar creates an index to the symbols defined in relocatable

object modules in the archive when you specify the modifier s.

...

An archive with such an index speeds up linking to the library,

and allows routines in the library to call each other without

regard to their placement in the archive.

ar seems to do this even with ar -r ... as well.

If your library does not have this index:

% g95 main.f90 -L. -lsubs
./libsubs.a: could not read symbols:
Archive has no index; run ranlib to add one
% ranlib libsubs.a
% g95 main.f90 -L. -lsubs

The order of libraries is important:

% g95 -c sub4.f90 sub5.f90
sub4.f90:
sub5.f90:

% ar -r libsub45.a sub[45].o

% ar -t libsub45.a
sub4.o
sub5.o

139

% cat sub4.f90
subroutine sub4
print*, ’in sub4’
call sub2

end

% cat main.f90
program main ! A NEW main
call sub4

end

% g95 main.f90 -L. -lsubs -lsub45
./libsub45.a(sub4.o)(.text+0x6f): In function ‘sub4_’:
: undefined reference to ‘sub2_’

ld does not go back in the list of libraries.

% g95 main.f90 -L. -lsub45 -lsubs
% a.out
in sub4
in sub2

The compiler uses several system libraries, try g95 -v
One such library is the C math-library, /usr/lib/libm.a.

% ar -t /usr/lib/libm.a | grep expm1 | head -1
s_expm1.o

% man expm1
NAME expm1, expm1f, expm1l - exponential minus 1

#include <math.h>
double expm1(double x);

...

140

% cat main.c
#include <math.h>
#include <stdio.h>

int main()
{
double x = 1.0e-15;

printf("expm1(x) = %e\n", expm1(x));
printf("exp(x) - 1 = %e\n", exp(x) - 1.0);

return 0;
}

% gcc main.c
/tmp/cc40PH1o.o(.text+0x2b): In function ‘main’:
: undefined reference to ‘expm1’
/tmp/cc40PH1o.o(.text+0x53): In function ‘main’:
: undefined reference to ‘exp’

% gcc main.c -lm
% a.out
expm1(x) = 1.000000e-15
exp(x) - 1 = 1.110223e-15

141

Shared libraries

More about libm. The following output has been shortened.

% ls -l /usr/lib/libm.*
/usr/lib/libm.a
/usr/lib/libm.so -> ../../lib/libm.so.6

% ls -l /lib/libm.*
/lib/libm.so.6 -> libm-2.5.so

% ls -l /lib/libm-2.5.so
-rwxr-xr-x 1 root root 208352 6 jan 2009

/lib/libm-2.5.so*

What is this last file?

% ar -t /lib/libm-2.5.so
ar: /lib/libm-2.5.so: File format not recognized

Look for symbols (names of functions etc.):
% objdump -t /lib/libm-2.5.so | grep expm1
...
009fa690 w F .text 0000005b expm1
...

so means shared object. It is a library where routines are loaded

to memory during runtime. This is done by the dynamic link-

er/loader ld.so. The a.out-file is not complete in this case, so

it will be smaller.

One problem with these libraries is that they are needed at

runtime which may be years after the executable was created.

Libraries may be deleted, moved, renamed etc.

One advantage is shared libraries can be shared by every process

that uses the library (provided the library is constructed in that

way).

142

It is easier to handle new versions, applications do not have to

be relinked.

If you link with -lname, the first choice is libname.so and the

second libname.a.

/usr/lib/libm.so -> ../../lib/libm.so.6is a soft link

(an “alias”).

% ln -s full_path alias

The order is not important when using shared libraries (the

linker has access to all the symbols at the same time).

A shared library is created using ld (not ar) or the compiler,

the ld-flags are passed on to the linker.

% g95 -o libsubs.so -shared -fpic sub*.f90
% g95 main.f90 -L. -lsubs
% ./a.out
in sub4
in sub2

From man gcc (edited):

-shared
Produce a shared object which can then be linked with
other objects to form an executable. Not all systems
support this option. For predictable results, you must
also specify the same set of options that were used
to generate code (-fpic, -fPIC, or model suboptions)
when you specify this option.[1]

-fpic
Generate position-independent code (PIC) suitable for
use in a shared library, if supported for the target
machine. Such code accesses all constant addresses
through a global offset table (GOT). The dynamic
loader resolves the GOT entries when the program

143

starts (the dynamic loader is not part of GCC; it is
part of the operating system). ...

Since the subroutines in the library are loaded when we run the

program (they are not available in a.out) the dynamic linker

must know where it can find the library.

% cd ..
% Examples/a.out
Examples/a.out: error while loading shared libraries:
libsubs.so: cannot open shared object file: No such
file or directory

% setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH\:Examples
% Examples/a.out
in sub4
in sub2

LD_LIBRARY_PATHcontains a colon separated list of paths where

ld.sowill look for libraries. You would probably use a full path

and not Examples.

$LD_LIBRARY_PATH is the old value (you do not want to do

setenv LD_LIBRARY_PATH Examplesunless LD_LIBRARY_PATH
is empty to begin with.

The backslash is needed in [t]csh (since colon has a special

meaning in the shell). In sh (Bourbe shell) you may do some-

thing like:

$ LD_LIBRARY_PATH=$LD_LIBRARY_PATH:Example
$ export LD_LIBRARY_PATH (or on one line)

Some form of LD_LIBRARY_PATH is usually available (but the

name may be different). The SGI uses the same name for the

path but the linker is called rld. Under HPUX 10.20, for

example, the dynamic loader is called dld.sl and the path

SHLIB_PATH.

144

It is possible to store the location of the library when creating

a.out.

% unsetenv LD_LIBRARY_PATH
% g95 -o libsubs.so -shared -fpic sub*.f90
% g95 main.f90 -L. -lsubs
% a.out
a.out: error while loading shared libraries:
libsubs.so: cannot open shared object file:
No such file or directory

Add the directory in to the runtime library search path (stored

in a.out):

-Wl, means pass -rpath ‘pwd‘ to ld

% g95 -Wl,-rpath ‘pwd‘ main.f90 -L. -lsubs

% cd .. or cd to any directory
% Examples/a.out
in sub4
in sub2

A useful command is ldd (print shared library dependencies):

% ldd a.out
libsubs.so => ./libsubs.so (0x00800000)
libm.so.6 => /lib/tls/libm.so.6 (0x009e2000)
libc.so.6 => /lib/tls/libc.so.6 (0x008b6000)
/lib/ld-linux.so.2 (0x00899000)

Used on our a.out-file it will, in the first case, give:

% ldd Examples/a.out
libsubs.so => not found

In the second case, using rpath, ldd will print the full path.

145

And now to something related:

Large software packages are often spread over many directories.

When distributing software it is customary to pack all the di-

rectories into one file. This can be done with the tar-command

(tape archive). Some examples:

% ls -FR My_package
bin/ doc/ install* lib/ README
configure* include/ INSTALL Makefile src/

My_package/bin: binaries

My_package/doc: documentation
userguide.ps or in pdf, html etc.

My_package/include: header files
params.h sparse.h

My_package/lib: libraries

My_package/src: source
main.f sub.f

Other common directories are man (for manual pages), examples,
util (for utilities).

README usually contains general information, INSTALL contains

details about compiling, installation etc. There may be an install-
script and there is usually a Makefile (probably several).

If the package is using X11 graphics there may be an Imakefile.
The tool xmkmf (using imake) can generate a Makefile using lo-

cal definitions and the Imakefile.

In a Linux environment binary packages (such as the Intel com-

pilers) may come in RPM-format. See http://www.rpm.org/
or type man rpm, for details.

146

Let us now create a tar-file for our package.

% tar cvf My_package.tar My_package
My_package/
My_package/src/
My_package/src/main.f
My_package/src/sub.f
...
My_package/Makefile

One would usually compress it:

% gzip My_package.tar (or using bzip2) or
% tar zcvf My_package.tz My_package or tar jcvf ...

This command produces the file My_package.tar.gz.

.tgz is a common suffix as well (tar.bz2 or .tbz2 for bzip2).

To unpack such a file we can do (using gnu tar) (z for gunzip,
or zcat, x for extract, v for verbose and f for file):

% tar zxvf My_package.tar.gz
My_package
My_package/src/
...

Using tar-commands that do not understand z:

% zcat My_package.tar.gz | tar vxf - or
% gunzip -c My_package.tar.gz | tar vxf - or
% gunzip < My_package.tar.gz | tar vxf - or
% gunzip My_package.tar.gz followed by
% tar xvf My_package.tar

I recommend that you first try:

% tar ztf My_package.tar.gz
My_package/ ...

To see that files are placed in a new directory (and that are no

name conflicts).

Under GNOME there is an Archive Manager (File Roller) with

a GUI. Look under Applications/System Tools

147

An Overview of Parallel Computing

Flynn’s Taxonomy (1966). Classification of computers according

to number of instruction and data streams.

• SISD: Single Instruction Single Data, the standard

uniprocessor computer (workstation).

• MIMD: Multiple Instruction Multiple Data, collection of

autonomous processors working on their own data; the most

general case.

• SIMD: Single Instruction Multiple Data; several CPUs

performing the same instructions on different data.

The CPUs are synchronized.

Massively parallel computers.

Works well on regular problems. PDE-grids,

image processing.

Often special languages and hardware. Not portable.

Typical example, the Connection Machines from Thinking

Machines (bankruptcy 1994).

The CM-2 had up to 65536 (simple processors).

PDC had a 16384 proc. CM200.

Often called “data parallel”.

Two other important terms:

• fine-grain parallelism - small tasks in terms of code size and

execution time

• coarse-grain parallelism - the opposite

We talk about granularity.

148

MIMD Systems

Asynchronous (the processes work independently).

• Shared-memory systems. The programmer sees one big

memory. The physical memory can be distributed.

• Distributed-memory systems.

Each processor has its own memory. The programmer has to

partition the data.

The terminology is slightly confusing. A shared memory

system usually has distributed memory (distributed shared

memory). Hardware & OS handle the administration of memory.

Shared memory

Bus-based architecture

CPU CPU CPU CPU

Memory Memory

Interconnection network

• Limited bandwidth (the amount of data that can be sent

through a given communications circuit per second).

• Do not scale to a large number of processors. 30-40 CPUs

common.

149

To work well each CPU has a cache (a local memory) for

temporary storage.

CPU CPU CPU CPU

Memory Memory

Interconnection network

C C C C

I have denoted the caches by C. Cache coherence.

Common to use a switch to increase the bandwidth. Crossbar:

CPU

CPU

CPU

CPU

Mem Mem Mem Mem

switch

150

• Any processor can access any memory module. Any other

processor can simultaneously access any other memory

module.

• Expensive.

• Common with a memory hierarchy. Several crossbars may

be connected by a cheaper network. NonUniform Memory

Access (NUMA).

Example of a NUMA architecture: SGI Origin 2000, R10000

CPUS connected by a fast network.

L2 L2

Hub

CPUCPU

Main
Memory

Directory

Node board

Hub

R
outer

The hub manages each processor’s access to memory

(both local and remote) and I/O. Local memory accesses can be

done independently of each other. Accessing remote memory is

more complicated and takes more time.

151

More than two nodes are connected via a router. A router has

six ports. Hypercube configuration. When the system grows,

add communication hardware for scalability.

152

Two important parameters of a network:

Latency is the startup time (the time it takes to send a small

amount of data, e.g. one byte).

Bandwidth is the other important parameter.

How many bytes can we transfer per second (once the

communication has started)?

A simple model for communication:

time to transfer n bytes = latency + n / bandwidth

153

Distributed memory

In a distributed memory system, each processor has its own

private memory. A simple distributed memory system can be

constructed by a number of workstations and a local network.

Some examples:

A linear array and a ring (each circle is a CPU with memory).

Hypercubes of dimensions 0, 1, 2 and 3.

154

A 4-dimensional hypercube. Generally, a hypercube of dimen-

sion d+1 is constructed by connecting corresponding processors

in two hypercubes of dimension d.

If d is the dimension we have 2d CPUs, and the shortest path

between any two nodes is at most d steps (passing d wires). This

is much better than in a linear array or a ring. We can try to

partition data so that the most frequent communication takes

place between neighbours.

A high degree of connectivity is good because it makes it possible

for several CPUs to communicate simultaneously (less competi-

tion for bandwidth). It is more expensive though.

If the available connectivity (for a specific machine) is

sufficient depends on the problem and the data layout.

155

This is a mesh:

We can have meshes of higher dimension.

If we connect the outer nodes in a mesh we get a torus:

156

A Note on Cluster Computing

Many modern parallel computers are built by off-the-shelf

components, using personal computer hardware, Intel CPUs and

Linux. Some years ago the computers were connected by an

Ethernet network but faster (and more expensive) technologies

are available. To run programs in parallel, explicit message pass-

ing is used (MPI, PVM).

The first systems were called Beowulf computers named after

the hero in an Old English poem from around year 1000. They

are also called Linux clusters and one talks about cluster com-

puting.

In the poem, Beowulf, a hero of a tribe, from southern Sweden,

called the Geats, travels to Denmark to help defeat Grendel (a

monster), Grendel’s mother and a dragon.

The first few lines (of about 3000) first in Old English and then

in modern English:

wæs on burgum

Beowulf Scyldinga,

leof leodcyning, longe þrage

folcum gefræge (fæder ellor hwearf,

aldor of earde), o æt him eft onwoc

heah Healfdene; heold þenden lifde,

gamol ond gu reouw, glæde Scyldingas.

Now Beowulf bode in the burg of the Scyldings,

leader beloved, and long he ruled

in fame with all folk, since his father had gone

away from the world, till awoke an heir,

haughty Healfdene, who held through life,

sage and sturdy, the Scyldings glad.

157

A look at the Lenngren cluster at PDC

PDC (Parallell-Dator-Centrum) is the Center for Parallel

Computers, Royal Institute of Technology in Stockholm.

Lenngren (after the Swedish poet Anna Maria Lenngren, 1754-

1817) is a distributed memory computer from Dell consisting of

442 nodes. Each node has two 3.4GHz EMT64-Xeon processors

(EM64T stands for Extended Memory x 64-bit Technology) and

8GB of main memory. The peak performance of the system is

6Tflop/s. The nodes are connected with gigabit ethernet for

login and filesystem traffic. A high performance Infiniband net-

work from Mellanox is used for the MPI traffic.

A word on Infiniband. First a quote from

http://www.infinibandta.org/:
“InfiniBand is a high performance, switched fabric interconnect

standard for servers. ... Founded in 1999, the InfiniBand Trade

Association (IBTA) is comprised of leading enterprise IT vendors

including Agilent, Dell, Hewlett-Packard, IBM, SilverStorm, In-

tel, Mellanox, Network Appliance, Oracle, Sun, Topspin and

Voltaire. The organization completed its first specification in

October 2000.”

Another useful reference is http://en.wikipedia.org.

InfiniBand uses a bidirectional serial bus, 2.5 Gbit/s in each

direction. It also supports double and quad data rates for 5

Gbit/s or 10 Gbit/s respectively. For electrical signal reasons

8-bit symbols are sent using 10-bits (8B/10B encoding), so the

actual data rate is 4/5ths of the raw rate.

Thus the single, double and quad data rates carry 2, 4 or 8

Gbit/s respectively.

Links can be aggregated in units of 4 or 12, called 4X or 12X.

A quad-rate 12X link therefore carries 120 Gbit/s raw, or 96

Gbit/s of user data.

158

InfiniBand uses a switched fabric topology so several devices can

share the network at the same time (as opposed to a bus topol-

ogy). Data is transmitted in packets of up to 4 kB. All trans-

missions begin or end with a channel adapter. Each processor

contains a host channel adapter (HCA) and each peripheral has

a target channel adapter (TCA). It may look something like this:

CPU

MEM HCA

CPU CPU

MEM HCA

CPU

CPU

MEM HCA

CPU

TCA TCA

TCA

Switch

Switch

Switch

Switches forward packets between two of their ports based on an

established routing table and the addressing information stored

on the packets. A subnet, like the one above, can be connected

to another subnet by a router.

Each channel adapter may have one or more ports. A channel

adapter with more than one port, may be connected to multiple

switch ports. This allows for multiple paths between a source

and a destination, resulting in performance and reliability ben-

efits.

159

A simple example

Consider the following algorithm (the power method). A is a

square matrix of order n (n rows and columns) and x(k), k =

1, 2, 3, . . . a sequence of column vectors, each with n elements.

x(1) = random vector

for k = 1, 2, 3, . . .

x(k+1) = Ax(k)

end

If A has a dominant eigenvalue λ (|λ| is strictly greater than

all the other eigenvalues) with eigenvector x, then x(k) will be

a good approximation of an eigenvector for sufficiently large k

(provided x(1) has a nonzero component of x).

An Example:

>> A=[-10 3 6;0 5 2;0 0 1] % it is not necessary
A = % that A is triangular

-10 3 6
0 5 2
0 0 1

>> x = randn(3, 1);
>> for k = 1:8, x(:, k+1) = A* x(:, k); end
>> x(:,1:4)
ans =
-6.8078e-01 5.0786e+00 -5.0010e+01 5.1340e+02
4.7055e-01 1.3058e+00 5.4821e+00 2.6364e+01

-5.2347e-01 -5.2347e-01 -5.2347e-01 -5.2347e-01

>> x(:,5:8)
ans =
-5.0581e+03 5.0970e+04 -5.0774e+05 5.0872e+06
1.3077e+02 6.5281e+02 3.2630e+03 1.6314e+04

-5.2347e-01 -5.2347e-01 -5.2347e-01 -5.2347e-01

Note that x(k) does not “converge” in the ordinary sense.

We may have problems with over/underflow.
160

Revised algorithm, where we scale x(k) and keep only one copy.

x = random vector

x = x (1/ max(|x|)) Divide by the largest element

for k = 1, 2, 3, . . .

t = Ax

x = t (1/ max(|t|))
end

λ can be computed in several ways, e.g. xTAx/xTx (and we

already have t = Ax). In practice we need to terminate the

iteration as well. Let us skip those details.

How can we make this algorithm parallel on a distributed

memory MIMD-machine (given A)? One obvious way is to com-

pute t = Ax in parallel. In order to do so we must know the

topology of the network and how to partition the data.

+2+1=2

1

3

+ +

1

2

3

1

=2

3

all

tx

the product
the product

32 31 =

161

Suppose that we have a ring with #p processors and that #p

divides n. We partition A in blocks of β = n/#p (β for block

size) rows (or columns) each, so that processor 1 would store

rows 1 through β, processor 2 rows 1+β through 2β etc. Let us

denote these blocks of rows by A1, A2, . . . , A#p. If we partition

t in the same way t1 contains the first β elements, t2 the next β

etc, t can be computed as:








t1

t2
...

t#p








= Ax =








A1x

A2x
...

A#px








← on proc. 1

← on proc. 2
...

← on proc. #p

In order to perform the next iteration processor one needs t2, . . . , t#p,

processor two needs t1, t3, . . . , t#p etc.

The processors must communicate, in other words.

Another problem is how each processor should get its part, Aj,

of the matrix A. This could be solved in different ways:

• one CPU gets the task to read A and distributes the parts

to the other processors

• perhaps each CPU can construct its Aj by computation

• perhaps each CPU can read its part from a file (or from files)

Let us assume that the Aj have been distributed and look at the

matrix-vector multiply.

162

Here is an image showing (part of) the algorithm, when #p = 4.

White boxes show not yet received parts of the vector. The brick

pattern shows the latest part of the vector and the boxes with

diagonal lines show old pieces.

���
���
���
���

���
���
���
������
���
���
���

���
���
���
���

���
���
���
���

���
���
���
������
���
���
���

���
���
���
������
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
��� ���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

Step 2Step 1

Step 3

3 4

2 1

���
���
���
���

���
���
���
������
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���
���
���
���

���
���
���
������

���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
������
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
������

���
���
���

���
���
���
���

���
���
���
���

���
���
���
��� ���

���
���
���

���
���
���
���

163

Some important terminology:

Let wct (wallclock time) be the time we have to wait for the

run to finish (i.e. not the total cputime). wct is a function of

#p, wct(#p) (although it may not be so realistic to change #p

in a ring.

This is a simple model of this function (for one iteration):

wct(#p) =
2n2

#p
Tflop + (#p− 1)

[

Tlat +
n

#p
Tbandw

]

where Tflop is the time for one flop, Tlat is the latency for the

communication and Tbandw is time it takes to transfer one double

precision number.

It is often the case that (roughly):

wct(#p) = seq. part of comp. +
parallel part of comp.

#p
+

#p (communication)

wct has a minimum with respect to #p (it is not optimal with

#p = ∞). The computational time decreases with #p but the

communication increases.

The speedup is defined as the ratio:

speedup(#p) =
wct(1)

wct(#p)

What we hope for is linear speedup, i.e. speedup(#p) = #p.

164

If you have a problem to solve (rather than an algorithm to

study) a more interesting definition may be:

speedup(#p) =
time for best implementation on one processor

wct(#p)

It is possible to have super linear speedup, speedup(#p) > #p;

this is usually due to better cache locality or decreased paging.

If our algorithm contains a section that is sequential (cannot

be parallelized), it will limit the speedup. This is known as

Amdahl’s law. Let us denote the sequential part with with s,

0 ≤ s ≤ 1 (part wrt time), so the part that can be parallelized

is 1− s. Hence,

speedup(#p) =
1

s + (1− s)/#p
≤ 1

s

regardless of the number of processors.

Instead of studying how the speedup depends on #p we can

fix #p and see what happens when we change the size of the

problem n. Does the speedup scale well with n? In our case:

speedup(n) =
2n2Tflop

2n2Tflop

#p
+ (#p− 1)

[

Tlat + nTbandw
#p

]

=
#p

1 + (#p− 1)
[

#pTlat
2n2Tflop

+ Tbandw
2nTflop

]

So

lim
n→∞

speedup(n) = #p

This is very nice! The computation is O(n2) and the

communication is O(n). This is not always the case.
165

Exercise: partition A by columns instead.

What happens if the processors differ in speed and amount of

memory? We have a load balancing problem.

Static load balancing: find a partitioning β1, β2, . . . , β#p such

that processor p stores βp rows and so that wct is minimized

over this partitioning. We must make sure that a block fits in

the available memory on node p. This leads to the optimization

problem:

min
β1,β2,...,β#p

wct(β1, β2, . . . , β#p),

subject to the equality constraint
∑#p

p=1 βp = n and the

p inequality constraints 8nβp ≤ Mp, if Mp is the amount of

memory (bytes) available on node p.

166

If

• the amount of work varies with time

• we share the processors with other users

• processors crash (#p changes)

we may have to rebalance; dynamic load balancing.

Even if the processors are identical (and with equal amount of

memory) we may have to compute a more complicated parti-

tioning. Suppose that A is upper triangular (zeros below the

diagonal). (We would not use an iterative method to compute

an eigenvector in this case.) The triangular matrix is easy to

partition, it is worse if A is a general sparse matrix (many ele-

ments are zero).

Some matrices require a change of algorithm as well. Suppose

that A is symmetric, A = AT and that we store A in a compact

way (only one triangle).

Say, A = UT + D + U (UpperT+ Diagonal + Upper).

If we store U and D by rows it is easy to compute Ux + Dx

using our row-oriented algorithm. To compute UTx requires a

column-oriented approach (if U is partitioned by rows, UT will

be partitioned by columns, and a column-oriented algorithm

seems reasonable). So the program is a combination of a row

and a column algorithm.

167

A few words about communication

In our program we had the loop:

for j = 1 to #p− 1

send xsegment to the next processor

compute segment

receive xsegment from the previous processor

end

Suppose #p = 2 and that we can transfer data from memory

(from x1 on processor one to x1 on processor two, from x2 on

processor two to x2 on processor one).

x

CPU 1 CPU 2

x

NODE 1 NODE 2

Memory Memory

There are several problems with this type of communication,

e.g.:

• if CPU 1 has been delayed it may be using x2 when CPU 2

is writing in it

• several CPUs may try to write to the same memory location

(in a more general setting)

• CPU 1 may try to use data before CPU 2 has written it

168

So, a few things we would like to able to do:

• wait for a message until we are ready to take care of it

• do other work while waiting (to check now and then)

• find out which processor has sent the message

• have identities of messages (one CPU could send several; how

do we distinguish between them)

• see how large the message is before unpacking it

• send to a group of CPUs (broadcast)

An obvious way to solve the first problem is to use synchronisa-

tion. Suppose CPU 1 is delayed. CPU 2 will send a “ready to

send”-message to CPU 1 but it will not start sending data until

CPU 1 has sent a “ready to receive”-message.

This can cause problems. Suppose we have a program where

both CPUs make a send and then a receive. If the two CPUs

make sends to each other the CPUs will “hang”. Each CPU is

waiting for the other CPU to give a “ready to receive”-message.

We have what is known as a deadlock.

One way to avoid this situation is to use a buffer. When CPU

1 calls the send routine the system copies the array to a tem-

porary location, a buffer. CPU 1 can continue executing and

CPU 2 can read from the buffer (using the receive call) when it

is ready. The drawback is that we need extra memory and an

extra copy operation.

Suppose now that CPU 1 lies ahead and calls receive before

CPU 2 has sent. We could then use a blocking receive that

waits until the messages is available (this could involve synchro-

nised or buffered communication). An alternative is to use a

nonblocking receive. So the receive asks: is there a message? If

not, the CPU could continue working and ask again later.

169

POSIX Threads (pthreads)

(POSIX: Portable Operating System Interface, A set of IEEE

standards designed to provide application portability between

Unix variants. IEEE: Institute of Electrical and Electronics En-

gineers, Inc. The world’s largest technical professional society,

based in the USA.)

Unix process creation (and context switching) is rather slow and

different processes do not share much (if any) information (i.e.

they may take up a lot of space).

A thread is like a “small” process. It originates from a pro-

cess and is a part of that process. All the threads share global

variables, files, code, PID etc. but they have their individual

stacks and program counters.

When the process has started, one thread, the master thread, is

running. Using routines from the pthreads library we can start

more threads.

If we we have a shared memory parallel computer each thread

may run on its own processor, but threads are a convenient pro-

gramming tool on a uniprocessor as well.

In the example below a dot product,
∑n

i=1 aibi, will be computed

in parallel. Each thread will compute part of the sum. We could,

however, have heterogeneous tasks (the threads do not have do

do the same thing).

We compile by:

gcc -std=c99 prog.c -lpthread

170

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>

// global shared variables
#define VEC_LEN 400
#define N_THREADS 4
double a[VEC_LEN], b[VEC_LEN], sum;
pthread_mutex_t mutexsum;

void *dotprod(void *restrict arg) // the slave
{
int i, start, end, i_am, len;
double mysum;

i_am = (int) (long) arg; // typecasts, need both
len = VEC_LEN / N_THREADS; // assume N_THREADS
start = i_am * len; // divides VEC_LEN
end = start + len;

mysum = 0.0; // local sum
for (i = start; i < end; i++)

mysum += a[i] * b[i];

pthread_mutex_lock(&mutexsum); // critical section
sum += mysum; // update global sum

pthread_mutex_unlock(&mutexsum); // with local sum

// terminate the thread, NULL is the null-pointer
pthread_exit(NULL); // not really needed
return NULL; // to silence splint

}
int main()
{
pthread_t thread_id[N_THREADS];
int i, ret;

171

printf("sizeof(void *restrict) = %d\n",
sizeof(void *restrict)); // to be sure

printf("sizeof(long) = %d\n", sizeof(long));

for (i = 0; i < VEC_LEN; i++) {
a[i] = 1.0; // initialize
b[i] = a[i];

}
sum = 0.0; // global sum, NOTE declared global

// Initialize the mutex (mutual exclusion lock).
pthread_mutex_init(&mutexsum, NULL);

// Create threads to perform the dotproduct
// NUll implies default properties.

for(i = 0; i < N_THREADS; i++)
if(ret = pthread_create(&thread_id[i], NULL,

dotprod, (void *) (long) i)){
printf ("Error in thread create\n");
exit(1);

}

// Wait for the other threads. If the main thread
// exits all the slave threads will exit as well.

for(i = 0; i < N_THREADS; i++)
if(ret = pthread_join(thread_id[i], NULL)) {

printf ("Error in thread join %d \n", ret);
exit(1);

}

printf ("sum = %f\n", sum);
pthread_mutex_destroy(&mutexsum);
return 0;

}

172

This is what the run looks like. Since the threads have the same

PID we must give a special option to the ps-command to see

them.

% a.out
sizeof(void *restrict) = 8
sizeof(long) = 8
sum = 400.000000
...

% ps -felL | grep thomas | grep a.out (edited)
UID PID PPID LWP NLWP CMD
thomas 15483 27174 15483 5 a.out <-- master
thomas 15483 27174 15484 5 a.out
thomas 15483 27174 15485 5 a.out
thomas 15483 27174 15486 5 a.out
thomas 15483 27174 15487 5 a.out

LWP id. of light weight process (thread).

NLWP number of lwps in the process.

Note that the PID is the same.

If you use top and press H you well see the individual threads

as well.

173

Race conditions, deadlock etc.

When writing parallel programs it is important not to make

any assumptions about the order of execution of threads or pro-

cesses (e.g that a certain thread is the first to initialize a global

variable). If one makes such assumptions the program may fail

occasionally (if another thread would come first). When threads

compete for resources (e.g. shared memory) in this way we have

a race condition. It could even happen that threads deadlock

(deadlock is a situation where two or more processes are unable

to proceed because each is waiting for one of the others to do

something).

From the web: I’ve noticed that under LinuxThreads (a kernel-

level POSIX threads package for Linux) it’s possible for thread

B to be starved in a bit of code like the fragment at the end

of this message (not included). I interpreted this as a bug in

the mutex code, fixed it, and sent a patch to the author. He

replied by saying that the behavior I observed was correct, it

is perfectly OK for a thread to be starved by another thread

of equal priority, and that POSIX makes no guarantees about

mutex lock ordering. ... I wonder (1) if the behavior I observed

is within the standard and (2) if it is, what the f%ˆ& were the

POSIX people thinking? ...

Sorry, I’m just a bit aggravated by this.

Any info appreciated,

Bill Gribble

According to one answer it is within the standard.

When I taught the course 2002, Solaris pthreads behaved this

way, but this has changed in Solaris 9. Under Linux (2005) there

are no problems, so I will not say more about this subject.

174

Message Passing Software

Several packages available. The two most common are PVM

(Parallel Virtual Machine) and MPI (Message Passing

Interface).

The basic idea in these two packages is to start several processes

and let these processes communicate through explicit message

passing. This is done using a subroutine library (Fortran & C).

The subroutine library usually uses unix sockets (on a low level).

It is possible to run the packages on a shared memory machine in

which case the packages can communicate via the shared mem-

ory. This makes it possible to run the code on many different

systems.

call pvmfinitsend(PVMDEFAULT, bufid)
call pvmfpack(INTEGER4, n, 1, 1, info)
call pvmfpack(REAL8, x, n, 1, info)
call pvmfsend(tid, msgtag, info)

bufid = pvm_initsend(PvmDataDefault);
info = pvm_pkint(&n, 1, 1);
info = pvm_pkdouble(x, n, 1);
info = pvm_send(tid, msgtag);

call MPI_Send(x, n, MPI_DOUBLE_PRECISION, dest, &
tag, MPI_COMM_WORLD, err)

err = MPI_Send(x, n, MPI_DOUBLE, dest,
tag, MPI_COMM_WORLD);

In MPI one has to work a bit more to send a message consisting

of several variables. In PVM it is possible to start processes

dynamically, and to run several different a.out-files. In MPI

the processes must be started using a special unix-script and

only one a.out is allowed (at least in MPI version 1).

175

PVM is available in one distribution, pvm3.4.4, (see the home

page). (Al Geist, Adam Beguelin, Jack Dongarra, Weicheng

Jiang, Robert Manchek, Vaidy Sunderam.) Free book available

on the net (PostScript & HTML).

Some of the systems PVM runs on (this is an old list; systems

have been added):

AFX8, Alliant FX/8, ALPHA, DEC Alpha/OSF-1, ALPHAMP, DEC Alpha/OSF-1 /

using shared memory, APOLLO, HP 300 running Domain/OS, ATT, AT&T/NCR 3600

running SysVR4, BAL, Sequent Balance, BFLY, BBN Butterfly TC2000, BSD386,

80[345]86 running BSDI or BSD386, CM2, Thinking Machines CM-2 Sun front-end,

CM5, Thinking Machines CM-5, CNVX, Convex using IEEE floating-point, CNVXN,

Convex using native f.p., CRAY, Cray, CRAY2, Cray-2, CRAYSMP, Cray S-MP,

CSPP, Convex Exemplar, DGAV, Data General Aviion, E88K, Encore 88000, FREEBSD,

80[345]86 running FreeBSD, HP300, HP 9000 68000 cpu, HPPA, HP 9000 PA-Risc,

HPPAMP, HP 9000 PA-Risc / shared memory transport, KSR1, Kendall Square,

I860, Intel RX Hypercube, IPSC2, Intel IPSC/2, LINUX, 80[345]86 running Linux,

M88K, Motorola M88100 running Real/IX, MASPAR, Maspar, MIPS, Mips, NETB-

SDAMIGA, Amiga running NetBSD, NETBSDHP300, HP 300 running NetBSD,

NETBSDI386, 80[345]86 running NetBSD, NETBSDMAC68K, Macintosh running

NetBSD, NETBSDPMAX, DEC Pmax running NetBSD, NETBSDSPARC, Sparc run-

ning NetBSD, NETBSDSUN3, SUN 3 running NetBSD, NEXT, NeXT, PGON, Intel

Paragon, PMAX, DEC/Mips arch (3100, 5000, etc.), RS6K, IBM/RS6000, RS6KMP,

IBM SMP / shared memory transport, RT, IBM/RT, SCO, 80[345]86 running SCO

Unix, SGI, Silicon Graphics IRIS, SGI5, Silicon Graphics IRIS running OS ≥ 5.0,

SGI64, Silicon Graphics IRIS running OS ≥ 6.0, SGIMP, Silicon Graphics IRIS / OS

5.x / using shared memory, SGIMP64, Silicon Graphics IRIS / OS 6.x / using shared

memory, SP2MPI, IBM SP-2 / using MPI, SUN3, Sun 3, SUN4, Sun 4, 4c, sparc,

etc., SUN4SOL2, Sun 4 running Solaris 2.x, SUNMP, Sun 4 / using shared memory

/ Solaris 2.x, SX3, NEC SX-3, SYMM, Sequent Symmetry, TITN, Stardent Titan,

U370, IBM 3090 running AIX, UTS2, Amdahl running UTS, UVAX, DEC/Microvax,

UXPM, Fujitsu running UXP/M, VCM2, Thinking Machines CM-2 Vax front-end,

X86SOL2, 80[345]86 running Solaris 2.x.

176

PVM can be run in several different ways. Here we add machines

to the virtual machine by using the PVM-console:

pvm> conf
1 host, 1 data format

HOST DTID ARCH SPEED
ries.math.chalmers.se 40000 SUN4SOL2 1000

pvm> add fibonacci
1 successful

HOST DTID
fibonacci 80000

pvm> add fourier
1 successful

HOST DTID
fourier c0000

pvm> add pom.unicc
1 successful

HOST DTID
pom.unicc 100000

pvm> conf
4 hosts, 1 data format

HOST DTID ARCH SPEED
ries.math.chalmers.se 40000 SUN4SOL2 1000

fibonacci 80000 SUN4SOL2 1000
fourier c0000 SUN4SOL2 1000

pom.unicc 100000 SUNMP 1000
pvm> help
help - Print helpful information about a command
Syntax: help [command]
Commands are:
add - Add hosts to virtual machine
alias - Define/list command aliases
conf - List virtual machine configuration
delete - Delete hosts from virtual machine
etc.

pvm> halt

177

It is possible to add machines that are far away and of different

architectures. The add command start a pvmd on each machine

(pvmd pvm-daemon). The pvmds relay messages between hosts.

The PVM-versions that are supplied by the vendors are based

on the public domain (pd) version.

Common to write master/slave-programs (two separate main-

programs). Here is the beginning of a master:

program master
#include "fpvm3.h"
...
call pvmfmytid (mytid) ! Enroll program in pvm
print*, ’How many slaves’
read*, nslaves

name_of_slave = ’slave’ ! pvmd looks in a spec. dir.
arch = ’*’ ! any will do
call pvmfspawn (name_of_slave, PVMDEFAULT, arch,

+ nslaves, tids, numt)

The beginning of the slave may look like:

program slave
#include "fpvm3.h"
...
call pvmfmytid (mytid) ! Enroll program in pvm
call pvmfparent (master) ! Get the master’s task id.

* Receive data from master.
call pvmfrecv (master, MATCH_ANYTHING, info)
call pvmfunpack (INTEGER4, command, 1, 1, info)

There are several pd-versions of MPI, we are using MPICH2

from Argonne National Lab.

Here comes a simple MPI-program.

178

#include <stdio.h>
#include "mpi.h" /* Important */

int main(int argc, char *argv[])
{
int message, length, source, dest, tag;
int n_procs; /* number of processes */
int my_rank; /* 0, ..., n_procs-1 */
MPI_Status status;

MPI_Init(&argc, &argv); /* Start up MPI */

/* Find out the number of processes and my rank*/
MPI_Comm_size(MPI_COMM_WORLD, &n_procs);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

tag = 1;
length = 1; /* Length of message */

if (my_rank == 0) { /* I’m the master process */
printf("Number of processes = %d\n", n_procs);
dest = 1; /* Send to the other process*/
message = 1; /* Just send one int */

/* Send message to slave */
MPI_Send(&message, length, MPI_INT, dest,

tag, MPI_COMM_WORLD);
printf("After MPI_Send\n");

source = 1;
/* Receive message from slave. length is how much

room we have and NOT the length of the message*/
MPI_Recv(&message, length, MPI_INT, source, tag,

MPI_COMM_WORLD, &status);

printf("After MPI_Recv, message = %d\n", message);

179

} else { /* I’m the slave process */

source = 0;
/* Receive message from master*/
MPI_Recv(&message, length, MPI_INT, source, tag,

MPI_COMM_WORLD, &status);

dest = 0; /* Send to the other process*/
message++; /* Increase message */

/* Send message to master */
MPI_Send(&message, length, MPI_INT, dest,

tag, MPI_COMM_WORLD);
}

MPI_Finalize(); /* Shut down MPI */
return 0;

}

To run: read the MPI-assignment. Something like:

% mpicc simple.c
% mpiexec -n 2 ./a.out
Number of processes = 2
After MPI_Send
After MPI_Recv, message = 2

One can print in the slave as well, but it may not work in all

MPI-implementations and the order of the output is not

deterministic. It may be interleaved or buffered.

We may not be able to start processes from inside the program

(permitted in MPI 2.0 but may not be implemented).

180

Let us look at each call in some detail: Almost all the MPI-

routines in C are integer functions returning a status value. I

have ignored these values in the example program. In Fortran

there are subroutines instead. The status value is returned as

an extra integer parameter (the last one).

Start and stop MPI (it is possible to do non-MPI stuff before

Init and after Finalize). These routines must be called:

MPI_Init(&argc, &argv);
...

MPI_Finalize();

MPI_COMM_WORLDis a communicator, a group of processes.

The program can find out the number of processes by calling

MPI_Comm_size(note that & is necessary since we require a

return value).

MPI_Comm_size(MPI_COMM_WORLD, &n_procs);

Each process is numbered from 0 to n_procs-1. To find the

number (rank) we can use MPI_Comm_rank.

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

We need the rank when sending messages and to decide how the

work should be shared:

if (my_rank == 0) {
I’m the master

} elseif (my_rank == 1) {
...

181

The two most basic communication routines (there are many)

are:

MPI_Send(&message, length, MPI_INT, dest, tag,
MPI_COMM_WORLD);

MPI_Recv(&message, length, MPI_INT, source, tag,
MPI_COMM_WORLD, &status);

If the message is an array there should be no &.

Some other datatypes are MPI_FLOAT and MPI_DOUBLE.

The Fortran names are MPI_INTEGER, MPI_REAL and

MPI_DOUBLE_PRECISION.

Note that length is the number of elements of the specific type

(not the number of bytes).

length in MPI_Send is the number of elements we are

sending (the message-array may be longer). length in MPI_Recv
is amount of storage available to store the message.

If this value is less than the length of the message, the MPI-

system prints an error message telling us that the message has

been truncated.

dest is the rank of the receiving process. tag is a number of the

message that the programmer can use to keep track of messages

(0 ≤ tag ≤ at least 32767).

182

The same holds for MPI_Recv, with the difference that source
is the rank of the sender.

If we will accept a message from any sender we can use the

constant (from the header file) MPI_ANY_SOURCE.

If we accept any tag we can use MPI_ANY_TAG.
So, we can use tag and source to pick a specific message from

a queue of messages.

status is a so called structure (a record) consisting of at

least three members (MPI_SOURCE, MPI_TAG and MPI_ERROR
(some systems may have additional members).

We can do the following:

printf("status.MPI_SOURCE = %d\n", status.MPI_SOURCE);
printf("status.MPI_TAG = %d\n", status.MPI_TAG);
printf("status.MPI_ERROR = %d\n", status.MPI_ERROR);

To find out the actual length of the message we can do:

MPI_Get_count(&status, MPI_INT, &size);
printf("size = %d\n", size);

Here comes the simple program in Fortran.

183

program simple
implicit none
include "mpif.h"
integer message, length, source, dest, tag
integer my_rank, err
integer n_procs ! number of processes
integer status(MPI_STATUS_SIZE)

call MPI_Init(err) ! Start up MPI

! Find out the number of n_processes and my rank
call MPI_Comm_rank(MPI_COMM_WORLD, my_rank, err)
call MPI_Comm_size(MPI_COMM_WORLD, n_procs, err)

tag = 1
length = 1 ! Length of message

if (my_rank == 0) then ! I’m the master process
print*, "Number of processes = ", n_procs
dest = 1 ! Send to the other process
message = 1 ! Just send one integer

! Send message to slave
call MPI_Send(message, length, MPI_INTEGER, dest, &

tag, MPI_COMM_WORLD, err)
print*, "After MPI_Send"

source = 1
! Receive message from slave

call MPI_Recv(message, length, MPI_INTEGER, source,&
tag, MPI_COMM_WORLD, status, err)

print*, "After MPI_Recv, message = ", message

184

else ! I’m the slave process
source = 0

! Receive message from master
call MPI_Recv(message, length, MPI_INTEGER, source,&

tag, MPI_COMM_WORLD, status, err)

dest = 0 ! Send to the other process
message = message + 1 ! Increase message

! Send message to master
call MPI_Send(message, length, MPI_INTEGER, dest, &

tag, MPI_COMM_WORLD, err)
end if

call MPI_Finalize(err) ! Shut down MPI

end program simple

Note that the Fortran-routines are subroutines (not functions)

and that they have an extra parameter, err.

One problem in Fortran77 is that status, in MPI_Recv, is a

structure. The solution is: status(MPI_SOURCE), status(MPI_TAG)
and status(MPI_ERROR)contain, respectively, the source, tag

and error code of the received message.

To compile and run (one can add -O3 etc.):

mpif90 simple.f90
mpiexec -n 2 ./a.out

^C usually kills all the processes.

185

There are blocking and nonblocking point-to-point Send/Receive-

routines in MPI. The communication can be done in different

modes (buffered, synchronised, and a few more). The Send/Re-

ceive we have used are blocking, but we do not really know if

they are buffered or not (the standard leaves this open). This is

a very important question. Consider the following code:

...
integer, parameter :: MASTER = 0, SLAVE = 1
integer, parameter :: N_MAX = 10000
integer, dimension(N_MAX) :: vec = 1

call MPI_Init(err)
call MPI_Comm_rank(MPI_COMM_WORLD, my_rank, err)
call MPI_Comm_size(MPI_COMM_WORLD, n_procs, err)

msg_len = N_MAX; buf_len = N_MAX

if (my_rank == MASTER) then
send_to = SLAVE; tag = 1
call MPI_Send(vec, msg_len, MPI_INTEGER, &

send_to, tag, MPI_COMM_WORLD, err)

recv_from = SLAVE; tag = 2
call MPI_Recv(vec, buf_len, MPI_INTEGER, &

recv_from, tag, &
MPI_COMM_WORLD, status, err)

else
send_to = MASTER; tag = 2
call MPI_Send(vec, msg_len, MPI_INTEGER, &

send_to, tag, MPI_COMM_WORLD, err)

recv_from = MASTER; tag = 1
call MPI_Recv(vec, buf_len, MPI_INTEGER, &

recv_from, tag, &
MPI_COMM_WORLD, status, err)

end if
...

186

This code works (under MPICH2) when N_MAX = 1000, but it

hangs, it deadlocks, when N_MAX = 20000. One can suspect that

buffering is used for short messages but not for long ones. This

is usually the case in all MPI-implementations. Since the buffer

size is not standardized we cannot rely on buffering though.

There are several ways to fix the problem. One is to let the

master node do a Send followed by the Receive. The slave does

the opposite, a Receive followed by the Send.

master slave
call MPI_Send(...) call MPI_Recv(...)
call MPI_Recv(...) call MPI_Send(...)

Another way is to use the deadlock-free MPI_Sendrecv-routine.

The code in the example can then be written:

program dead_lock
include "mpif.h"

integer :: rec_from, snd_to, snd_tag, rec_tag, &
my_rank, err, n_procs, snd_len, buf_len

integer, dimension(MPI_STATUS_SIZE) :: status

integer, parameter :: MASTER = 0, SLAVE = 1
integer, parameter :: N_MAX = 100
integer, dimension(N_MAX) :: snd_buf, rec_buf

call MPI_Init(err)
call MPI_Comm_rank(MPI_COMM_WORLD, my_rank, err)
call MPI_Comm_size(MPI_COMM_WORLD, n_procs, err)

snd_len = N_MAX; buf_len = N_MAX

187

if (my_rank == MASTER) then
snd_buf = 10 ! init the array
snd_to = SLAVE; snd_tag = 1
rec_from = SLAVE; rec_tag = 2
call MPI_Sendrecv(snd_buf, snd_len, MPI_INTEGER, &

snd_to, snd_tag, rec_buf, buf_len, &
MPI_INTEGER, rec_from, rec_tag, &
MPI_COMM_WORLD, status, err)

print*, ’master, rec_buf(1:5) = ’, rec_buf(1:5)
else

snd_buf = 20 ! init the array
snd_to = MASTER; snd_tag = 2
rec_from = MASTER; rec_tag = 1

call MPI_Sendrecv(snd_buf, snd_len, MPI_INTEGER, &
snd_to, snd_tag, rec_buf, buf_len, &
MPI_INTEGER, rec_from, rec_tag, &
MPI_COMM_WORLD, status, err)

print*, ’slave, rec_buf(1:5) = ’, rec_buf(1:5)
end if

call MPI_Finalize(err)

end program dead_lock
% mpiexec -n 2 ./a.out
master, rec_buf(1:5) = 20 20 20 20 20
slave, rec_buf(1:5) = 10 10 10 10 10

Another situation which may cause a deadlock is having to sends

in a row. A silly example is when a send is missing:

master slave
... call MPI_Recv(...)

A blocking receive will wait forever (until we kill the processes).

188

Sending messages to many processes
There are broadcast operations in MPI, where one process can

send to all the others.

#include <stdio.h>
#include "mpi.h"
int main(int argc, char *argv[])
{
int message[10], length, root, my_rank;
int n_procs, j;

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &n_procs);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

length = 10;
root = 2; /* Note: the same for all. */

/* Need not be 2, of course. */
if (my_rank == 2) {

for (j = 0; j < length; j++)
message[j] = j;

/* Here is the broadcast. Note, no tag.*/
MPI_Bcast(message, length, MPI_INT, root,

MPI_COMM_WORLD);
} else {

/* The slaves have exactly the same call*/
MPI_Bcast(message, length, MPI_INT, root,

MPI_COMM_WORLD);

printf("%d: message[0..2] = %d %d %d\n",
my_rank, message[0], message[1],
message[2]);

}
MPI_Finalize();
return 0;

}
189

% mpiexec -n 4 ./a.out
0: message[0..2] = 0 1 2
1: message[0..2] = 0 1 2
3: message[0..2] = 0 1 2

Why should we use a broadcast instead of several MPI_Send?
The answer is that it may be possible to implement the broadcast

in a more efficient manner:

timestep 0: 0 -> 1 (-> means send to)

timestep 1: 0 -> 2, 1 -> 3

timestep 2: 0 -> 4, 1 -> 5, 2 -> 6, 3 -> 7

etc.

So, provided we have a network topology that supports parallel

sends we can decrease the number of send-steps significantly.

190

There are other global communication routines.

Let us compute an integral by dividing the interval in #p pieces:
∫ b

a

f(x)dx =

∫ a+h

a

f(x)dx+

∫ a+2h

a+h

f(x)dx+· · ·+
∫ b

a+(#p−1)h

f(x)dx

where h = b−a
#p

.

Each process computes its own part, and the master has to add

all the parts together. Adding parts together this way is called

a reduction.

We will use the trapezoidal method (we would not use that in a

real application).

#include <stdio.h>
#include <math.h>
#include "mpi.h"

/* Note */
#define MASTER 0

/* Prototypes */
double trapez(double, double, int);
double f(double);

int main(int argc, char *argv[])
{
int n_procs, my_rank, msg_len;
double a, b, interval, I, my_int, message[2];

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &n_procs);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
if (my_rank == MASTER) {

a = 0.0;
b = 4.0; /* or read some values */

191

/* compute the length of the subinterval*/
interval = (b - a) / n_procs;
message[0] = a; /* left endpoint */
message[1] = interval;

}

/* This code is written in SIMD-form*/
msg_len = 2;
MPI_Bcast(message, msg_len, MPI_DOUBLE, MASTER,

MPI_COMM_WORLD);

/* unpack the message */
a = message[0];
interval = message[1];

/* compute my endpoints */
a = a + my_rank * interval;
b = a + interval;

/* compute my part of the integral*/
my_int = trapez(a, a + interval, 100);
/* my_int is my part of the integral.

All parts are accumulated in I, but only in
the master process.

*/

msg_len = 1;
MPI_Reduce(&my_int, &I, msg_len, MPI_DOUBLE,

MPI_SUM, MASTER, MPI_COMM_WORLD);

if (my_rank == MASTER)
printf("The integral = %e\n", I);

MPI_Finalize();
return 0;

}

192

double f(double x)
{ /* The integrand */
return exp(-x * cos(x));

}

/* An extremely primitive quadrature method.
Approximate integral from a to b of f(x) dx.
We integrate over [a, b] which is different
from the [a, b] in the main program.

*/

double trapez(double a, double b, int n)
{
int k;
double I, h;

h = (b - a) / n;

I = 0.5 * (f(a) + f(b));
for (k = 1; k < n; k++) {

a += h;
I += f(a);

}

return h * I;
}

193

To get good speedup the function should require a huge amount

of cputime to evaluate.

There are several operators (not only MPI_SUM) that can be used

together with MPI_Reduce.

MPI_MAX return the maximum

MPI_MIN return the minimum

MPI_SUM return the sum

MPI_PROD return the product

MPI_LAND return the logical and

MPI_BAND return the bitwise and

MPI_LOR return the logical or

MPI_BOR return the bitwise of

MPI_LXOR return the logical exclusive or

MPI_BXOR return the bitwise exclusive or

MPI_MINLOC return the minimum and the location (actually, the

value of the second element of the structure where

the minimum of the first is found)

MPI_MAXLOC return the maximum and the location

If all the processes need the result (I) we could do a broadcast

afterwards, but there is a more efficient routine, MPI_Allreduce.
See the web for details (under Documentation, MPI-routines).

The MPI_Allreducemay be performed in an efficient way.

Suppose we have eight processes, 0, ..., 7. | denotes a split.

0 1 2 3 | 4 5 6 7 0<->4, 1<->5 etc
0 1 | 2 3 4 5 | 6 7 0<->2 etc

0 | 1 2 | 3 4 | 5 6 | 7 0<->1 etc

Each process accumulates its own sum (and sends it on):

s0 = x[0] + x[4], s2 = x[2] + x[6], ...
s0 = s0 + s2 = (x[0] + x[4] + x[2] + x[6])
s0 = s0 + s1 = x[0] + ... + x[7]

194

A common operation is to gather, MPI_Gather (bring to one

process) sets of data. MPI_Scatter is the reverse of gather, it

distributes pieces of a vector. See the manual for both of these.

1

Root process

0

2

3

Root process

0

1

2

3

MPI_GatherMPI_Scatter

There is also an MPI_Allgather that gathers pieces to a long

vector (as gather) but where each process gets a copy of the long

vector. Another “All”-routine is MPI_Allreduceas we just saw.

195

A page about distributed Gaussian
elimination

In standard GE we take linear combinations of rows to zero ele-

ments in the pivot columns. We end up with a triangular matrix.

How should we distribute the matrix if we are using MPI?

The obvious way is to partition the rows exactly as in our power

method (a row distribution). This leads to poor load balancing,

since as soon as the first block has been triangularized processor

0 will be idle.

After two elimination steps we have the picture (x is nonzero

and the block size is 2):

x x x x x x x x proc 0
0 x x x x x x x proc 0
0 0 x x x x x x proc 1
0 0 x x x x x x proc 1
0 0 x x x x x x proc 2
0 0 x x x x x x proc 2
0 0 x x x x x x proc 3
0 0 x x x x x x proc 3

Another alternative is to use a cyclic row distribution. Suppose

we have four processors, then processor 0 stores rows 1, 5, 9, 13,

... Processor 2 stores rows 2, 6, 10 etc. This leads to a good

balance, but makes it impossible to use BLAS2 and 3 routines

(since it is vector oriented).

There are a few other distributions to consider, but we skip

the details since they require a more thorough knowledge about

algorithms for GE.

196

One word about Scalapack

ScaLAPACK (Scalable Linear Algebra PACKage) is a distributed

and parallel version of Lapack. ScaLAPACK uses BLAS on one

processor and distributed-memory forms of BLAS on several

(PBLAS, Parallel BLAS and BLACS, C for Communication).

BLACS uses PVM or MPI.

Scalapack uses a block cyclic distribution of (dense) matrices.

Suppose we have processors numbered 0, 1, 2 and 3 and a block

size of 32. This figure shows a matrix of order 8 · 32.
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3

It turns out that this layout gives a good opportunity for par-

allelism, good load balancing and the possibility to use BLAS2

and BLAS3.

Doing a Cholesky factorization on the Sun using MPI:

n = 4000
block size = 32

#CPUs = 4
time = 27.5
rate = 765 Mflops

The uniprocessor Lapack routine takes 145s.

197

Some other things MPI can do

• Suppose you would like to send an int, a double array, and

int array etc. in the same message. One way is to pack

things into the message yourself. Another way is to use

MPI_Pack/MPI_Unpack or (more complicated) to create a

new MPI datatype (almost like a C-structure).

• It is possible to divide the processes into subgroups and make

a broadcast (for example) in this group.

• You can create virtual topologies in MPI, e.g. you can map

the processors to a rectangular grid, and then address the

processors with row- and column-indices.

• There is some support for measuring performance.

• It is possible to control how a message is passed from one

process to another. Do the processes synchronise or is a

buffer used, for example.

• There are more routines for collective communication.

In MPI-2.0 there are several new features, some of these are:

• Dynamic process creation.

• One-sided communication, a process can directly access mem-

ory of another process (similar to shared memory model).

• Parallel I/O, allows several processes to access a file in a

co-ordinated way.

198

Matlab and parallel computing

Two major options.

1. Threads & shared memory by using the parallel capabili-

ties of the underlying numerical libraries (usually ACML or

MKL).

2. Message passing by using the “Distributed Computing Tool-

box” (a large toolbox, the User’s Guide is 529 pages).

Threads can be switched on in two ways. From the GUI: Prefer-

ences/General/Multithreading or by using maxNumCompThreads.
Here is a small example:

T = [];
for thr = 1:4
maxNumCompThreads(thr); % set #threads
j = 1;
for n = [800 1600 3200]

A = randn(n);
B = randn(n);
t = clock;
C = A * B;

T(thr, j) = etime(clock, t);
j = j + 1;

end
end

We tested solving linear systems and computing eigenvalues as

well. Here are the times using one to four threads:

n C = A * B x = A \ b l = eig(A)
1 2 3 4 1 2 3 4 1 2 3 4

800 0.3 0.2 0.1 0.1 0.2 0.1 0.1 0.1 3.3 2.5 2.4 2.3

1600 2.1 1.1 0.8 0.6 1.1 0.7 0.6 0.5 20 12 12 12

3200 17.0 8.5 6.0 4.6 7.9 4.8 4.0 3.5 120 87 81 80

199

So, using several threads can be an option if we have a large

problem. We get a better speedup for the multiplication,

than for eig, which seems reasonable.

This method can be used to speed up the computation of

elementary functions as well.

According to MathWorks:

maxNumCompThreadswill be removed in a future version. You

can set the -singleCompThreadoption when starting MATLAB

to limit MATLAB to a single computational thread. By default,

MATLAB makes use of the multithreading capabilities of the

computer on which it is running.

200

OpenMP - shared memory parallelism

OpenMP is a specification for a set of compiler directives, library

routines, and environment variables that can be used to spec-

ify shared memory parallelism in Fortran and C/C++ programs.

Fortran version 1.0, Oct 1997, ver. 2.0 Nov. 2000.

C/C++ ver. 1.0 Oct. 1998, ver. 2.0 Mar. 2002.

Version 2.5 May 2005, combines the Fortran and C/C++

specifications into a single one and fixes inconsistencies.

Version 3.0, May 2008, not supported by all compilers

(supported by ifort/icc ver 11.0, for example).

v2.5 mainly supports data parallelism (SIMD), all threads

perform the same operations but on different data. In v3.0 there

is better support for “tasks”, different threads perform different

operations (so-called function parallelism, or task parallelism).

Specifications (in PDF): www.openmp.org
Good readability to be standards.

For a few books look at:

http://openmp.org/wp/resources/#Books

201

The basic idea - fork-join programming model

program test

... serial code ...

!$OMP end parallel do

... code run i parallel ...

!$OMP parallel do shared(b) private(x)

master thread

... serial code ...

join

fork

fork

join

... serial code ...

... code run i parallel ...

!$OMP end parallel

!$OMP parallel shared(A, n)

202

• when reaching a parallel part the master thread (original

process) creates a team of threads and it becomes the master

of the team

• the team executes concurrently on different parts of the loop

(parallel construct)

• upon completion of the parallel construct, the threads in the

team synchronise at an implicit barrier, and only the master

thread continues execution

• the number of threads in the team is controlled by

environment variables and/or library calls, e.g.

setenv OMP_NUM_THREADS 7
call omp_set_num_threads(5)(overrides)

• the code executed by a thread must not depend on the result

produced by a different thread

So what is a thread?

A thread originates from a process and is a part of that

process. The threads (belonging to the particular process)

share global variables, files, code, PID etc. but they have

their individual stacks and program counters.

Note that we have several processes in MPI.

Since all the threads can access the shared data (a matrix say) it

is easy to write code so that threads can work on different parts

of the matrix in parallel.

It is possible to use threads directly but we will use the OpenMP-

directives. The directives are analysed by a compiler or

preprocessor which produces the threaded code.

203

MPI versus OpenMP

Parallelising using distributed memory (MPI):

• Requires large grain parallelism to be efficient (process based).

• Large rewrites of the code often necessary

difficult with “dusty decks”.

May end up with parallel and non-parallel versions.

• Domain decomposition; indexing relative to the blocks.

• Requires global understanding of the code.

• Hard to debug.

• Runs on most types of computers.

Using shared memory (OpenMP)

• Can utilise parallelism on loop level (thread based).

Harder on subroutine level, resembles MPI-programming.

• Minor changes to the code necessary. A detailed knowledge

of the code not necessary. Only one version.

Can parallelise using simple directives in the code.

• No partitioning of the data.

• Less hard to debug.

• Not so portable; requires a shared memory computer

(but common with multi-core computers).

• Less control over the “hidden” message passing and memory

allocation.

204

A simple example

#include <stdio.h>
#include <omp.h>

int main()
{
int i, i_am, n = 10000;
double a[n], b[n], c[n];

for (i = 0; i < n; i++)
c[i] = 1.242;

// a parallel for loop
#pragma omp parallel for private(i) shared(a, b, c)
for (i = 0; i < n; i++) {

b[i] = 0.5 * (i + 1);
a[i] = 1.23 * b[i] + 3.45 * c[i];

}
printf("%f, %f\n", a[0], a[n - 1]); // the master

// a parallel region
#pragma omp parallel private(i_am)
{

i_am = omp_get_thread_num(); // 0 to #threads - 1
printf("i_am = %d\n", i_am); // all threads print

#pragma omp master
{
printf("num threads = %d\n",omp_get_num_threads());
printf("max threads = %d\n",omp_get_max_threads());
printf("max cpus = %d\n",omp_get_num_procs());
} // use { } for begin/end

}
return 0;

}

205

Use shared when:

• a variable is not modified in the loop or

• when it is an array in which each iteration of the loop accesses

a different element

All variables except the loop-iteration variable are shared
by default. To turn off the default, use default(none).

Suppose we are using four threads. The first thread may work

on the first 2500 iterations (n = 10000), the next thread on the

next group of 2500 iterations etc.

At the end of the parallel for, the threads join and they

synchronise at an implicit barrier.

Output from several threads may be interleaved.

To avoid multiple prints we ask the master thread (thread zero)

to print. The following numbers are printed:

number of executing threads, maximum number of threads that

can be created (can be changed by setting OMP_NUM_THREADSor

by calling omp_set_num_threads) and available number of

processors (cpus).

206

ferlin > icc -openmp omp1.c
ferlin > setenv OMP_NUM_THREADS 1
ferlin > a.out
4.899900, 6154.284900
i_am = 0
num threads = 1
max threads = 1
max cpus = 8

ferlin > setenv OMP_NUM_THREADS 4
ferlin > a.out
4.899900, 6154.284900
i_am = 3
i_am = 0
num threads = 4
max threads = 4
max cpus = 8
i_am = 2
i_am = 1

ferlin > setenv OMP_NUM_THREADS 9
ferlin > a.out
4.899900, 6154.284900

etc.

On some some systems (# of threads > # of cpus = 8):

Warning: MP_SET_NUMTHREADS greater than available cpus

Make no assumptions about the order of execution between

threads. Output from several threads may be interleaved.

Intel compilers: ifort -openmp ..., icc -openmp ...
GNU: gfortran -fopenmp ..., gcc -fopenmp ...
Portland group: pgf90 -mp..., pgcc -mp ...

207

The same program in Fortran

program example
use omp_lib ! or include "omp_lib.h"

! or something non-standard
implicit none
integer :: i, i_am
integer, parameter :: n = 10000
double precision, dimension(n) :: a, b, c

c = 1.242d0
!$omp parallel do private(i), shared(a, b, c)
do i = 1, n

b(i) = 0.5d0 * i
a(i) = 1.23d0 * b(i) + 3.45d0 * c(i)

end do
!$omp end parallel do ! not necessary

print*, a(1), a(n) ! only the master

!$omp parallel private(i_am) ! a parallel region
i_am = omp_get_thread_num() ! 0, ..., #threads - 1
print*, ’i_am = ’, i_am

!$omp master
print*, ’num threads = ’, omp_get_num_threads()
print*, ’max threads = ’, omp_get_max_threads()
print*, ’max cpus = ’, omp_get_num_procs()

!$omp end master

!$omp end parallel

end program example

!$omp or !$OMP. See the standard for Fortran77.

!$omp end ... instead of }.

208

Things one should not do

First a silly example:

...
int a, i;

#pragma omp parallel for private(i) shared(a)
for (i = 0; i < 1000; i++) {

a = i;
}
printf("%d\n", a);

...

Will give you different values 999, 874 etc.

Now for a less silly one:

int i, n = 12, a[n], b[n];

for (i = 0; i < n; i++) {
a[i] = 1; b[i] = 2; // Init.

}

#pragma omp parallel for private(i) shared(a, b)
for (i = 0; i < n - 1; i++) {

a[i + 1] = a[i] + b[i];
}

for (i = 0; i < n; i++)
printf("%d ", a[i]); // Print results.

printf("\n");

A few runs:
1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23 one thread
1, 3, 5, 7, 9, 11, 13, 3, 5, 7, 9, 11 four
1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 3, 5 four
1, 3, 5, 7, 9, 11, 13, 3, 5, 7, 3, 5 four

209

Why?

thread computation
0 a[1] = a[0] + b[0]
0 a[2] = a[1] + b[1]
0 a[3] = a[2] + b[2] <--|

| Problem
1 a[4] = a[3] + b[3] <--|
1 a[5] = a[4] + b[4]
1 a[6] = a[5] + b[5] <--|

| Problem
2 a[7] = a[6] + b[6] <--|
2 a[8] = a[7] + b[7]
2 a[9] = a[8] + b[8] <--|

| Problem
3 a[10] = a[9] + b[9] <--|
3 a[11] = a[10] + b[10]

We have a data dependency between iterations, causing

a so-called race condition.

Can “fix” the problem:

// Yes, you need ordered in both places

#pragma omp parallel for private(i) shared(a,b) ordered
for (i = 0; i < n - 1; i++) {
#pragma omp ordered

a[i + 1] = a[i] + b[i];
}

210

but in this case the threads do not run in parallel. Adding

printf("%3d %3d\n", i, omp_get_thread_num());
in the loop produces the printout:

0 0
1 0
2 0
3 1
4 1
5 1
6 2
7 2
8 2
9 3

10 3
1 3 5 7 9 11 13 15 17 19 21 23

It is illegal to jump out from a parallel loop.

The following for-loop in C is illegal:

#pragma omp parallel for private(k, s)
for(k = 0; s <= 10; k++) {

...
}

It must be the same variable occurring in all three parts of the

loop. More general types of loops are illegal as well, such as

for(;;) {
}

which has no loop variable. In Fortran, do-while loops are not

allowed. See the standard for details.

Not all compilers provide warnings. Here a Fortran-loop with a

jump.

211

program jump
implicit none
integer :: k, b
integer, parameter :: n = 6
integer, dimension(n) :: a

a = (/ 1, 2, 3, 4, 5, 6 /)
b = 1

!$omp parallel do private(k) shared(a)
do k = 1, n
a(k) = a(k) + 1
if (a(k) > 3) exit ! illegal

end do

print*, a
end program jump

% ifort -openmp jump.f90
fortcom: Error: jump.f90, line 13: A RETURN, EXIT or

CYCLE statement is not legal in a DO loop
associated with a parallel directive.

if (a(k) > 3) exit ! illegal
---------------------^
compilation aborted for jump.f90 (code 1)

% pgf90 -mp jump.f90 the Portland group compiler
% setenv OMP_NUM_THREADS 1
% a.out

2 3 4 4 5 6
% setenv OMP_NUM_THREADS 2
% a.out

2 3 4 5 5 6

212

firstprivate variables

When a thread gets a private variable it is not initialised. Using

firstprivateeach thread gets an initialised copy.

In this example we use two threads:

...
int i, v[] = {1, 2, 3, 4, 5};

#pragma omp parallel for private(i) private(v)
for (i = 0; i < 5; i++)

printf("%d ", v[i]);
printf("\n");

#pragma omp parallel for private(i) firstprivate(v)
for (i = 0; i < 5; i++)

printf("%d ", v[i]);
printf("\n");

...

% a.out
40928 10950 151804059 0 0
1 2 4 5 3 (using several threads)

213

Load balancing

We should balance the load (execution time) so that threads

finish their job at roughly the same time.

There are three different ways to divide the iterations between

threads, static, dynamic and guided. The general format is

schedule(kind of schedule, chunk size).

• static

Chunks of iterations are assigned to the threads in cyclic

order. Size of default chunk, roughly = n / number of threads.

Low overhead, good if the same amount of work in each iter-

ation. chunk can be used to access array elements in groups

(may be me more efficient, e.g. using cache memories in better

way).

Here is a small example:

!$omp parallel do private(k) shared(x, n) &
!$omp schedule(static, 4) ! 4 = chunk
do k = 1, n

...
end do

1 2
k : 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
thread 0: x x x x x x x x
thread 1: x x x x x x x x
thread 2: x x x x

Here is a larger problem, where n = 5000, schedule(static),
and using four threads.

214

0 1000 2000 3000 4000 5000

0

1

2

3

iteration

th
re

ad

static

schedule(static, 100).

0 1000 2000 3000 4000 5000

0

1

2

3

iteration

th
re

ad

static 100

215

Note that if the chunk size is 5000 (in this example) only the first

thread would work, so the chunk size should be chosen relative

to the number of iterations.

• dynamic
If the amount of work varies between iterations we should use

dynamicor guided. With dynamic, threads compete for chunk-
sized assignments. Note that there is a synchronization overhead

for dynamic and guided.

!$omp parallel do private(k) shared(x, n) &
!$omp schedule(dynamic, chunk)
...

Here a run with schedule(dynamic,100)(schedule(dynamic),
gives a chunk size of one). The amount of works differs between

iterations in the following examples.

0 1000 2000 3000 4000 5000

0

1

2

3

iteration

th
re

ad

dynamic 100

• guided
There is also schedule(guided, chunk)assigning pieces of work

(≥ chunk) proportional to the number of remaining iterations
216

divided by the number of threads.

Large chunks in the beginning smaller at the end. It requires

fewer synchronisations than dynamic.

0 1000 2000 3000 4000 5000

0

1

2

3

iteration

th
re

ad

guided 100

• runtime
It is also possible to decide the scheduling at runtime, using an

environment variable, OMP_SCHEDULE, e.g.

!$omp parallel do private(k) shared(x, n) &
!$omp schedule(runtime)

...

setenv OMP_SCHEDULE "guided,100" tcsh
export OMP_SCHEDULE=dynamic bash

217

Suppose we parallelise m iterations over P processors.

No default scheduling is defined in the OpenMP-standard,

but schedule(static, m / P)is a common choice

(assuming that P divides m).

Here comes an example where this strategy works badly.

So do not always use the standard choice.

We have nested loops, where the number of iterations in the

inner loop depends on the loop index in the outer loop.

!$omp ...
do j = 1, m ! parallelise this loop
do k = j + 1, m ! NOTE: k = j + 1

call work(...) ! each call takes the same time
end do

end do

Suppose m is large and let Tser be the total run time on one

thread. If there is no overhead, the time, Tt, for thread number

t is approximately:

Tt ≈
2Tser

P

(

1− t + 1/2

P

)

, t = 0, . . . , P − 1

So thread zero has much more work to do compared to the last

thread:
T0

TP−1

≈ 2P − 1

a very poor balance. The speedup is bounded by T0:

speedup =
Tser

T0

≈ P

2− 1/P
≈ P

2

and not the optimal P .

218

Here is a test:

#include <stdio.h>
#include <omp.h>

void work(double *);

int main()
{
const int M = 1000, MAX_THREADS = 8;
double s[MAX_THREADS - 1], time;
int j, k, i_am, thr;

for (thr = 1; thr <= MAX_THREADS; thr++) {
omp_set_num_threads(thr);

time = omp_get_wtime(); // a builtin function
#pragma omp parallel private(j, k, i_am) shared(s)
{
i_am = omp_get_thread_num();

#pragma omp for schedule(runtime)
for (j = 1; j <= M; j++)
for (k = j + 1; k <= M; k++)

work(&s[i_am]);
}

printf("time = %4.2f\n", omp_get_wtime() - time);
}

for (j = 0; j < MAX_THREADS; j++)
printf("%e ", s[j]);

printf("\n");

return 0;
}

219

void work(double *s)
{
int k;

*s = 0.0;
for (k = 1; k <= 1000; k++)

*s += 1.0 / k;
}

% icc -O3 -openmp load_bal.c
% setenv OMP_SCHEDULE static
% a.out run on Ferlin (edited)
time = 3.83
time = 2.88
time = 2.13
time = 1.68
time = 1.38
time = 1.17
time = 1.02
time = 0.90

% setenv OMP_SCHEDULE "static,10"
time = 3.83
time = 1.94
time = 1.30
time = 0.99
time = 0.80
time = 0.67
time = 0.58
time = 0.51

dynamic and guided give the same times as static,10, in this

case. A chunk size of 1-20 works well, but more than 50 gives

longer execution times.

Note that P/(2− 1/P) ≈ 4.3 and 3.83/0.9 ≈ 4.26 and

3.83/0.51 ≈ 7.5. So the analysis is quite accurate in this simple

case.
220

Do not misuse dynamic. Here is a contrived example:

...

int k, i_am, iter[] = { 0, 0, 0, 0 };
double time;

omp_set_num_threads(4);
time = omp_get_wtime();

#pragma omp parallel private(k, i_am) shared(iter)
{

i_am = omp_get_thread_num();

#pragma omp for schedule(runtime)
for (k = 1; k <= 100000000; k++)
iter[i_am]++;

}
printf("time: %5.2f, iter: %d %d %d %d\n",

omp_get_wtime() - time,
iter[0], iter[1], iter[2], iter[3]);

...
ferlin > setenv OMP_SCHEDULE static
time: 0.01, iter: 25000000 25000000 25000000 25000000

ferlin > setenv OMP_SCHEDULE dynamic
time: 15.53, iter: 25611510 25229796 25207715 23950979

ferlin > setenv OMP_SCHEDULE "dynamic,10"
time: 1.32, iter: 25509310 24892310 25799640 23798740

ferlin > setenv OMP_SCHEDULE "dynamic,100"
time: 0.13, iter: 29569500 24044300 23285700 23100500

ferlin > setenv OMP_SCHEDULE guided
time: 0.00, iter = 39831740 5928451 19761833 34477976

221

The reduction clause

...
int i, n = 10000;
double x[n], y[n], s;

for (i = 0; i < n; i++) {
x[i] = 1.0; y[i] = 2.0; // Init.

}
s = 0.0;

#pragma omp parallel for private(i) shared(n, x, y)
reduction(+: s) // all on the same line
for (i = 0; i < n; i++)

s += x[i] * y[i];
...

In general: reduction(operator: variable list).
Valid operators are: +, *, -, &, |, ^, &&, ||.
A reduction is typically specified for statements of the form:

x = x op expr
x = expr op x (except for subtraction)
x binop= expr
x++
++x
x--
--x

where expr is of scalar type and does not reference x.
This is what happens in our example above:

• each thread gets its local sum-variable, s#thread say

• s#thread = 0 before the loop (the thread private variables are

initialised in different ways depending on the operation, zero

for + and -, one for *). See the standard for the other cases.

• each thread computes its sum in s#thread

• after the loop all the s#thread are added to s in a safe way

222

In Fortran:

reduction(operator or intrinsic: variable list)

Valid operators are: +, *, -, .and., .or., .eqv., .neqv.
and intrinsics: max, min, iand, ior, ieor(the iand is bit-

wise and, etc.)

The operator/intrinsic is used in one of the following ways:

• x = x operator expression

• x = expression operator x(except for subtraction)

• x = intrinsic(x, expression)

• x = intrinsic(expression, x)

where expressiondoes not involve x.

Note that x may be an array in Fortran (vector reduction) but

not so in C. Here is a contrived example which computes a

matrix-vector product:

...
double precision, dimension(n, n) :: A
double precision, dimension(n) :: s, x

A = ... ! initialize A and b
b = ...
s = 0.0d0

!$omp parallel do shared(A, x) reduction(+: s) &
!$omp private(i) default(none)
do i = 1, n

s = s + A(:, i) * x(i) ! s = A * x
end do

...

223

Here an example where we use an intrinsic function in Fortran:

program openmp
implicit none
integer :: k
integer, parameter :: n = 20
double precision, dimension(n) :: vec
double precision :: min_vec

do k = 1, n
vec(k) = 1.0d0 / k

end do

min_vec = vec(1) ! important
!$omp parallel do reduction(min: min_vec) &
!$omp shared(vec) private(k)
do k = 1, n

min_vec = min(vec(k), min_vec)
end do

print*, ’min_vec = ’, min_vec

end

min_vec = vec(1) is important, otherwise we will get an un-

defined value. Setting min_vec = -1 gives a minimum of -1.

224

We can implement our summation example without using

reduction-variables. The problem is to update the shared sum

in a safe way. This can be done using critical sections.

...
double private_s, shared_s;

...

shared_s = 0.0;

// a parallel region
#pragma omp parallel private(private_s)

shared(x, y, shared_s, n)
{

private_s = 0.0; // Done by each thread

#pragma omp for private(i) // A parallel loop
for (i = 0; i < n; i++)
private_s += x[i] * y[i];

// Here we specify a critical section.
// Only one thread at a time may pass through.

#pragma omp critical
shared_s += private_s;

}
...

225

Vector reduction in C

Here are two alternatives in C (and Fortran if the compiler does

not support vector reduction).

We introduce a private summation vector, partial_sum, one

for each thread.

...
for(k = 0; k < n; k++) // done by the master

shared_sum[k] = 0.0;

#pragma omp parallel private(partial_sum, k) \
shared(shared_sum) ...

{
// Each thread updates its own partial_sum.
// We assume that this is the time consuming part.

for(...
partial_sum[k] = ..

...

// Update the shared sum in a safe way.
// Not too bad with a critical section here.

#pragma omp critical
{
for(k = 0; k < n; k++)
shared_sum[k] += partial_sum[k];

}
} // end parallel

...

226

We can avoid the critical section if we introduce a shared matrix

where each row (or column) corresponds to the partial_sum
from the previous example.

...
for(k = 0; k < n; k++) // done by the master

shared_sum[k] = 0.0;

#pragma omp parallel private(i_am) \
shared(S, shared_sum, n_threads)

{
i_am = omp_get_thread_num();

for(k = 0; k < n; k++) // done by all
S[i_am][k] = 0.0;

// Each thread updates its own partial_sum.
// We assume that this is the time consuming part.
for(...
S[i_am][k] = ..

// Must wait for all partial sums to be ready
#pragma omp barrier

// Add the partial sums together.
// The final sum could be stored in S of course.
#pragma omp for
for(k = 0; k < n; k++)
for(j = 0; j < n_threads; j++)
shared_sum[k] += S[j][k];

} // end parallel
...

227

Nested loops, matrix-vector multiply

a = 0.0
do j = 1, n

do i = 1, m
a(i) = a(i) + C(i, j) * b(j)

end do
end do

Can be parallelised with respect to i but not with respect to j
(since different threads will write to the same a(i)).

May be inefficient since parallel execution is initiated n times

(procedure calls). OK if n small and m large.

Switch loops.

a = 0.0
do i = 1, m

do j = 1, n
a(i) = a(i) + C(i, j) * b(j)

end do
end do

The do i can be parallelised. Bad cache locality for C.

Test on Ferlin using ifort -O3 The loops were run ten

times. Times in seconds for one to four threads. dgemv from

MKL takes 0.23s, 0.21s, 0.34s for the three cases and the builtin

matmul takes 1.0s, 0.74s, 1.1s. Use BLAS!

m n first loop second loop

1 2 3 4 1 2 3 4

4000 4000 0.41 0.37 0.36 0.36 2.1 1.2 0.98 0.83

40000 400 0.39 0.32 0.27 0.23 1.5 0.86 0.72 0.58

400 40000 0.49 1.2 1.5 1.7 1.9 2.0 2.3 2.3

• Cache locality is important.

• If second loop is necessary, OpenMP gives speedup.

• Large n gives slowdown in first loop.
228

A few other OpenMP directives, C

#pragma omp parallel shared(a, n)

... code run in parallel

#pragma omp single // only ONE thread will
{ // execute the code

... code
}

#pragma omp barrier // wait for all the other threads
... code

// don’t wait (to wait is default)
#pragma omp for nowait

for (...

for (... // all iterations run by all threads

#pragma omp sections
{
#pragma omp section

... code executed by one thread
#pragma omp section

... code executed by another thread
} // end sections, implicit barrier

ifdef _OPENMP
C statements ... Included if we use OpenMP,
but not otherwise (conditional compilation)

endif

} // end of the parallel section

229

A few other OpenMP directives, Fortran

!$omp parallel shared(a, n) ! a parallel region

... code run in parallel

!$omp single ! only ONE thread will execute the code
... code

!$omp end single

!$omp barrier ! wait for all the other threads
... code

!$omp do private(k)
do ...
end do

!$omp end do nowait ! don’t wait (to wait is default)

do ... ! all iterations run by all threads
end do

!$omp sections
!$omp section

... code executed by one thread
!$omp section

... code executed by another thread
!$omp end sections ! implicit barrier

!$ Fortran statements ... Included if we use OpenMP,
!$ but not otherwise (conditional compilation)

!$omp end parallel ! end of the parallel section

230

Misuse of critical, atomic

Do not use critical sections and similar constructions too much.

This test compares three ways to compute a sum.

We try reduction, critical and atomic. n = 107.

...
printf("n_thr time, reduction\n");
for(n_thr = 1; n_thr <= 4; n_thr++) {

omp_set_num_threads(n_thr);
s = 0.0;
t = omp_get_wtime();

#pragma omp parallel for reduction(+: s) private(i)
for (i = 1; i <= n; i++)
s += sqrt(i);

printf("%3d %10.3f\n", n_thr, omp_get_wtime() - t);
}
printf("s = %e\n", s);

Change the inner loop to

#pragma omp parallel for shared(s) private(i)
for (i = 1; i <= n; i++) {
#pragma omp critical
s += sqrt(i);

}

and then to

#pragma omp parallel for shared(s) private(i)
for (i = 1; i <= n; i++) {
#pragma omp atomic
s += sqrt(i);

}

atomic updates a single variable atomically.

231

Here are the times (on Ferlin):

n_thr time, reduction
1 0.036
2 0.020
3 0.014
4 0.010

n_thr time, critical
1 0.666
2 5.565
3 5.558
4 5.296

n_thr time, atomic
1 0.188
2 0.537
3 0.842
4 1.141

We get a slowdown instead of a speedup, when using critical
or atomic.

232

workshare

Some, but not all, compilers support parallelisation of Fortran90

array operations, e.g.

... code
! a, b and c are arrays

!$omp parallel shared(a, b, c)
!$omp workshare

a = 2.0 * cos(b) + 3.0 * sin(c)
!$omp end workshare
!$omp end parallel
... code

or shorter

... code
!$omp parallel workshare shared(a, b, c)

a = 2.0 * cos(b) + 3.0 * sin(c)
!$omp end parallel workshare
... code

233

Subroutines and OpenMP

Here comes a first example of where we call a subroutine from

a parallel region. If we have time leftover there will be more

at the end of the lecture. Formal arguments of called routines,

that are passed by reference, inherit the data-sharing attributes

of the associated actual parameters. Those that are passed by

value become private. So:

void work(double [], double [], double, double,
double *, double *);

...
double pr_vec[10], sh_vec[10], pr_val, sh_val,

pr_ref, sh_ref;
...

#pragma omp parallel private(pr_vec, pr_val, pr_ref)
shared(sh_vec, sh_val, sh_ref)

{
work(pr_vec, sh_vec, pr_val, sh_val, &pr_ref, &sh_ref);

}
...

void work(double pr_vec[], double sh_vec[],
double pr_val, double sh_val,
double *pr_ref, double *sh_ref)

{
// pr_vec becomes private
// sh_vec becomes shared
// pr_val becomes private
// sh_val becomes PRIVATE, each thread has its own
// pr_ref becomes private
// sh_ref becomes shared

int k; // becomes private
...
}

234

In Fortran alla variables are passed by reference, so they inherit

the data-sharing attributes of the associated actual parameters.

Here comes a simple example in C:

#include <stdio.h>
#include <omp.h>
void work(int[], int);

int main()
{
int a[] = { 99, 99, 99, 99 }, i_am;

omp_set_num_threads(4);

#pragma omp parallel private(i_am) shared(a)
{

i_am = omp_get_thread_num();
work(a, i_am);

#pragma omp single
printf("a = %d, %d, %d, %d\n",

a[0], a[1], a[2], a[3]);
}
return 0;

}

// a[] becomes shared, i_am becomes private

void work(int a[], int i_am)
{
int k; // becomes private (not used in this example)

printf("work %d\n", i_am);
a[i_am] = i_am;

}

235

% a.out
work 1
work 3
a = 99, 1, 99, 3
work 2
work 0

Print after the parallel region or add a barrier:

#pragma omp barrier
#pragma omp single

printf("a = %d, %d, %d, %d\n",
a[0], a[1], a[2], a[3]);

% a.out
work 0
work 1
work 3
work 2
a = 0, 1, 2, 3

OpenMP makes no guarantee that input or output to the same

file is synchronous when executed in parallel. You may need to

link with a special thread safe I/O-library.

236

Case study: solving a large and stiff IVP

y′(t) = f(t, y(t)), y(0) = y0, y, y0 ∈ ℜn, f : ℜ× ℜn → ℜn

where f(t, y) is expensive to evaluate.

LSODE (Livermore Solver for ODE, Alan Hindmarsh) from netlib.

BDF routines; Backward Differentiation Formulas.

Implicit method: tk present time, y(k) approximation of y(tk).

Backward Euler (simplest BDF-method). Find y(k+1) such that:

y(k+1) = y(k) + hf(tk+1, y(k+1))

LSODE is adaptive (can change both h and the order).

Use Newton’s method to solve for z ≡ y(k+1):

z − y(k) − hf(tk+1, z) = 0

One step of Newton’s method reads:

z(i+1) = z(i) −
[

I − h
∂f

∂y
(tk+1, z(i))

]−1

(z(i) − y(k) − hf(tk+1, z(i)))

The Jacobian ∂f
∂y

is approximated by finite differences one

column at a time. Each Jacobian requires n evaluations of f .

∂f

∂y
ej ≈

[

f(tk+1, z(i) + ejδj)− f(tk+1, z(i))
]

/δj

ej is column j in the identity matrix I.

237

Parallelise the computation of the Jacobian, by computing columns

in parallel. Embarrassingly parallel.

Major costs in LSODE:

1. Computing the Jacobian, J, (provided f takes time).

2. LU-factorization of the Jacobian (once for each time step).

3. Solving the linear systems, given L and U.

What speedup can we expect?

Disregarding communication, the wall clock time for p threads,

looks something like (if we compute J in parallel):

wct(p) = time(LU) + time(solve) +
time(computing J)

p

If the parallel part, “computing J”, dominates we expect good

speedup at least for small p. Speedup may be close to linear,

wct(p) = wct(1)/p.

For large p the serial (non-parallel) part will start to dominate.

How should we speed up the serial part?

1. Switch from Linpack, used in LSODE, to Lapack.

2. Try to use a parallel library like ACML.

238

After having searched LSODE (Fortran 66):

c if miter = 2, make n calls to f to approximate j.
...

j1 = 2
do 230 j = 1,n

yj = y(j)
r = dmax1(srur*dabs(yj),r0/ewt(j))
y(j) = y(j) + r
fac = -hl0/r
call f (neq, tn, y, ftem)
do 220 i = 1,n

220 wm(i+j1) = (ftem(i) - savf(i))*fac
y(j) = yj
j1 = j1 + n

230 continue
...
c add identity matrix.
...
c do lu decomposition on p.

call dgefa (wm(3), n, n, iwm(21), ier)
...
100 call dgesl (wm(3), n, n, iwm(21), x, 0)

We see that

r = δj

fac = −h/δj

tn = tk+1

ftem = f(tk+1, z(i) + ejδj)

wm(2...) is the approximation to the Jacobian.

From reading the code: neq is an array but neq(1) = n.

239

The parallel version

• j, i, yj, r, fac, ftemare private

ftem is the output (y′) from the subroutine

• j1 = 2 offset in the Jacobian; use wm(i+2+(j-1)*n)
no index conflicts

• srur, r0, ewt, hl0, wm, savf, n, tnare shared

• y is a problem since it is modified. shared does not work.

private(y) will not work either; we get an uninitialised

copy. firstprivate is the proper choice, it makes a

private and initialised copy.

c$omp parallel do private(j, yj, r, fac, ftem)
c$omp+ shared(f, srur, r0, ewt, hl0, wm, savf,n,neq,tn)
c$omp+ firstprivate(y)

do j = 1,n
yj = y(j)
r = dmax1(srur*dabs(yj),r0/ewt(j))
y(j) = y(j) + r
fac = -hl0/r
call f (neq, tn, y, ftem)
do i = 1,n

wm(i+2+(j-1)*n) = (ftem(i) - savf(i))*fac
end do
y(j) = yj

end do

Did not converge! After reading of the code:

dimension neq(1), y(1), yh(nyh,1), ewt(1), ftem(1)
change to
dimension neq(1), y(n), yh(nyh,1), ewt(1), ftem(n)

240

More on OpenMP and subprograms

So far we have essentially executed a main program containing

OpenMP-directives. Suppose now that we call a function,

containing OpenMP-directives, from a parallel part of

the program, so something like:

int main()
{
...
#pragma omp parallel ... ---
{ |

#pragma omp for ... | lexical extent of
... |
work(...); | the parallel region
... |

} ---
...

}

void work(...)
{
...
#pragma omp for ---
for (...) { | dynamic extent of the

... | parallel region
} ---

...
}

The omp for in work is an orphaned directive (it appears in

the dynamic extent of the parallel region but not in the lexical

extent). This for binds to the dynamically enclosing parallel

directive and so the iterations in the for will be done in parallel

(they will be divided between threads).

241

Suppose now that work contains the following three loops and

that we have three threads:

...
int k, i_am;
char f[] = "%1d:%5d %5d %5d\n"; // a format

#pragma omp master
printf(" i_am omp() k\n");

i_am = omp_get_thread_num();

#pragma omp for private(k)
for (k = 1; k <= 6; k++) // LOOP 1

printf(f, 1, i_am, omp_get_thread_num(), k);

for (k = 1; k <= 6; k++) // LOOP 2
printf(f, 2, i_am, omp_get_thread_num(), k);

#pragma omp parallel for private(k)
for (k = 1; k <= 6; k++) // LOOP 3

printf(f, 3, i_am, omp_get_thread_num(), k);
...

In LOOP 1 thread 0 will do the first two iterations, thread 1

performs the following two and thread 2 takes the last two.

In LOOP 2 all threads will do the full six iterations.

In the third case we have:

A PARALLELdirective dynamically inside another PARALLEL
directive logically establishes a new team, which is

composed of only the current thread, unless nested

parallelism is established.

We say that the loops is serialised. All threads perform six

iterations each.

242

If we want the iterations to be shared between new threads we

can set an environment variable, setenv OMP_NESTED TRUE, or

omp_set_nested(1).

If we enable nested parallelism we get three teams consisting of

three threads each, in this example.

This is what the (edited) printout from the different loops may

look like. omp() is the value returned by omp_get_thread_num().
The output from the loops may be interlaced though.

i_am omp() k i_am omp() k
1: 1 1 3 3: 1 0 1
1: 1 1 4 3: 1 0 2
1: 2 2 5 3: 1 2 5
1: 2 2 6 3: 1 2 6
1: 0 0 1 3: 1 1 3
1: 0 0 2 3: 1 1 4

3: 2 0 1
2: 0 0 1 3: 2 0 2
2: 1 1 1 3: 2 1 3
2: 1 1 2 3: 2 1 4
2: 2 2 1 3: 2 2 5
2: 0 0 2 3: 2 2 6
2: 0 0 3 3: 0 0 1
2: 1 1 3 3: 0 0 2
2: 1 1 4 3: 0 1 3
2: 1 1 5 3: 0 1 4
2: 1 1 6 3: 0 2 5
2: 2 2 2 3: 0 2 6
2: 2 2 3
2: 2 2 4
2: 2 2 5
2: 2 2 6
2: 0 0 4
2: 0 0 5
2: 0 0 6

243

Case study: sparse matrix multiplication

Task: given a matrix A which is large, sparse and symmetric we

want to:

• compute a few of its smallest eigenvalues OR

• solve the linear system Ax = b

n is the dimension of A and nz is the number of nonzeros.

Some background, which you may read after the lecture:

We will study iterative algorithms based on forming the Krylov

subspace: {v, Av, A2v, . . . , Aj−1v}. v is a random-vector. So,

Paige-style Lanczos for the eigenvalue problem and the

conjugate-gradient method for the linear system, for example.

When solving Ax = b we probably have a preconditioner as

well, but let us skip that part.

The vectors in the Krylov subspace tend to become almost

linearly dependent so we compute an orthonormal basis of the

subspace using Gram-Schmidt. Store the basis-vectors as columns

in the n× j-matrix Vj.

Project the problem onto the subspace, forming Tj = V T
j AVj

(tridiagonal) and solve the appropriate smaller problem, then

transform back.

Tj and the basis-vectors can be formed as we iterate on j. In

exact arithmetic it is sufficient to store the three latest v-vectors

in each iteration.

244

p is the maximum number of iterations.

A Lanczos-algorithm may look something like:

operations

v = randn(n, 1) O(n)

v = v/||v||2 O(n)

for j = 1 to p do

t = Av O(nz)

if j > 1 then t = t− βj−1w endif O(n)

αj = tTv O(n)

t = t− αjv O(n)

βj = ||t||2 O(n)

w = v O(n)

v = t/βj O(n)

Solve the projected problem and O(j)

and check for convergence

end for

The diagonal of Tj is α1, . . . , αj and the sub- and super-diagonals

contain β1, . . . , βj−1.

How can we parallelise this algorithm?

• The j-iterations and the statements in each iteration must

be done in order. Not possible to parallelise.

• It is easy to parallelise each of the simple vector operations

(the ones that costO(n)). May not give any speedup though.

• The expensive operation in an iteration is usually Av.

• Solving the projected problem is rather fast and not so easy

to parallelise (let us forget it).

We will not look at graph-based pre-ordering algorithms.

A block diagonal matrix would be convenient, for example.

245

Vectors must not be too short if we are going to succeed.

The figures show how boye (SGI) computes daxpy for different

n and number of threads.

10
2

10
3

10
4

10
5

10
6

5e−9

1e−8

5e−8

1

2

3

4
5

6
7

8

9
10

n

T
im

e
/ f

lo
p

Time / flop. Fixed # of threads for each curve.

2 3 4 5 6 7
2

4

6

8

10

2

4

6

8

10

log
10

(n)

Speedup as a function of n and # threads

threads

sp
ee

du
p

246

The tricky part, parallelising t = Av

A is large, sparse and symmetric so we need a special data struc-

ture which takes the sparsity and the symmetry into account.

First try: store all triples (r, c, ar,c) where ar,c 6= 0 and r ≤ c.

I.e. we are storing the nonzeros in the upper triangle of the

matrix.

The triples can be stored in three arrays, rows, cols and A or as

an array of triples. Let us use the three arrays and let us change

the meaning of nz to mean the number of stored nonzeros. The

first coding attempt may look like:

do k = 1, nz
if (rows(k) == cols(k)) then
... ! diagonal element

else
... ! off-diagonal element

end if
end do

If-statements in loops may degrade performance, so we must

think some more.

If A has a dense diagonal we can store it in a separate array,

diag_A say. We use the triples for all ar,c 6= 0 and r < c (i.e.

elements in the strictly upper triangle).

If the diagonal is sparse we can use pairs (r, ar,r) where ar,r 6= 0.

Another way is to use the triples format but store the

diagonal first, or to store ak,k/2 instead of ak,k.

247

Our second try may look like this, where now nz is the number

stored nonzeros in the strictly upper triangle of A.

! compute t = diag(A) * v
...

do k = 1, nz ! take care of the off-diagonals
r = rows(k)
c = cols(k)
t(r) = t(r) + A(k) * v(c) ! upper triangle
t(c) = t(c) + A(k) * v(r) ! lower triangle

end do










...

tr
...

tc
...










=










.

. . . ar,r . . . ar,c . . .
...

. . . ac,r . . . ac,c . . .
...



















...

vr
...

vc
...










Let us now concentrate on the loops for the off-diagonals and

make it parallel using OpenMP.

Note that we access the elements in A once.

248

! Take care of diag(A)
...
!$omp do default(none), private(k, r, c), &
!$omp shared(rows, cols, A, nz, v, t)
do k = 1, nz ! take care of the off-diagonals

r = rows(k)
c = cols(k)
t(r) = t(r) + A(k) * v(c) ! upper triangle
t(c) = t(c) + A(k) * v(r) ! lower triangle

end do

This will probably give us the wrong answer (if we use more

than one thread) since two threads can try to update the same

t-element.

Example: The first row in A it will affect t1, t3 and t5, and the

second row in A will affect t2, t4 and t5. So there is a potential

conflict when updating t5 if the two rows are handled by

different threads.










t1

t2

t3

t4

t5










=










0 0 a1,3 0 a1,5

0 0 0 a2,4 a2,5

a1,3 0 0 0 0

0 a2,4 0 0 0

a1,5 a2,5 0 0 0



















v1

v2

v3

v4

v5










If the first row is full it will affect all the other rows. A block

diagonal matrix would be nice.

As in the previous example it is not possible to use critical sec-

tions. Vector reduction is an option and we can do our own as

before. Here is a version using a public matrix.

249

X has n rows and as many columns as there are threads, num_thr
below. Each thread stores its sum in X(:, thr), where thr is

the index of a particular thread.

Here is the code:

!$omp parallel shared(X, ...)
...
i_am = omp_get_thread_num() + 1
...
do i = 1, n ! done by all threads
X(i, i_am) = 0.0 ! one column each

end do

!$omp do
do i = 1, nz

r = rows(i)
c = cols(i)
X(r, i_am) = X(r, i_am) + A(i)* v(c)
X(c, i_am) = X(c, i_am) + A(i)* v(r)

end do
!$omp end do

!$omp do
do i = 1, n

do thr = 1, num_thr
t(i) = t(i) + X(i, thr)

end do
end do

...
!$omp end parallel

The addition loop is now parallel, but we have bad cache locality

when accessing X (this can be fixed). None of the parallel loops

should end with nowait.
One can get a reasonable speedup (depends on problem

and system).

250

Compressed storage

The triples-format is not the most compact possible. A common

format is the following compressed form. We store the diagonal

separately as before and the off-diagonals are stored in order,

one row after the other. We store cols as before, but rows now

points into cols and A where each new row begins. Here is an

example (only the strictly upper triangle is shown):









0 a1,2 a1,3 0 a1,5

0 0 a2,3 a2,4 0

0 0 0 0 0

0 0 0 0 a4,5

0 0 0 0 0










is stored as A = [a1,2 a1,3 a1,5 | a2,3 a2,4 | 0 | a4,5],

cols = [2 3 5 | 3 4 | • | 5], (• fairly arbitrary, n say)

rows = [1 4 6 7 8]. (8 is one step after the last)

Note that rows now only contains n elements.

The multiplication can be coded like this (no OpenMP yet):

... take care of diagonal, t = diag(A)* v

do r = 1, n - 1 ! take care of the off-diagonals
do k = rows(r), rows(r + 1) - 1
c = cols(k)
t(r) = t(r) + A(k) * v(c) ! upper triangle
t(c) = t(c) + A(k) * v(r) ! lower triangle

end do
end do

251

We can parallelise this loop (with respect to do r) in the same

way as we handled the previous one (using the extra array X).

There is one additional problem though.

Suppose that the number of nonzeros per row is fairly constant

and that the nonzeros in a row is evenly distributed over the

columns.

If we use default static scheduling the iterations are divided

among the threads in contiguous pieces, and one piece is

assigned to each thread. This will lead to a load imbalance, since

the upper triangle becomes narrower for increasing r.

To make this effect very clear I am using a full matrix (stored

using a sparse format).

A hundred matrix-vector multiplies with a full matrix of order

2000 takes (wall-clock-times):

#threads → 1 2 3 4

triple storage 19.7 10.1 7.1 6.9

compressed, static 20.1 16.6 12.6 10.1

compressed, static, 10 20.1 11.2 8.8 7.5

The time when using no OpenMP is essentially equal to the

time for one thread.

252

