Lecture Notes
 on
 High Performance Computing

Thomas Ericsson
Mathematics
Chalmers/GU
2011

High Performance Computing

Thomas Ericsson, computational mathematics, Chalmers
office: L2075
phone: 7721091
e-mail: thomas@chalmers.se

My homepage:
http://www.math.chalmers.se/~thomas

The course komepage:
http://www.math.chalmers.se/Math/Grundutb/CTH/
tma881/1011
Assignments, copies of handouts (lecture notes etc.), schedule can be found on the www-address.

We have two lectures and two labs per week. No lab today.

Prerequisites:

- a programming course (any language will do)
- the basic numerical analysis course
- an interest in computers and computing; experience of computers and programming

If you do not have a Chalmers/GU-account, you need to contact the helpdesk to get a personal account.

Why do we need HPC?

- Larger and more complex mathematical models require greater computer performance. Scientific computing is replacing physical models, for example.
- When computer performance increases new problems can be attacked.

To solve problems in a reasonable time using available resources in a good way we need competence in the following areas:

1. algorithms
2. hardware; limitations and possibilities
3. code optimization
4. parallelization and decomposition of problems and algorithms
5. software tools

This course deals primarily with points $2-5$. When it comes to algorithms we will mostly study the basic building blocks.

The next pages give some, old and new, examples of demanding problems.

For each problem there is a list of typical HPC-questions, some of which you should be able to answer after having passed this course.

A real-time application

Simulation of surgery; deformation of organs; thesis work (examensarbete) Prosolvia. Instead of using a standard deformation more realistic deformations were required. Organs have different structure, lung, liver etc.

Requires convincing computer graphics in real time; no flicker of the screen; refresh rate $\geq 72 \mathrm{~Hz}$.

Using a shell model implies solving a sparse linear system, $A x=b$, in 0.01 s (on a 180 MHz SGI O2 workstation, the typical customer platform).

- What do we expect? Is there any chance at all?
- Is there a better formulation of the problem?
- What linear solver is fastest? Sparse, band, iterative, ...?
- Datastructures, e.g.
- General sparse: $\left\{j, k, a_{j, k}\right\}, a_{j, k} \neq 0, j \geq k$.
- Dense banded.
- Memory accesses versus computation.
- Should we write the program or are there existing ones? Can we us the high performance library made by SGI?
- If we write the code, what language should we use, and how should we code in it for maximum performance?
- Can we find out if we get the most out of the CPU? How? Are we using 20% of top speed or 90% ?
- What limits the performance, the CPU (the floating point unit) or the memory?

Integrals and probability

Graduate student in mathematical statistics. What remained of the thesis work was to make large tables of integrals:

$$
\int_{0}^{\infty} f(x) d x, \text { where } f(x) \rightarrow \infty \text { when } x \rightarrow 0+
$$

The integrand was complicated and was defined by a Matlabprogram. No chance of finding a primitive function. Using the Matlab routine quad (plus a substitution), to approximate the integral numerically, the computer time was estimated to several CPU-years. Each integral took more than an hour to compute.

- Is this reasonable, is the problem really this hard?
- Are Matlab and quad good tools for such problems?
- How can one handle singularities and infinite intervals?

Solution: Switching to Fortran and Quadpack (a professional package) the time for one integral came down to 0.02 s (with the same accuracy in the result).

- Matlab may be quite slow.
- quad is a simple algorithm; there are better methods available now, e.g. quadl.

Mesh generation for PDEs in 3D

require huge amounts of storage and computer time. Airflow around an aircraft; 3 space dimensions and time. CFD (Computational Fluid Dynamics).

Discretize (divide into small volume elements) the air in the box and outside the aircraft. Mesh generation (using m3d, an ITM-project, Swedish Institute of Applied Mathematics) on one RS6000 processor:
wed may 29 12:54:44 metdst 1996 So this is old stuff
thu may 30 07:05:53 metdst 1996

183463307 may $213: 46$ s2000r.mu
tetrahedrons in structured mesh: 4520413
tetrahedrons in unstructured mesh: 4811373

- Choice of programming language and data structures.
- Handling files and disk.

Now we must solve the PDE given the mesh...
6

Three weeks runtime

Consultant work, for Ericsson, by a colleague of mine.

Find the shape of a TV-satellite antenna such that the "image" on the earth has a given form (some TV-programs must no be shown in certain countries).

Algorithm: shape optimization + ray tracing.

Three weeks runtime (for one antenna) on a fast single-CPU PC. One of the weeks for evaluating trigonometric functions.

You do not know much about the code (a common situation).
Can you make it faster? How? Where should you optimize?

- Choice of algorithm.
- Profiling.
- Faster trigonometric functions. Vector forms?
- Parallel version? How? Speedup? (OpenMP)

A Problem from Medicine

Inject a radionuclide that attacks a tumour.
How does the radioactivity affect the surrounding tissue?

To be realistic the simulation should contain some $7 \cdot 10^{7}$ cells.
Matlab-program computing a huge number of integrals (absorbed dose).
The original program would take some 26000 years runtime.
After switching to Fortran90, changing the algorithm, by precomputing many quantities (the most important part) and cleaning up the code, the code solved the problem in 9 hours on a fast PC (a speedup by a factor of $2.6 \cdot 10^{7}$).

Contents of the Course

There are several short assignments which illustrate typical problems and possibilities.

- Matlab (get started exercises, not so technical).
- Uniprocessor optimization.
- Low level parallel threads programming.
- MPI, parallel programming using Message Passing.
- OpenMP, more automatic threads programming.

Many small and short programs, matrix- and vector computations (often the basic operations in applications). Simple algorithms.
E.g. test how indirect addressing (using pointers) affects performance:

```
do k = 1, n
    j = p(k) ! p is a pointer array
    y(j) = y(j) + a * x(j)
end do
```

- You will work with C, Fortran and some Matlab and several software tools and packages.
- Java is not so interesting for HPC.

At most two students per group. Each group should hand in written reports on paper (Swedish is OK). Not e-mail.

There are deadlines, see www.

Literature

You can survive on the lecture notes, web-pages and man-pages.
Below is a list of reference books, some are available as E-books (Books24x7) through the Chalmers library homepage.

A web-version of Designing and Building Parallel Programs, by Ian Foster, 1995, can be found at:
http://www-unix.mcs.anl.gov/dbpp

A few C- and Fortran books (there are many)

- B. W. Kernighan, D. M. Ritchie, The C Programming Language (2nd ed.), Prentice Hall, 1988. Get the ANSI C version.
- P. van der Linden, Expert C Programming : Deep C Secrets, Prentice Hall, 1994.
- M. Metcalf, J. Reid, M. Cohen, Fortran 95/2003 Explained, 3rd ed. (2nd ed., 1999, is OK as well, E-book).
- Suely Oliveira, David E. Stewart, Writing Scientific Software: A Guide for Good Style, Cambridge UP, 2006. E-book.

Code Optimization

- Randy Allen, Ken Kennedy, Optimizing Compilers for Modern Architectures: A Dependence-based Approach, Morgan Kaufmann, 2001.
- Steve Behling, Ron Bell, Peter Farrell, Holger Holthoff, Frank O'Connell, Will Weir, The POWER4 Processor Introduction and Tuning Guide, 2001,
IBM Redbook (www. redbooks.ibm. com free).
- Pascal Getreuer, Writing Fast Matlab Code (PDF), 2009. http://www.math.ucla.edu/~getreuer
- Kevin Smith, Richard Gerber, Aart J. C. Bik, The Software Optimization Cookbook, High Performance Recipes for IA 32 Platforms, Intel Press, 2005. E-book.

Computers

- John L. Hennessy, David A. Patterson, Andrea C. ArpaciDusseau, Computer Architecture: A Quantitative Approach (with CDROM), Morgan Kaufmann, 2006. E-book.
- W. R. Stevens, Advanced Programming in the UNIX Environment, Addison Wesley, 1992.
- A. Oram, S. Talbott, Managing Projects with make, 2nd ed., O'Reilly, 1991.
- R. Mecklenburg, Managing Projects with GNU Make, 3rd ed, O'Reilly, 2004.
- G. Anderson, P. Anderson, Unix C Shell Field Guide, Prentice Hall, 1986.

Parallel Programming

- Yukiya Aoyama, Jun Nakano, RS/6000 SP: Practical MPI Programming, IBM Redbook (www. redbooks.ibm. com free).
- D. R. Butenhof, Programming With Posix Threads, Addison Wesley, 1997.
- Rohit Chandra, Dave Kohr, Ramesh Menon, Leo Dagum, Dror Maydan, Jeff McDonald, Parallel Programming in OpenMP, Morgan Kaufmann, 2001. E-book.
- Barbara Chapman, Gabriele Jost, Ruud van der Pas, David J. Kuck, Using OpenMP: Portable Shared Memory Parallel Programming (Scientific and Engineering Computation), MIT Press, 2007. E-book.
- William Gropp, Ewing Lusk, and Anthony Skjellum, Using MPI, 2nd Edition, MIT Press.
- Lucio Grandinetti (ed), Grid Computing: The New Frontier of High Performance Computing, Elsevier, 2005. E-book.
- David B. Kirk, Wen-mei W. Hwu, Programming Massively Parallel Processors: A Hands-On Approach, Morgan Kaufmann, 2010. E-book.

13

- Timothy G. Mattson, Beverly A. Sanders, and Berna L. Massingill, Patterns for Parallel Programming, Addison Wesley Professional, 2004.
- Peter Pacheco, Parallel Programming with Mpi, Morgan Kaufmann, 1997. (Not MPI-2)
- Wesley Petersen, Peter Arbenz, Introduction to Parallel Computing A practical guide with examples in C, 2004, Oxford UP (E-book)
- Michael J. Quinn, Parallel Programming in C with MPI and OpenMP, McGraw-Hill Education, 2003.
- Laurence T. Yang and Minyi Guo (eds), High Performance Computing: Paradigm and Infrastructure, John Wiley, 2006. E-book.

Numerical methods

- D. P. Bertsekas, J. N. Tsitsiklis, Parallel and distributed computation, numerical methods, Prentice-Hall, 1989
- P. Bjorstad, Domain Decomposition Methods in Sciences and Engineering, John Wiley \& Sons, 1997.
- J. J. Dongarra, I. S. Duff, D. C. Sorensen, H. A. van der Vorst, Numerical Linear Algebra on High-performance Computers, SIAM, 1998.
- Robert A. van de Geijn and Enrique S. Quintana-Ortí, The Science of Programming Matrix Computations, Free download http : //www.lulu. com/content/191178.8About FLAMEproject (Formal Linear Algebra Methods Environment).
- V. Eijkhout, Introduction to High Performance Scientific Computing, 2010. http://www.lulu.com/product/paperback/introduction-to-high-performance-scientific-computing/1460564.9 It says "Downloads are free, and the printed copy is very affordable".

Operating Systems

Most HPC-systems are Linux-based. Here is a list from
www.top500.orglisting the operating systems used on the 500 fastest systems in the world.

OS family	Count	Share \%
Linux	459	91.8%
Windows	5	1.0%
Unix	19	3.8%
BSD Based	1	0.2%
Mixed	16	3.2%

Matlab

Matlab is too slow for demanding applications:

- Statements may be interpreted (not compiled, although there is a Matlab compiler). In Matlab 6.5 (and later) there is a JIT-accelerator (JIT $=$ Just In Time).

You can switch off/on JIT by feature accel off

feature accel on Try it!

- The programmer has poor control over memory.
- It is easy to misuse some language constructs, e.g. dynamic memory allocation.
- Matlab is written in C, Java and Fortran.
- Matlab is not always predictable when it comes to performance.
- The first assignment contains more examples and a case study. You can start working with the Matlab assignment nOW.

Fortran

The next few pages contain the rudiments of Fortran90 and a glance at Fortran77. (In 2011 I wrote a C-tutorial, see under the Diary, so I will not lecture much C.) It is sufficient for the assignments, but you need more for real programming.

I have not tried to show all the different ways a program can be written. Both C and Fortran have several forms of some constructs. Professional code may have many extra details as well.

I have not shown any $\mathrm{C}++$ code (but my example is available in $\mathrm{C}++$-form on the web). $\mathrm{C}++$ is too large and complicated and my labs are not OO. But since $C++$ means $C=C+1$, my C-program is also a $\mathrm{C}++$-program.

Some people use the C-part of C++ together with some convenient C++-constructs (e.g. //-comments, reference variables, simplified I/O).

Fortran90 is much nicer than Fortran77, almost a new language. Fortran77 is quite primitive. Fortran77 is still used for HPC.

Millions of lines are available in Fortran77 (some of them will be used in one lab) so it is necessary to understand the basics.

The example code contains one main-program one function and a procedure (void function). The function computes the inner product of two vectors and the procedure sums the elements in an array and returns the sum in a parameter.

```
function ddot(x, y, n) result(s)
!
You give the function a value by assigning
something to the result variable, s (in this case).
!
    implicit none
    integer :: n
    double precision, dimension(n) :: x, y
    double precision :: s ! The type of the function
    integer :: k
    s = 0.0
    do k}=1,
        s = s + x(k) * y(k)
    end do
```

end function ddot

```
subroutine sum_array(a, s, n)
    implicit none
    integer :: n
    double precision :: s
    double precision, dimension(n) :: a
    integer :: k
    s = 0.0
    do k = 1, n
        s = s + a(k)
    end do
```

end subroutine sum_array

```
program main
!
! Comments: everything after !
! Case or blanks (between keywords) are not significant
! (unless they are in strings).
!
! Fortran has an implicit type rule but
! implicit none forces you to declare everything.
!
    implicit none ! Highly recommended!
    integer :: k, n, in
    double precision :: s
    double precision :: ddot ! a function
! Arrays start at one by default.
    double precision, dimension(100) :: a, b
    n = 100
    print*, "Type a value for in:"
    read*, in
    print*, "This is how you write: in = ", in
    do k = 1, n ! do when k = 1, 2, .., n
        a(k) = k
        b(k) = -sin(dble(k)) ! using sin
    end do
!
! Call by reference for all variables.
print*, "The inner product is ", ddot(a, b, n)
    call sum_array(a, s, n) ! NOTE, call
    print*, "The sum of the array is ", s
end program main
```

Some comments. Since Fortran90 has support for array operations the main program could have been shortened:

```
print*, "The inner product is ", dot_product(a, b)
```

print*, "The sum of the array is ", sum(a)
dot_product and sum are built-in.
A long statement can be broken up into several lines.
The continued line should end with a \& .

1 is an integer constant.
1.0 is a real constant (single precision) and 1.0 d 0 is a double precision constant in Fortran77.

In Fortran90 it is possible to parameterize the real- and integer types and create more portable code using a module (similar to a simple class) e.g.:

module floating_point

! sp = at least 5 significant decimals and
! |exponent range| <= 30 which implies
! IEEE single precision.

```
integer, parameter :: sp = selected_real_kind(5, 30)
integer, parameter :: dp = selected_real_kind(10, 300)
integer, parameter :: prec = dp ! pick one
end module floating_point
program main
    use floating_point ! gives access to the module
    real (kind = prec) :: x, y
    real (kind = prec), dimension(100) :: a, b
    x = 1.24_prec ! constant
    y = 1.24e-4_prec ! constant
```

Here comes the Fortran77-version, but first some comments.

Fortran90 is almost a new language, but in my simple example the differences are not that striking:

- F77 has a column oriented layout dating back to the 80 column punched card.
- No result-statement in functions.
- Different type declarations:

double precision a(n)

instead of

```
double precision, dimension(n) :: a
```

although F77-declarations are allowed in F90 as well.
A Fortran77-program is (essentially) also a Fortran90-program, so it is possible to mix the two styles.
Fortran90 has array operations, pointers, recursion, prototypes, modules, overloading of operators (and more). Fortran77 has none of these.

The example program, coded in F77, is listed on the following two pages. It violates the ANSI-standard in several ways, the most important being the use of do/enddo. Here is the proper way of writing a F77-loop using labels (you will see it in a lab):

program main
*

* Comments: c, C or * in column one
* text in columns >72
* ! F90-comment
* First five columns: labels
* Continuation line: non-blank in column 6
* Statements: columns 7 through 72
* Case or blanks are not significant
* (unless they are in strings).
*
* Arrays start at one by default.
*234567890
$\begin{array}{ll}\text { integer } & \mathbf{k}, \mathrm{n}, \text { in } \\ \text { double precision } & a(100), b(100) \text {, sum }\end{array}$
double precision ddot ! a function
$\mathrm{n}=100$
print*, "Type a value for in:"
read*, in
print*, "This is how you write: in = ", in
do $k=1$, $n \quad$! do when $k=1,2, \ldots, n$ $a(k)=k$
$b(k)=-\sin (d b l e(k)) \quad$! using sin
end do
*
* Call by reference for all variables.
*

print*, "The inner product is ", ddot(a, b, n)
call sum_array (a, sum, n) ! NOTE, call
print*, "The sum of the array is ", sum
end

22

How to compile

The Fortran compilers available on the student system are: g77 (Fortran77), gfortran and g95 (both Fortran90 and 77).
It would be interesting to use the Intel ifort-compiler, but we do not have a license. You can fetch a free copy for Linux (provided you have the disk space, a few hundred Mbyte). See www.

In these handouts I will use g95 and I will assume that a Fortran90program has the suffix .f90. Some examples:
$\% \quad$ my prompt
\% g95 prog.f90 if everything in one prog.f90 prog.f would be Fortran77

Produces the executable file a.out
\% a.out run (or ./a.out if no . in the path)

Suppose we have three files main.f90, dot.f90, sum.f90
\% g95 main. $\mathbf{f 9 0}$ dot. $\mathbf{f 9 0}$ sum. $\mathbf{f} 90$
Can compile the files one by one.
-c means "compile only", do not link.
\% g95 -c main.f90 -> object file main.o
\% g95 -c dot.f90 \rightarrow object file dot.o
\% g95 -c sum.f90 -> object file sum.o
\% g95 main.o dot.o sum.o link the object files
\% g95 main.o dot.f90 sum.o works as well, note .f90
Can give many options (or flags) to the compiler, e.g.
\% g95 -03 prog.f90 optimize the code not standard names

If-statements and logical expressions

```
double precision :: a, b, c, d
logical :: q
if( a < b .and. c == d .or. .not. q ) then
... zero or more statements
else
... zero or more statements
end if
\begin{tabular}{|c|c|c|}
\hline Operation & Fortran77 & Fortran90 \\
\hline\(<\) &.\(l t\). & \(<\) \\
\(\leq\) &.\(l e\). & \(<=\) \\
\(=\) &. eq. & \(==\) \\
\(\neq\) & .ne. & \(/=\) \\
\(\geq\) &. ge. & \(>=\) \\
\(>\) & .gt. & \(>\) \\
\hline and & .and. & .and. \\
or &. or. & .or. \\
not & .not. & .not. \\
\hline true & .true. & .true. \\
false & .false. & .false. \\
\hline
\end{tabular}
```

Look at the predence table at the end of this handout.

NAME
dgesv - compute the solution to a real system of linear equations $A * X=B$,

SYNOPSIS

SUBROUTINE DGESV(N, NRHS, A, LDA, IPIVOT, B, LDB, INFC

INTEGER N, NRHS, LDA, LDB, INFO
INTEGER IPIVOT (*)
DOUBLE PRECISION A(LDA,*), B(LDB,*)

ARGUMENTS

N (input) The number of linear equations, i.e., the order of the matrix A. N >= 0 .

NRHS (input)
The number of right hand sides, i.e., the number of columns of the matrix B. NRHS $>=0$

A (input/output)
On entry, the $N-b y-N$ coefficient matrix A. On exit, the factors L and U from the factorization $A=P * L * U$; the unit diagonal elements of L are not stored.

LDA (input)
The leading dimension of the array A LDA $>=\max (1, N)$.

It is possible to construct a nicer interface in Fortran90 (C++). Essentially subroutine gesv(A, B, ipiv, info) where gesv is polymorphic, (for the four types S, D C, z) and where the size information is included in the matrices.

A common Fortran construction

Fortran77 does not have dynamic memory allocation (like For$\operatorname{tran} 90$ and C). If you need an mby matrix A you would usually reserve space for the largest matrix you may need (for a particular application). If you pass the matrix as an argument to a procedure the procedure must be told about the extent of the first dimension (the number of rows) in order to be able to compute the address of an element. If the maximum number of rows is max_m the address, adr (), of $A(j, k)$ is given by

$$
\operatorname{adr}(A(j, k))=\operatorname{adr}(A(1,1))+\max _m(k-1)+j-1
$$

So, a matrix is stored by columns in Fortran. In C it is stored by rows (so the compiler must know the number of columns in the matrix). Since you can allocate the precise number of elements in C this is less of an issue.

A program may look like this:

```
integer :: m, n
integer, parameter : : max_m = 1000, max_n = 50
double precision, dimension(max_m, max_n) :: A
    call sub ( A, max_m, m, n ) ! m, n actual sizes
end
subroutine sub ( A, max_m, m, n )
    integer :: max_m, m, n
    double precision, dimension(max_m,*) :: A
    ... ! can have 1 instead of*
```

Better (but not necessary) is:
call sub (A, max_m, $\max _n, m, n$)
subroutine sub ($A, \max _m, \max _n, m, n$)
integer : : max_m, m, n
double precision, dimension(max_m, max_n) : : A
since index checks can be made by the compiler.

Array operations for Fortran90

```
program array_example
    implicit none
    ! works for other types as well
    integer :: k
    integer, dimension(-4:3) :: a ! Note -4
    integer, dimension(8) :: b, c ! Default 1:8
    integer, dimension(-2:3, 3) :: M
    a = 1 ! set all elements to 1
    b = (/ 1, 2, 3, 4, 5, 6, 7, 8 /) ! constant array
    b = 10 * b
    c(1:3) = b(6:8)
    print*, 'size(a), size(c) = ', size(a), size(c)
    print*, 'lbound(a), ubound(a) = ',lbound(a), ubound(a)
    print*, 'lbound(c), ubound(c) = ', lbound(c), ubound(c)
    c(4:8) = b(8:4:-1) ! almost like Matlab
    print*, 'c = ', c ! can print a whole array
    print*, 'minval(c) = ', minval(c) ! a builtin func.
    a = a + b * c ! elementwise *
    print*, 'a = ', a
    print*, 'sum(a) = ', sum(a) ! another builtin
```

$\mathrm{M}=0$
$\mathrm{M}(1,:)=\mathrm{b}(1: 3)$! Row with index one
print*, 'M(1, :) = ', M(1, :)
$\mathrm{M}(:, 1)=20 \quad$! The first column
where ($M=0$) ! instead of two loops
$\mathrm{M}=-1$
end where
print*, 'lbound(M) = ', lbound(M) ! an array
do $k=1 b o u n d(M, 1)$, ubound $(M, 1)$! print M
 M(k, :)
end do
end
\% ./a.out
size(a), size(c) $=88$
lbound(a), ubound(a) $=-43$
lbound(c), ubound(c) $=18$
$c=6070808070605040$
minval $(c)=40$
$a=6011401240132013501360135013201$
sum $(a)=21408$
$\mathrm{M}(1,:)=102030$
lbound (M) $=-21$
$M(-2,:)=20 \quad-1 \quad-1$
$M(-1,:)=20 \quad-1 \quad-1$
$M(0,:)=20 \quad-1 \quad-1$
$M(1,:)=20 \quad 20 \quad 30$
$M(2,:)=20 \quad-1 \quad-1$
$M(3,:)=20-1 \quad-1$

29

C- and Fortran compilers do not usually check array bounds.
\#include <stdio.h>
void sub(double a[]);
int main()
\{
double b[10], a[10];
b[0] = 1;
sub(a);
printf("\%f\n", b[0]);
return 0;
\}
void sub(double a[])
\{
$a[10]=12345.0$;
\}
Running this program we get:
\% a.out
12345.000000

Changing a[10] to a[1000000] gives Segmentation fault.

Some dangerous things

Actual and formal parameters lists: check position, number and type. Can use interface blocks ("prototypes").

```
program main
    double precision :: a, b
    a=0.0
    call sub(a, 1.0, b)
    print*, a, b
end
subroutine sub(i, j)
    integer :: i, j
    i = i + l
    j = 10.0
end
\% a.out
Segmentation fault \% result depends on the compiler
Remove the line \(j=10.0\) and run again:
```

\% a.out
2.1219957909653-314 0. \% depends on the compiler

Some Fortran-compilers can check subscripts (provided you do not lie):

```
program main
    double precision, dimension(10) :: a
    call lie(a)
    print*, 'a(1) = ', a(1)
end program main
subroutine lie(a)
    double precision, dimension(10) :: a
    do j = 1, 100 !!! NOTE
        a(j) = j
    end do
end subroutine lie
\% ifort -CB lie.f90
\% ./a.out
forrtl: severe (408): fort: (2): Subscript \#1 of the array \(A\) has value 11 which is greater than the upper bound of 10
```

Change dimension (10) to dimension(100) in lie
\% ifort -CB lie.f90
\% a.out
$a(1)=1.0000000000000$
For gfortran or g95, type
\% gfortran -fbounds-check lie.f90
\% g95-fbounds-check lie.f90

Precedence of Fortran 90-operators

Operators between horizontal lines have the same precedence.

Operator	Meaning
unary user-defined operator	
**	power
*	multiplication
/	division
+	unary addition
-	unary subtraction
+	binary addition
-	binary subtraction
//	string concatenation
$==\quad . \mathrm{EQ}$.	equality
$/=\quad . \mathrm{NE}$.	inequality
$<. . L T$.	less than
$<=\quad . \mathrm{LE} .$	less or equal
> .GT.	greater than
$>=\quad . \mathrm{GE}$.	greater or equal
. NOT.	logical negation
. AND .	logical and
. OR.	logical or
. EQV .	logical equivalence
. NEQV .	logical non-equivalence
binary user-defined operator	

Comments:

$==$ is the Fortran90 form and .EQ. is the Fortran77 form, etc. In Fortran90 lower case is permitted, .e.g . not. .

About the user defined operators. In Fortran90 it is possible to define ones own operators by overloading existing operators or by creating one with the name . name. where name consists of at most 31 letters.

If we type make again nothing happens (no file has changed):

```
% make
'run' is up to date.
```

Now we edit sub. $\mathbf{f 9 0}$ and type make again:
\% make
g95 -c sub.f90
g95 -o run main.o sub.o

Note that only sub. $\mathbf{f 9 0}$ is compiled. The last step is to link main. \circ and sub. 0 together (g 95 calls the linker, 1 d).

Writing makefiles this way is somewhat inconvenient if we have many files. make may have some builtin rules, specifying how to get from source files to object files, at least for C. The following makefile would then be sufficient:
run: main.o sub.o
gcc -o run main.o sub.o
Fortran90 is unknown to some make-implementations and on the student system one gets:
\% make
make: *** No rule to make target 'main.o', needed by 'run'. Stop.

We can fix that by adding a special rule for how to produce an object file from a Fortran90 source file.

```
run: main.o sub.o
    g95 -o run main.o sub.o
SUFFIXES: .f90
f90.0:
    g95 -c $<
```


Using make

Make keeps track of modification dates and recompiles the routines that have changed.

Suppose we have the programs main. f90 and sub. f90 and that the executable should be called run. Here is a simple makefile (it should be called Makefile or makefile):

```
run: main.o sub.o
    g95 -o run main.o sub.o
main.o: main.f90
    g95 -c main.f90
sub.o: sub.f90
    g95 -c sub.f90
```

A typical line looks like:
target: files that the target depends on
^Ia rule telling make how to produce the target
Note the tab character. Make makes the first target in the makefile. -c means compile only (do not link) and -o gives the name of the executable.

To use the makefile just give the command make.
\% make
g95 -c main.f90
g95 -c sub.f90
g95 -o run main. o sub. 0
To run the program we would type run.
$\$<$, a so called macro, is short for the Fortran file.
One can use variables in make, here OBJS and FFLAGS.

```
OBJS = main.o sub.o
FFLAGS = -03
run: $(OBJS)
    g95 -o run $(FFLAGS) $(OBJS)
```

.SUFFIXES: . $\mathbf{f} 90$
.f90.0:
g95 - C (FFLAGS) \$<

OBJS (for objects) is a variable and the first line is an assignment to it. $\$$ (OBJS) is the value (i.e. main.o sub.o) of the variable OBJS. FFLAGS is a standard name for flags to the Fortran compiler. I have switched on optimization in this case. Note that we have changed the suffix rule as well.

Make knows about certain variables, like FFLAGS. Suppose we would like to use the ifort-compiler instead. When compiling the source files, make is using the compiler whose name is stored in the variable FC (or possible F90 or F90c). We write:

```
OBJS = main.o sub.O
FC = ifort
FFLAGS = -03
```

run: \$ (OBJS)
\$(FC) -o run \$(FFLAGS) \$(OBJS)

```
SUFFIXES: . f90
.f90.0:
    $(FC) -C $(FFLAGS) $<
```

It is usually important to use the same compiler for compiling and linking (or we may get the wrong libraries). It may also be important to use the same Fortran flags.

Sometimes we wish the recompile all files (we may have changed \$ (FFLAGS) for example). It is common to have the target clean. When having several targets we can specify the one that should be made:

```
OBJS = main.o sub.o
FC = g95
FFLAGS = -03
run: $(OBJS)
    $(FC) -o run $(FFLAGS) $(OBJS)
```

\# Remove objects and executable
clean:
$r m-f(O B J S)$ run
.SUFFIXES: . $\mathbf{f 9 0}$
.f90.0:

$$
\$(F C)-C \quad \$(F F L A G S) \quad \$<
$$

Without $-\mathbf{f}$, rm will complain if some files are missing.
We type:
\% make clean
rm -f main.o sub.o run

Suppose we like to use a library containing compiled routines. The new makefile may look like:

```
OBJS = main.o sub.o
FC = g95
FFLAGS = -03
LIBS = -lmy_library
run: $(OBJS)
    $(FC) -o run $(FFLAGS) $(OBJS) $(LIBS)
.SUFFIXES: .f90
.f90.0:
    $(FC) -C $(FFLAGS) $<
```

If you are using standard functions in C sin, exp etc. you must use the math-library:

```
CC ... -lm
```

The equivalent makefile for C-programs looks like:

```
OBJS = main.o sub.o
\(\mathrm{CC}=\mathrm{CC}\)
CFLAGS \(=-03\)
LIBS \(=\)-lmy_library -lm
run: \$(OBJS)
    \$ (CC) -o run \(\$(C F L A G S) ~ \$(O B J S) ~ \$(L I B S)\)
clean:
    \(r m\)-f \(\$(O B J S)\) run
```

A few words about header files. Suppose main.c depends on defs.h and params.h main.c calls sub1.c and sub2.c, where sub2.c depends on defs.h and constants.h which in turn includes const.h. A suitable makefile might be:

```
OBJS = main.o sub1.o sub2.o
CC = gcc
CFLAGS = -03
LIBS = -lm
a.out: $(OBJS)
    $(CC) -0 $@ $(CFLAGS) $(OBJS) $(LIBS)
main.o: defs.h params.h
sub2.o: defs.h constants.h const.h
# Remove objects and executable
clean:
    rm -f $(OBJS) a.out
```

In can be complicated to create the header file dependencies, the makedepend-program may help. Say we have this makefile (named makefile or Makefile, with no header file dependencies):

```
OBJS = main.o sub1.o sub2.o
CC = gcc
CFLAGS = -03
LIBS = -lm
a.out: $(OBJS)
    $(CC) -o $@ $(CFLAGS) $(OBJS) $(LIBS)
# Remove objects and executable
clean:
    rm -f $(OBJS) a.out
```

makedependon the source files will append the dependencies on the existing makefile:

```
% makedepend *.c
% cat Makefile
OBJS = main.o sub1.o sub2.o
CC = gcc
CFLAGS = -03
LIBS = -lm
```

a.out: \$(OBJS)
\$(CC) -O \$@ \$(CFLAGS) \$ (OBJS) \$(LIBS)
\# Remove objects and executable
clean:
rm -f $\$$ (OBJS) a.out
\# DO NOT DELETE
main.o: defs.h params.h
sub2.0: defs.h constants.h const.h

This is how the new makefile works:
\% make let us assume a.out is up to date
'a.out' is up to date.
\% touch defs.h changing defs.h
\% make
gcc -03 - -0 main.o main.c
gcc -03 -c -o sub2.o sub2.c
gcc -o a.out -03 main.o sub1.o sub2.o -lm
makedependworks for Fortran as well provided you use \#include.

There is much more to say about make. See e.g. the O'Reillybook, Robert Mecklenburg, Managing Projects with GNU Make, 3rd ed, 2004.

A very simple (and traditional) model of a computer:

The CPU contains the ALU, arithmetic and logic unit and the control unit. The ALU performs operations such as,,$+- *$, / of integers and Boolean operations.
The control unit is responsible for fetching, decoding and executing instructions.
The memory stores instructions and data. Instructions are fetched to the CPU and data is moved between memory and CPU using buses.
I/O-devices are disks, keyboards etc.
The CPU contains several registers, such as:

- PC, program counter, contains the address of the next instruction to be executed
- IR, instruction register, the executing instruction
- address registers
- data registers

The memory bus usually consist of one address bus and one data bus. The data bus may be 64 bits wide and the address bus may be ≥ 32 bits wide. With the introduction of 64 -bit computers, buses tend to become increasingly wider. The Itanium 2 uses 128 bits for data and 44 bits for addresses.

Operations in the computer are synchronized by a clock.
A modern CPU may run at a few GHz (clock frequency). The buses are usually a few (4-5) times slower.

Computer Architecture

Why this lecture?
Some knowledge about computer architecture is necessary:

- to understand the behaviour of programs
- in order to pick the most efficient algorithm
- to be able to write efficient programs
- to know what computer to run on (what type of architecture is your code best suited for)
- to read (some) articles in numerical analysis

The change of computer architecture has made it necessary to re-design software, e.g Linpack \Rightarrow Lapack.

A few words on 64-bit systems

Why 64 bit?

- A larger address range, can address more memory.

With 32 bits we can (directly) address 4 Gbyte, which is rather limited for some applications.

- Wider busses, increased memory bandwidth.
-64-bit integers.
Be careful when mixing binaries (object libraries) with your own code. Are the integers 4 or 8 bytes?

```
% cat kind.c
```

\#include <stdio.h>

int main()

\{
printf("sizeof(short int) $=\% d \backslash n "$, sizeof(short int))
printf("sizeof(int) = \%d\n", sizeof(int));
printf("sizeof(long int) $=\% d \backslash n ", ~ s i z e o f(l o n g ~ i n t)) ; ~ ;$
return 0;
\}
\% gcc kind.c
On the 32 -bit student system
\% a.out
sizeof(short int) $=4$
sizeof(int) $=4$
sizeof(long int) $=4$
\% a.out
On the 64-bit student system
sizeof(short int) $=4$
sizeof(int) $=4$
sizeof(long int) $=8 \quad 4$ if gcc $-m 32$
Running the 32 -bit binary on the 64 -bit system behaves like the 32 -bit system. One cannot run the 64 -bit binary om the 32 -bit system.

CISC (Complex Instruction Set Computers) before ≈ 1985
Each instruction can perform several low-level operations, such as a load from memory, an arithmetic operation, and a memory store, all in a single instruction.

Why CISC?
For a more detailed history, see the literature.

- Advanced instructions simplified programming (writing compilers, assembly language programming). Software was expensive.
- Memory was limited and slow so short programs were good. (Complex instructions \Rightarrow compact program.)

Some drawbacks:

- complicated construction could imply a lower clock frequency
- instruction pipelines hard to implement
- long design cycles
- many design errors
- only a small part of the instructions was used According to Sun: Sun's C-compiler uses about 30% of the available 68020-instructions (Sun3 architecture). Studies show that approximately 80% of the computations for a typical program requires only 20% of a processor's instruction set.

When memory became cheaper and faster, the decode and execution on the instructions became limiting.

Studies showed that it was possible to improve performance with a simple instruction set and where instructions would execute in one cycle.

RISC - Reduced Instruction Set Computer

- IBM 801, 1979 (publ. 1982)
- 1980, David Patterson, Berkeley, RISC-I, RISC-II
- 1981, John Hennessy, Stanford, MIPS
$\bullet \approx 1986$, commercial processors
A processor whose design is based on the rapid execution of a sequence of simple instructions rather than on the provision of a large variety of complex instructions.

Some RISC-characteristics:

- load/store architecture; $\mathbf{C}=\mathbf{A}+\mathrm{B}$

```
LOAD R1,A
LOAD R2,B
ADD R1,R2,R3
STORE C,R3
```

- fixed-format instructions (the op-code is always in the same bit positions in each instruction which is always one word long)
- a (large) homogeneous register set, allowing any register to be used in any context and simplifying compiler design
- simple addressing modes with more complex modes replaced by sequences of simple arithmetic instructions
- one instruction/cycle
- hardwired instructions and not microcode
- efficient pipelining
- simple FPUs; only $+,-,{ }^{*}, /$ and $\sqrt{ }$. sin, \exp etc. are done in software.

Advantages: Simple design, easier to debug, cheaper to produce, shorter design cycles, faster execution, easier to write optimizing compilers
(easier to optimize many simple instructions than a few complicated with dependencies between each other).

CISC - short programs using complex instructions.
RISC - longer programs using simple instructions.
So why is RISC faster?
The simplicity and uniformity of the instructions make it possible to use pipelining, a higher clock frequency and to write optimizing compilers.

Will now look at some techniques used in all RISC-computers:

- instruction pipelining
work on the fetching, execution etc. of instructions in parallel
- cache memories
small and fast memories between the main memory and the CPU registers
- superscalar execution parallel execution of instructions (e.g. two integer operations, ${ }^{*},+$ floating point)

The most widely-used type of microprocessor, the x86 (Intel), is CISC rather than RISC, although the internal design of newer x86 family members is said to be RISC-like. All modern CPUs share some RISC characteristics, although the details may differ substantially.

Pipelining - performing a task in several steps, stages

Analogy: building cars using an assembly line in a factory
Suppose there are five stages (can be more), .e.g
IF Fetch the next instruction from memory.
ID Instruction decode.
EX Execute.
M, WM Memory access, write to registers.

So one instruction completed per cycle once the pipeline is filled.

Not so simple in real life: different kind of hazards, that prevent the next instruction from executing during its designated clock cycle. Can make it necessary to stall the pipeline (wait cycles).

- Structural hazards arise from resource conflicts, e.g.
- two instructions need to access the system bus (fetch data, fetch instruction),
- not fully pipelined functional units (division usually takes 10-20 cycles, for example).
- Data hazards arise when an instruction depends on the results of a previous instruction (will look at some cases in later lectures) e.g.

```
a = b + c
d = a +e d depends on a
```

The second addition must not start until a is available.

- Control hazards arise from the pipelining of branches (if-statements).

An example of a control hazard:

```
if (a>b - c* d ) then
    do something
else
    do something else
end if
```

Must wait for the evaluation of the logical expression.

If-statements in loops may cause poor performance.

Several techniques to minimize hazards (look in the literature for details) instead of just stalling. Some examples:

Structural hazard

Add hardware. If the memory has only one port LOAD adr, R1 will stall the pipeline (the fetch of data will conflict with a later instruction fetch). Add a memory port (separate data and instruction caches).

Data hazards:

- Forwarding: b + c available after EX, special hardware "forwards" the result to the a + e computation (without involving the CPU-registers).
- Instruction scheduling. The compiler can try and rearrange the order of instruction to minimize stalls.
Try to change the order between instructions using the waittime to do something useful.

```
a=b+c
d=a+e
load b
load c
add b + c has to wait for load c to complete
load b
load c
load e give the load c time to complete
add b + c in parallel with load e
```

Control hazards: (many tricks)

- Add hardware; can compute the address of the branch target earlier and can decide whether the branch should be taken or not.
- Branch prediction; try to predict, using "statistics", the way a branch will go. Compile-time/run-time. Can work very well. The branch att the end of a for-loops is taken all the times but the last.
- Speculative execution: assume the branch not taken and continue executing (no stall). If the branch is taken, must be able do undo.

Superscalar CPUs

Fetch, decode and execute more than one instruction in parallel. More than one finished instruction per clock cycle. There may, e.g. be two integer ALUs, one unit for floating point addition and subtraction one for floating point multiplication. The units for,+ - and $*$ are usually piplined (they need several clock cycles to execute).
There are also units for floating point division and square root; these units are not (usually) pipelined.

```
MULT xxxxxxxx
MULT 
MULT 
```

Compare division; each $\mathbf{x x x x x x x x x x}$ is $10-20$ cycles:
DIV $\times \times \times \times \times \times \times \times \times x$
DIV $\quad \mathbf{x x x x x x x x x x}$
DIV
$\mathbf{x} \times \mathbf{x} \times \mathbf{x} \times \mathbf{x} \times$

How can the CPU keep the different units busy?
The CPU can have circuits for arranging the instructions in suitable order, dynamic scheduling (out-of-order-execution).

To reduce the amount of hardware in the CPU we can let the compiler decide a suitable order. Groups of instructions (that can be executed in parallel) are put together in packages. The CPU fetches a whole package and not individual instructions. VLIW-architecture, Very Long Instruction Word.

The Intel \& HP Itanium CPU uses VLIW (plus RISC ideas). Read the free chapter from: W. Triebel, Itanium Architecture for Software Developers. See the first chapter in: IA-32 Intel Architecture Optimization Reference Manual for details aboute the Pentium 4. Read Appendix A in the Software Optimization Guide for AMD64 Processors. See the web-Diary for links.

More on parallel on floating point operations.
flop $=$ floating point operation.
flops $=$ plural of flop or flop $/$ second.
In numerical analysis a flop may be an addition-multiplication pair. Not unreasonable since $\left(+,{ }^{*}\right)$ often come in pairs, e.g. in an inner product.

Top floating point speed $=$
\# of cores \times flop $/ \mathrm{s}=$
$\#$ of cores \times \# flop / clock cycle \times clock frequency
Looking in instruction_tables.pdfat www.agner.org one can find out the performance of several CPUs. One core in the student machines (Intel Pentium Dual-core, E6300, Wolfdale$3 \mathrm{M})$ can, in the best of cases, finish 1 addition and 0.5 multiplication per clock cycle using x87-instructions. Divisions, which are not pipelined, may take up to 20 cycles.

It is, however, common with vector units, like Intel's SSE, in modern CPUs. These units can work in parallel on short vectors of numbers.

To use the the vector unit you need a compiler that can vectorize. The vector unit may not be IEEE 754 compliant (not correctly rounded). So results may differ between the vectorized and unvectorized versions of the same code.

Each core in the lab-computers can execute a vectorized add and a vectorized multiply operation per cycle. Each operation can work on two double (or four single) precision numbers in parallel. Division is still slow.

See www.spec. org for benchmarks with real applications.

53

Direct mapped cache

The cache is a small and fast memory used for storing both instructions and data.

This is the simplest form of cache-construction.

Memory is the problem - caches

CPU: increase 1.35 improvement/year until 1986, and a 1.55 improvement/year thereafter.

DRAM (dynamic random access memory), slow and cheap, 1.07 improvement/year.

Use SRAM (static random access memory) fast \& expensive for cache.

There are more general cache constructions.
This is a two-way set associative cache:

A direct mapped cache is one-way set associative.

In a fully associative cache data can be placed anywhere.

To use a cache efficiently locality is important.

- instructions: small loops, for example
- data: use part of a matrix (blocking)

Main memory

Not necessarily good locality together.

Make separate caches for data and instructions.

Can read instructions and data in parallel.

L1 and L2 caches

Memory hierarchy.

Newer machines even have an L3 cache.

A note on reading assembly output

In the lecture and during the labs I said it was sometimes useful to look at the assembler code produced by the compiler.
Here comes a simple example. Let us look at the the following function.

```
double dot(double x[], double y[], int n)
{
    double s;
    int k;
    s = 0.0;
    for (k = 0; k < n; k++)
        s += x[k] * y[k];
    return s;
}
```

First some typical RISC-code from a Sun ULTRA-Sparc CPU. I used gec and compiled the code by:
gcc -S -03 dot.c
-s produces the assembler output on dot.s.
Here is the loop (code for passing parameters, setting up for the loop, and returning the result is not included).

. LL5 :		My translation
ldd	[\%o0+\%g1], \%f8	\% $£ 8=\times[k]$
ldd	[\%o1+\%g1], \%f10	\% $f 10=y[k]$
add	\%g2, 1, \%g2	$\mathbf{k} \quad=\mathbf{k}+1$
fmuld	\%f8, \%f10, \%f8	\% f8 = \%f8* \%f10
cmp	\%02, \%g2	$\mathrm{k}==\mathrm{n}$? Set status reg.
faddd	\%f0, \%f8, \%f0	\% $\mathbf{f 0}=$ \% $\mathrm{fO} \mathbf{0}$ \% f 8
bne	LL5	if not equal, go to .LL5
add	\% $\mathrm{g} 1,8, \% \mathrm{~g} 1$	increase offset

```
My translation
    %f8 = x[k]
    &
    %f8= %f8* %f10
    n? Set status reg.
    if not equal, go to .LL5
    increase offset
```


Some comments.

$\% f 8$ and $\% f 10$ are registers in the FPU. When entering the function, the addresses of the first elements in the arrays are stored in registers $\% 00$ and $\% 01$. The addresses of $x[k]$ and $y[k]$ are given by $\% 00+8 k$ and $\% 01+8 k$. The reason for the factor eight is that the memory is byte addressable (each byte has an address). The offset, $\mathbf{8 k}$, is stored in register $\% \mathrm{~g} 1$.

The offset, $\mathbf{8 k}$, is updated in the last add. It looks a bit strange that the add comes after the branch, bne. The add-instruction is, however, placed in the branch delay slot of the branch-instruction, so it is executed in parallel with the branch.
add is an integer add. faddd is a "floating point add double". It updates $\% f 0$, which stores the sum. $\% f 0$ is set to zero before the loop. cmp compares k with n (the last index) by subtracting the numbers. The result of the compare updates the Z-bit (Z for zero) in the integer condition code register. The branch instruction looks at the Z-bit to see if the branch should be taken or not.

We can make an interesting comparison with code produced on the AMD64. The AMD (Intel-like) has both CISC- and RISCcharacteristics. It has fewer registers than the Sparc and it does not use load/store in the same way. The x87 (the FPU) uses a stack with eight registers. In the code below, eax etc. are names of 32 -bit CPU-registers. (in the assembly language $\mathrm{a} \%$ is added).

.L5:	
fldl	$(\%$ ebx, \%eax, 8)
fmull	$(\%$ ecx, \%eax, 8)
faddp	$\% s t, \% s t(1)$
incl	$\%$ eax
cmpl	$\%$ eax, \%edx
jne	. L5

Virtual memory

Use disk to "simulate" a larger memory. The virtual address space is divided into pages e.g. 4 kbytes. A virtual address is translated to the corresponding physical address by hardware and software; address translation.

A page is copied from disk to memory when an attempt is made to access it and it is not already present (page fault). When the main memory is full, pages must be stored on disk (e.g. the least recently used page since the previous page fault). Paging.
(Swapping; moving entire processes between disk and memory.)
Some advantages of virtual memory:

- simplifies relocation (loading programs to memory), independece of physical addresses; several programs may reside in memory
- security, can check access to protected pages, e.g. read-only data; can protect data belonging to other processes
- allows large programs to run on little memory; only used sections of programs need be present in memory; simplifies programming (e.g. large data structures where only a part is used)

When the loop is entered \%ebx and \%ecx contain the addresses of the first elements of the arrays. Zero has been pushed on the stack as well (corresponds to $s=0.0$).
fldl (\%ebx, \%eax, 8) loads a 64 bit floating point number. The address is given by \%ebx + \%eax* 8 . The number is pushed on the top of the stack, given by the stackpointer \%st.

Unlike the Sparc, the AMD can multiply with an operand in memory (the number does not have to be fetched first). So the fmull multiplies the top-element on the stack with the number at address \%ecx $+\%$ eax* 8 and replaces the top-element with the product.
faddp \%st, \%st (1) adds the top-elements on the stack (the product and the sum, s), pops the stack, the p in faddp, and replaces the top with the new value of s.
incl increases \mathbf{k} (stored in \%eax) and cmpl compares it to n. jne stands for jump if not equal.

Virtual memory requires locality (re-use of pages) to work well, or thrashing may occur.

A few words on address translation

The following lines sketch one common address translating technique.

A virtual address is made up by two parts, the virtual page number and the page offset (the address from the top of the page)
The page number is an index into a page table:

```
physical page address =
    page_table(virtual page number)
```

The page table is stored in main memory (and is sometimes paged). To speed up the translation (accessing main memory takes time) we store part of the table in a cache, a translation lookaside buffer, TLB which resides in the CPU $(\mathcal{O}(10)-$ $\mathcal{O}(1000)$ entries).

Once again we see that locality is important. If we can keep the references to a few pages, the physical addresses can found in the TLB and we avoid a reference to main memory. If the address is not available in the TLB we get a TLB miss (which is fairly costly, taking tens of clock cycles).

Reading the actual data may require a reference to main memory, but we hope the data resides in the L1 cache.

Second best is the L2 cache, but we may have to make an access to main memory, or worse, we get a page fault and have to make a disk access (taking millions of clock cycles).

Code optimization

- How does one get good performance from a computer system?
- Focus on systems with one CPU (with one core) and floating point performance.
- To get maximum performance from a parallel code it is important to tune the code running on each CPU.
- General advice and not specific systems.
- Fortran, some C (hardly any C++) and some Matlab. Some Java in the compendium.

More about unix-tools:

- shell scripts (sh, csh, tcsh, ksh, bash)
(for, if, | pipes and lots more)
- awk (developed by Alfred Aho, Peter Weinberger, and Brian Kernighan in 1978)
- sed (stream editor)
- grep (after the qed/ed editor subcommand " $g / r e / p$ ", where re stands for a regular expression, to Globally search for the Regular Expression and Print)
- tr (translate characters)
- perl (Larry Wall in 1987; contains the above)
- etc.

Some very simple examples:
Counting the number of lines in a file(s):
\% wc file or wc -l file
\% wc files or wc -l files

Finding a file containing a certain string
\% grep string files e.g.
\% grep 'program matrix' *.f90 or
\% grep -i 'program matrix'*.f90 etc.
The grep-command takes many flags.

Your situation

- A large and old code which has to be optimized. Even a slight speedup would be of use, since the code may be run on a daily basis.
- A new project, where language and data structures have to be chosen.

C/C++ usually slower than Fortran for floating point. Java? Can be slow and use large amounts of memory. See the article (compendium) for an example.

Should it be parallel?
Test a simplified version of the computational kernel. Fortran for floating point, $\mathrm{C} / \mathrm{C}++$ for the rest.

- Things that are done once. Let the computer work. Unix-tools, Matlab, Maple, Mathematica ...

Example: interchange the two blank-separated columns of numbers in a file:
\% awk '\{print \$2, \$1\}' file

Example: sum the second columns of a set of datatfiles. Each row contains: number number text text
The files are named data.01, data.02, ...
foreach? is the prompt.
\% foreach f (data.[0-9][0-9])
foreach? echo -n $\$ \mathrm{f}^{\prime}$: ,
foreach? awk '\{s += \$2\} END \{print s\}' \$f
foreach? end
data.01: 30
data.02: 60
data.03: 77
data.20: 84
Another possibility is:
awk '\{s += \$2\} END \{print FILENAME ": " s\}' \$f

Just the other day (two years ago) ...
You have ≈ 600 files each consisting of ≈ 24000 lines (a total of $\approx 14 \cdot 10^{6}$ lines) essentially built up by:

<DOC>

<TEXT>
Many lines of text (containing no DOC or TEXT)
</TEXT>
</DOC>
<DOC>
<TEXT>
Many lines of text
</TEXT>
</DOC>
etc.
There is a mismatch between the number of DOC and TEXT.
Find it!

We can localize the file this way:
\% foreach f (*)
foreach? if ('grep -c "<DOC>" \$f, != \}
`grep -c "<TEXT>" \$f`) echo \$f
foreach? end
Not so efficient; we are reading each file twice.
Takes ≈ 3.5 minutes.
We used binary search to find the place in the file.

- Optimization

-02 optimize for maximum speed (DEFAULT)
-03 optimize for maximum speed and enable more aggressive optimizations that may not improve performance on some

programs

-0 same as -02
-oo disable optimizations
-fast enable -xHOST -03 -ipo -no-prec-div -static...
-fno-alias assume no aliasing in program

- Code Generation
-x<code1> generate specialized code to run exclusively on processors indicated by <code> as described below
- Interprocedural Optimization (IPO)
- [no-] ip enable(DEFAULT)/disable single-file IP optimization within files
-ipo [n]enable multi-file IP optimization between files ...

- Advanced Optimizations

. .

- [no-] vec enables(DEFAULT)/disables vectorization
...
Here is an incomplete list of the remaining categories:
- Profile Guided Optimization (PGO)
- Optimization Reports
- OpenMP* and Parallel Processing
- Floating Point
- Inlining
- Output, Debug, PCH (pre compiled header files)
- Preprocessor
- Compiler Diagnostics
- Linking/Linker

The optimization process

Basic: Use an efficient algorithm.

Simple things:

- Use (some of) the optimization options of the compiler. Optimization can give large speedups
(and new bugs, or reveal bugs).
- Save a copy of the original code.
- Compare the computational results before and after optimization. Results may differ in the last bits and still be OK.
- Read the manual page for your compiler.

Even better, read the tuning manual for the system.

- Switch compiler and/or system.

The next page lists the compiler options, flags, of the Intel Fortran 90 -compiler. There are more than 300 flags. The names are not standardized, but it is common that -c means "compile only, do not link". To produce debug information -g is used.

Some of the flags are passed on to the preprocessor (locations and names of header files) and to the linker (locations and names of libraries). The most important flags in this course are those for optimization. $-0[n]$ usually denotes optimization on level n. There may be an option, like -fast, that gives a combination of suitable optimization options. Here a few av the more than 1000 lines produced by icc -help and ifort -help

There is a user and reference guide, PDF (>3800 pages, for Fortran, C++-manual 1894 pages).

If you are willing to work more...

- Decrease number of disk accesses (I/O, virtual memory)
- (LINPACK, EISPACK) \rightarrow LAPACK
- Use numerical libraries tuned for the specific system, BLAS

Find bottlenecks in the code (profilers).
Attack the subprograms taking most of the time.
Find and tune the important loops.

Tuning loops has several disadvantages:

- The code becomes less readable and it is easy to introduce bugs. Compare computational results before and after tuning.
- Detailed knowledge about the system, such as cache configuration, may be necessary.
- What is optimal for one system need not be optimal for another; faster on one machine may actually be slower on another.
This leads to problems with portability.
- Code tuning is not a very deterministic business. The combination of tuning and the optimization done by the compiler may give an unexpected result.
- The computing environment is not static; compilers become better and there will be faster hardware of a different construction.
The new system may require different (or no) tuning.

What should one do with the critical loops?

The goal of the tuning effort is to keep the FPU(s) busy.
Accomplished by efficient use of the

- memory hierarchy
- parallel capabilities

Superscalar: start several instructions per cycle.
Pipelining: work on an instruction in parallel.
Vectorization: parallel computation on short arrays.

- Locality of reference, data reuse
- Avoid data dependencies and other constructions that give pipeline stalls

What can you hope for?

- Many compilers are good.

May be hard to improve on their job.
We may even slow the code down.

- Depends on code, language, compiler and hardware.
- Could introduce errors.
- But: can give significant speedups.

Not very deterministic, in other words.

- Do not rewrite all the loops in your code.
- Save a copy of the original code. If you make large changes to the code, use som kind of version control system.
- Compare computational results before and after tuning.

A Fortran compiler may produce code that works on several iterations in parallel.

```
c(1) = a(1) + f * b(1)
c(2) =a(2) +f*b(2) ! independent
```

Can use the pipelining in functional units for addition and multiplication.

The assembly code is often unrolled this way as well.
The corresponding C-code may look like:

```
/* This code assumes that n is a multiple of four*/
    for(k = 0; k < n; k += 4) {
        c[k] = a[k] + f* b[k];
        c[k+1] = a[k+1] + f * b[k+1];
        c[k+2] = a[k+2] +f* b[k+2];
        c[k+3] = a[k+3] + f* b[k+3];
    }
```

A programmer may write code this way, as well. Unrolling gives:

- fewer branches (tests at the end of the loop)
- more instructions in the loop; a compiler can change the order of instructions and can use prefetching
If we make the following call in Fortran, (illegal in Fortran, legal in C), we have introduced a data dependency.

```
call add(a, c, c(2), f, n-1)
    | |
    a b c
c(2) = a(1) +f* c(1) ! b and c overlap
c(3) = a(2) +f*c(2) ! c(3) depends on c(2)
c(4) = a(3) + f * c(3) ! c(4) depends on c(3)
```

Not so in C. Two pointer-variables with different names may refer to the same array.
"Note that if there is a partial or complete overlap between the actual arguments associated with two different dummy arguments of the same procedure, the overlapped portions must not be defined, redefined, or become undefined during the execution of the procedure."

If that is the loop you need (in Fortran) write:

```
do k = 1, n - 1
    c(k+1)=a(k) + f * c(k)
end do
```

This loop is slower than the first one (slower in C as well).
In C, aliased pointers and arrays are allowed which means that it may be harder for a C-compiler to produce efficient code. The C99 restrict type qualifier can be used to inform the compiler that aliasing does not occur.

```
void add(double * restrict a, double * restrict b,
    double * restrict c, double f, int n)
```

It is not supported by all compilers and even if it is supported it may not have any effect (you may need a special compiler flag, e.g. -std=c99).

An alternative is to use compiler flags, -fno-alias, -xrestrict etc. supported by some compilers. If you "lie" (or use a Fortran routine with aliasing) you may get the wrong answer!

According to an Intel article, their C/C++-compiler can generate dynamic data dependence testing (checking addresses using if-statements) to decrease the problem with aliasing.

To see the effects of aliasing one may need more complicated examples than add. I have kept it because it is easy to understand. On the next page is a slightly more complicated example (Horner's method for polynomials), but still only a few lines of code, i.e. far from a real code.

Original routine (just the loop)

.L4:

movl	$12(\%$ ebp $), \% e d x$
fldl	$(\% e d x, \% e a x, 8)$
movl	$-16(\% e b p), \% e d x$
fld	$\% s t(0)$
fmull	$(\% e d x)$
movl	$8(\% e b p), \% e d x$
faddl	$(\% e c x)$
fmul	$\% s t(1), \% s t$
faddl	$(\% e s i)$
fmul	$\% s t(1), \% s t$
faddl	$(\% e d i)$
fmulp	$\% s t, \% s t(1)$
faddl	$(\% e b x)$
fstpl	$(\% e d x, \% e a x, 8)$
addl	$\$ 1, \% e a x$
cmpl	$20(\% e b p), \% e a x$
jne	.$L 4$

Modified code

 .L11:| fldl | (\%ecx, \%eax, 8) |
| :--- | :--- |
| fld | $\% s t(0)$ |
| fmul | $\% s t(2), \% s t$ |
| fadd | $\% s t(3), \% s t$ |
| fmul | $\% s t(1), \% s t$ |
| fadd | $\% s t(4), \% s t$ |
| fmul | $\% s t(1), \% s t$ |
| fadd | $\% s t(5), \% s t$ |
| fmulp | $\% s t, \% s t(1)$ |
| fadd | $\% s t(5), \% s t$ |
| fstpl | $(\% e b x, \% e a x, 8)$ |
| addl | $\$ 1, \% e a x$ |
| cmpl | $\% e d x, \% e a x$ |
| jne | . L11 |

```
subroutine horner (px, \(x\), coeff, \(n\) )
    integer j, \(n\)
    double precision \(p x(n), x(n)\), coeff(0:4), \(x j\)
    do \(j=1, n\)
        \(\mathbf{x j} \quad=\mathbf{x}(\mathbf{j})\)
        \(p x(j)=\operatorname{coeff(0)}+x j(\operatorname{coeff}(1)+x j \star(c o e f f(2) \&\)
                        \(+x j *(\operatorname{coeff(3)}+x j \star \operatorname{coeff(4))))}\)
    end do
```

end

Using $n=1000$ and calling the routine 10^{6} times the speed advantage of Fortran was a factor of 1 up to 4 .
If -fno-alias is used, $\mathrm{C} \approx$ Fortran.
It is easy to fix the C-code without using -fno-alias

```
double xj, c0, c1, c2, c3, c4;
    /* no aliasing with local variables*/
    c0 = coeff[0]; c1 = coeff[1]; c2 = coeff[2];
    c3 = coeff[3]; c4 = coeff[4];
    for (j = 0; j < n; j++) {
        xj = x[j];
        px[j] = c0 + xj*(c1 + xj*(c2 + xj*(c3 + xj*c4)));
    }
```

...

It is instructive to compare the assembly ouput of the two Horner routines. gcc -03 -s horner.cgives assembly on horner.s.

I used gec instead of icc which vectorizes the code and makes it very hard to read.

Now to Horner with complex numbers using Fortran (complex is built-in) and C++ (using "C-arrays" of complex<double>).

I got the following times, on three systems using $\mathrm{n}=1000$ and calling the routine 10^{5} times.

Compiling using -02 or -03, whatever is best.
$\mathbf{i}=$ Intel, $\mathrm{pg}=$ Portland Group, $\mathrm{g}=$ GNU.

ifort	icpc	pgf90	pgCC	g95	g++
0.6	7.4	na	na	$5.0(\dagger)$	5.4
1.9	4.5	2.3	14.1	3.1	7.0
1.0	1.9	1.2	3.9	$1.2(\ddagger)$	2.6

(\dagger) $\mathbf{g 7 7}$ instead of $\mathbf{g} 95$. (\ddagger) gfortran instead of $\mathbf{g} 95$.

The tables do show that is important to test different systems, compilers and compile-options.

The behaviour in the above codes changes when n becomes very large. CPU-bound (the CPU limits the performance) versus Memory bound (the memory system limits the performance).

Basic arithmetic and elementary functions

Many modern CPUs have vector units which can work in parallel on the elements of short arrays, e.g. adding two vectors. Intel has the SSE (Streaming SIMD Extensions,
SIMD $=$ Single Instruction Multiple Data).
The arrays usually consist of two double precision numbers or four single precision numbers.

The arithmetic may have different roundoff properties compared to the usual FPU (x87 in an Intel CPU) since the x 87 uses extra digits (to satisfy the requirements in the IEEE floating point standard).

- Common that the (x87) FPU can perform + and * in parallel.
- $a+b * c$ can often be performed with one round-off, multiply-add MADD or FMA.
- + and * usually pipelined, so one sum and a product per clock cycle in the best of cases (not two sums or two products). Often one sum every clock cycle and one product every other.
- / not usually pipelined and may require 15-40 clock cycles.
- Two FMAs in a few machines.
- Many modern CPUs have several computational cores as well as vector units.

81

Floating point formats

Type	min denormalized	min normalized	max	bits in mantissa
IEEE 32 bit	$1.4 \cdot 10^{-45}$	$1.2 \cdot 10^{-38}$	$3.4 \cdot 10^{38}$	24
IEEE 64 bit	$4.9 \cdot 10^{-324}$	$2.2 \cdot 10^{-308}$	$1.8 \cdot 10^{308}$	53

- Using single- instead of double precision can give better performance. Fewer bytes must pass through the memory system.
- The arithmetic may not be done more quickly since several systems will use double precision for the computation regardless.

The efficiency of FPUs differ (this on a 2 GHz Opteron).

```
>> A = rand(1000); B = A;
>> tic; C = A * B; toc
Elapsed time is 0.780702 seconds.
>>A = 1e-320 * A;
>> tic; C = A* B; toc
Elapsed time is 43.227665 seconds.
```


Elementary functions

Often coded in C, may reside in the libm-library.

- argument reduction
- approximation
- back transformation

Can take a lot of time.
$\gg v=0.1 * \operatorname{ones}(1000,1)$;
\gg tic; for $k=1: 1000, s=s i n(v) ;$ end; toc
elapsed_time =
0.039218
$\gg v=1 e 10$ * ones $(1000,1)$;
\gg tic; for $k=1: 1000, s=s i n(v) ;$ end; toc
elapsed_time =
0.717893

```
program ugly
    double precision : : x = 2.5d1
    integer :: k
    do k = 1, 17, 2
        print'(1p2e10.2)', x, sin(x)
        x = x * 1.Od2
    end do
```

end program ugly
\% a.out
$2.50 \mathrm{E}+01-1.32 \mathrm{E}-01$
2.50E+03-6.50E-01
2.50E+05-9.96E-01
2.50E+07-4.67E-01
2.50E+09-9.92E-01
$2.50 \mathrm{E}+11-1.64 \mathrm{E}-01$
$2.50 \mathrm{E}+13 \quad 6.70 \mathrm{E}-01$
2. $50 \mathrm{E}+157$ 45E-01
$2.50 \mathrm{E}+17$ 4.14E+07 <--

Some compilers are more clever than others, which is shown on the next page.

You should know that, unless x is an integer, \boldsymbol{v}^{x} is computed using something like:

$$
\boldsymbol{v}^{x}=e^{\log \left(v^{x}\right)}=e^{x \log v}, \quad 0<\boldsymbol{v}, \boldsymbol{x}
$$

There may be vector versions of elementary functions as well as slightly less accurate versions. AMD's ACML and Intel's MKL both have vector-versions.

Here an example using MKL's VML (Vector Mathematics
Library). Read the manual for details (how to use vmlSetMode to set the accuracy mode, for example).

```
include mkl_vml.fi
    integer, parameter :: n = 100000
    double precision, dimension(n) :: v, sinv
        v = ...
    call vdsin(n, v, sinv) ! vector-double-sin
```

Performance depends on the type of function, range of arguments and vector length. Here are a few examples runs (1000 repetitions with n as above). The routines are threaded but seemed to perform best on one thread.

Function	loop	vec	less acc. vec	prec
\sin	2.3	0.49	0.40	single
\exp	1.6	0.36	0.33	
atan	2.1	0.83	0.51	
\sin	3.0	1.3	1.3	double
\exp	2.1	0.8	0.8	
atan	7.2	2.2	2.0	

loop means using the standard routine and a loop
(or equivalently sinv $=\sin (v)$). vec uses the vector routine from VML and less acc. uses the less accurate version.

Newer Intel compilers use vectorized routines automatically.

```
subroutine power(vec, n)
    integer :: k, n
    double precision, dimension(n) :: vec
    do k = 1, n
        vec(k) = vec(k)**1.5d0 ! so vec(k)^1.5
    end do
```

end

Times with $n=10000$ and called 10000 on a 2 GHz AMD64.

Compiler -03	power	opt. power
Intel	1.2	1.2
g95	8.2	1.6
gfortran	8.1	1.6

Looking at the assembly output from Intel's compiler:
fsqrt
fmulp \quad \%st, \%st (1) $<---$ NOTE
g95 and gfortran call pow (uses exp and log).

In "opt. power" I have written the loop this way:

```
do k}=1,
    vec(k) = sqrt(vec(k)) * vec(k)
end do
```


An SSE-example

We need an optimizing compiler that produces code using the special vector instructions (or we can program in assembly). For example (using the default compiler):
\% ifort -03 -xSSE3 -vec_report3 files...
dot_ex.f90(34) : (col. 3) remark: LOOP WAS VECTORIZED.

```
! A simple benchmark
    s = 0.0
    do k=1,10000
        s = s + x (k) * y(k)
    end do
```

Called 100000 times. Here are some typical times on two systems:

single		double	
no vec	vec	no vec	vec
1.60	0.38	1.80	0.92
0.83	0.41	0.99	0.80

Some compilers vectorize automatically.

Sppedup may differ, also not all codes can be vectorized.

Disadvantage: the x87-FPU uses double extended precision, 64 bit mantissa. SSE2 uses 24 bits (single precision) or 53 bits (double precision). You may get different results.

Eliminating constant expressions from loops

```
pi \(=3.14159265358979 \mathrm{do}\)
do \(k=1,1000000\)
    \(x(k)=(2.0 * \mathrm{pi}+3.0) * y(k) \quad\) ! eliminated
end do
do \(k=1,1000000\)
    \(x(k)=\exp (2.0) * y(k) \quad\) ! probably eliminated
end do
do \(k=1,1000000\)
    \(x(k)=\) my_func(2.0) * \(y(k) \quad\) ! cannot be eliminated
end do
```

Should use PURE functions, my_func may have side-effects.

Input-output

We need to store 10^{8} double precision numbers in a file.
A local disk was used for the tests. Intel's Fortran compiler on an Intel Core Duo. Roughly the same times in C.

Test Statement		time (s) size (Gbyte)		
1	write (10,	$(1$ pe23.16)') $\times(k)$	415.1	2.24
2	write (10) $\times(k)$	274.4	1.49	
3	write (10)	$(\operatorname{vec}(\mathrm{j}), \mathrm{j}=1,10000)$	1.1	0.74

In the third case we write $10^{8} / 10^{4}$ records of 10^{4} numbers each.
File sizes:

$$
\begin{aligned}
& 1: \underbrace{10^{8}}_{\text {\# of numbers }} \cdot \underbrace{(23+1)}_{\text {characters }+ \text { newline }} / \underbrace{2^{30}}_{\text {Gbyte }} \approx 2.24 \\
& 2: \underbrace{10^{8}}_{\text {\# of numbers }} \cdot \underbrace{(8+4+4)}_{\text {number + delims }} / \underbrace{2^{30}}_{\text {Gbyte }} \approx 1.49 \\
& 3:[\underbrace{10^{8}}_{\# \text { of numbers }} \cdot \underbrace{8}_{\text {number }}+\left(10^{8} / 10^{4}\right) \cdot \underbrace{(4+4)}_{\text {delims }}] / \underbrace{2^{30}}_{\text {Gbyte }} \approx 0.74
\end{aligned}
$$

89
89

Virtual memory and paging

- Simulate larger memory using disk.
- Virtual memory is divided into pages, perhaps 4 or 8 kbyte.
- Moving pages between disk and physical memory is known as paging.
- Avoid excessive use. Disks are slow.
- Paging can be diagnosed by using your ear (if you have a local swap disk), or using the sar-command, sar -B interval count, so e.g. sar -B 13600 .
vmstat works on some unix-systems as well and the timecommand built into tesh reports a short summary.

Portability of binary files?

- Perhaps
- File structure may differ
- Byte order may differ
- Big-endian, most significant byte has the lowest address ("big-end-first").
- The Intel processors are little-endian ("little-end-first").

On a big-endian machine
write(10) $-1.0 d-300,-1.0 d 0,0.0 d 0,1.0 d 0,1.0 d 300$

Read on a little-endian
$2.11238712 \mathrm{E}+125 \quad 3.04497598 \mathrm{E}-3190$.
3.03865194E-319 -1.35864115E-171

Optimizing for locality，a few examples

Data re－use；loop fusion

```
v_min = v(1)
do k = 2, n
    if (v(k) < v_min ) v_min = v(k) ! fetch v(k)
end do
v_max = v(1)
do k}=2,
    if ( v(k) > v_max ) v_max = v(k) ! fetch v(k) again
end do
```

Merge loops data re－use，less loop overhead．

```
v_min \(=\mathrm{v}(1)\)
\(v \_m a x=v(1)\)
do \(k=2, n\)
    if ( \(v(k) \quad\) ( \(v\) _min ) then \(\quad v(k)\) is fetched here
        \(v\) _min \(=v(k)\)
    elseif ( v(k) > v_max ) then ! and re-used here
        \(v_{\text {_max }}=\mathrm{v}(\mathrm{k})\)
    end if
end do
```

On some systems the following loop body is faster

```
\(v k=v(k)\)
! optional
    if (v_min < vk) v_min = vk ! can use \(v(k)\) instead
    if (v_max > vk) v_max \(=v k\)
```

```
vk = v(k)
```

vk = v(k)
$v _m i n=\min \left(v _m i n, \quad v k\right)$
v_max $=\max \left(v _m a x, ~ v k\right)$

```
or

\section*{The importance of small strides}

If no data re－use，try to have locality of reference．
Small strides．
\(v(1), v(2), v(3), \ldots\), stride one
\(v(1), v(3), v(5), \ldots\), stride two
slower
\(\mathrm{s}=0.0\)
do row \(=1\) ， n
do \(\operatorname{col}=1, n\)
\(s=s+A(r o w\), col）
end do
end do
\(A(1,1)\)
A（2，1）
．．．first column
A（ \(\mathrm{n}, \mathrm{I}\) ）

A（1，2）
\(A(2,2)\)
．．second column
A（ \(\mathrm{n}, 2\) ）
•••・ーーーー

A（1，n）
A（ \(2, \mathrm{n}\) ）
．．．n：th column
\(A(n, n)\)
Some compilers can switch loop order（loop interchange）．
In C the leftmost alternative will be the faster．

When dealing with large，but unrelated，data sets it may be faster to split the loop in order to use the caches better．Here is a contrived example：
```

integer, parameter :: n = 5000
double precision, dimension(n, n) :: A, B, C, D
•••
sum_ab = 0.0
sum_cd = 0.0
do col = 1, n
do row = 1, n ! the two sums are independent
sum_ab = sum_ab + A (row, col) * B (col, row)
sum_cd = sum_cd + C(row, col) * D(col, row)
end do
end do
!
! Split the computation
!
sum_ab = 0.0
do col = 1, n
do row = 1, n
sum_ab = sum_ab + A(row, col)* B(col, row)
end do
end do
sum_cd = 0.0
do col = 1, n
do row = 1, n
sum_cd = sum_cd + C(row, col) * D(col, row)
end do
end do

```

When \(n=5000\) the first loop requires 4.9 s and the second two 0.84 s （together）on a \(2.4 \mathrm{GHz}, 4 \mathrm{Gbyte}\) ，Opteron．

Performance on three systems．Compiling using－03 in the first test and using－03－ipo in the second．
\begin{tabular}{lcccccc}
\hline & C & Fortran & C & Fortran & C & Fortran \\
\hline \hline By row & 0.7 s & 2.9 s & 0.6 s & 2.4 s & 0.5 s & 1.5 s \\
By column & 4.6 s & 0.3 s & 2.4 s & 0.6 s & 1.6 s & 0.5 s \\
\hline By row－ipo & 0.3 s & 0.3 s & 0.6 s & 0.6 s & 0.5 s & 0.5 s \\
By column－ipo & 2.9 s & 0.3 s & 0.6 s & 0.6 s & 1.5 s & 0.5 s \\
\hline
\end{tabular}
－ipo，interprocedural optimization i．e．optimization between routines（even in different files）gives a change of loop order，at least for Fortran，in this case．Some Fortran compilers can do this just specifying－03，and this happens Ferlin if we put the main－program and the subroutines in the same file．
ferlin＞ifort－03 main．f90 sub．f90 Separate files sub．f90（27）：remark：LOOP WAS VECTORIZED．
ferlin＞ifort－03－ipo main．f90 sub．f90
ipo：remark \＃11000：performing multi－file optimizations
ipo：remark \＃11005：generating object file／tmp／ipo＿ifc
main．f90（13）：remark：PERMUTED LOOP WAS VECTORIZED．
main．f90（19）：remark：LOOP WAS VECTORIZED．
ferlin＞ifort－03 all．f90
One file
all．f90（13）：remark：PERMUTED LOOP WAS VECTORIZED．
all．f90（20）：remark：LOOP WAS VECTORIZED．
all．f90（52）：remark：LOOP WAS VECTORIZED．

\section*{Blocking and large strides}

Sometimes loop interchange is of no use.
```

$s=0.0$
do row $=1$, n
do col $=1$, n
$\mathbf{s}=\mathbf{s}+\mathrm{A}$ (row, col) * B (col, row)
end do
end do

```

Blocking is good for data re-use, and when we have large strides.
Partition A and B in square sub-matrices each having the same order, the block size.

Treat pairs of blocks, one in A and one in B such that we can use the data which has been fetched to the L1 data cache.
Looking at two blocks:


The block size must not be too large. Must be able to hold all the grey elements in A in cache (until they have been used).

97

One can study the behaviour in more detail.

PAPI = Performance Application Programming Interface http://icl.cs.utk.edu/papi/index.html
PAPI uses hardware performance registers, in the CPU, to count different kinds of events, such as L1 data cache misses and TLBmisses.

TLB \(=\) Translation Lookaside Buffer, a cache in the CPU that is used to improve the speed of translating virtual addresses into physical addresses.

See the Springer article for an example.

This code works even if \(\mathbf{n}\) is not divisible by the block size).
```

! first_row = the first row in a block etc.
do first_row = 1, n, block_size
last_row = min(first_row + block_size - 1, n)
do first_col = 1, n, block_size
last_col = min(first_col + block_size - 1, n)
do row = first_row, last_row ! sum one block
do col = first_col, last_col
s = s + A(row, col) * B(col, row)
end do
end do
end do
end do

```

The left plot shows timings for \(n=5000\) and different block sizes using ifort -03 on an Intel Core Duo. The second figure shows the speedup for \(n=10^{3}, 2 \cdot 10^{3}, \ldots, 10^{4}\) using the optimal block size.


98

\section*{Two important libraries}

BLAS (the Basic Linear Algebra Subprograms) are the standard routines for simple matrix computations.
( \(s\) single, d double, c complex, \(\mathbf{z}\) double complex). Examples:
BLAS1: \(\mathrm{y}:=\mathrm{a} * \mathrm{x}+\mathrm{y}\) one would use daxpy
BLAS2: dgemv can compute \(y:=a * A * x+b * y\)
BLAS3: dgemm forms \(C:=a * A * B+b * C\)
daxpy: \(\mathcal{O}(n)\) data, \(\mathcal{O}(n)\) operations
dgemv: \(\mathcal{O}\left(n^{2}\right)\) data, \(\mathcal{O}\left(n^{2}\right)\) operations
dgemm: \(\mathcal{O}\left(n^{2}\right)\) data, \(\mathcal{O}\left(n^{3}\right)\) operations, data re-use
Multiplication of \(n \times n\)-matrices, Intel Core Duo.


Tested textbook "row times column" using gfortran and ifort with and without vectorization. MKL is Intel's MKL-library. Goto is Goto-BLAS by Kazushige Goto.
The fast codes use blocking and other tricks. A goal of GotoBLAS is to minimize the number of TLB-misses.
Goto-BLAS on two threads is roughly equal to MKL on two threads.

The following figure shows the number of \(\left(+,{ }^{*}\right)\)-pairs executed per second. The dashed lines show the clock frequency and twice the frequency.


\section*{Inlining}
moving the body of a short procedure to the calling routine.

Calling a procedure or a function takes time and may break the pipelining. So the compiler (or the programmer) can move the body of a short subprogram to where it is called. Some compilers do this automatically when the short routine resides in the same file as the calling routine. A compiler may have a flag telling the compiler to look at several files. Using some compilers you can specify which routines are to be inlined.

\section*{Indirect addressing, pointers}

Sparse matrices, PDE-meshes...
Bad memory locality, poor cache performance.
```

do k=1,n
j = ix(k)
y(j) = y(j) + a * x(j)
end do

```
\begin{tabular}{cccc}
\hline system & random ix & ordered \(\mathbf{i x}\) & no \(\mathbf{i x}\) \\
\hline 1 & 39 & 16 & 9 \\
2 & 56 & 2.7 & 2.4 \\
3 & 83 & 14 & 10 \\
\hline
\end{tabular}

LAPACK is the standard library for (dense):
- linear systems
- eigenvalue problems
- linear least squares problems

There is no support for large sparse problems, although there are routines for banded matrices of different kinds.

LAPACK is built on top of BLAS (BLAS3 where possible). When using LAPACK, it is important to have optimized BLAS.

You are going to test this in one of the assignments.

\section*{If-statements}

If-statements in a loop may stall the pipeline. Modern CPUs and compilers are rather good at handling branches, so there may not be a large delay.
```

Original version
do k = 1, n
if (k == 1) then
statements
else
statements
end if
end do

```
if ( most probable ) then
else if ( second most probable ) then
    ...
else if (third most probable) then
    ...
if (a(k) and. \(b(k))\) then least likely first
if (a(k).or. \(b(k))\) then most likely first

\section*{Alignment}
```

integer*1 work(100001)
! work(some_index) in a more general setting
call do_work(work(2), 12500) ! pass address of work(2
end
subroutine do_work(work, n)
integer n
double precision work(n)
work(1) = 123

```

May produce "Bus error".
Alignment problems.

It is usually required that double precision variables are stored at an address which is a multiple of eight bytes (multiple of four bytes for a single precision variable).

The slowdown caused by misalignment may easily be a factor of 10 or 100 .
valgrind and PAPI are two tools for counting cache misses.
http://valgrind.org/ man valgrind and
/usr/share/doc/valgrind-3.1.1/html/index.html
From 22nd stanza in "Grímnismál" (poetic Edda). In old Icelandic and Swedish:
\begin{tabular}{ll} 
Valgrind heitir, & \begin{tabular}{l} 
Valgrind den heter, \\
er stendr velli á \\
som varsnas på slätten,
\end{tabular} \\
heilög fyr helgum dyrum; & helig framför helig dörrgång; \\
forn er sú grind, & fornåldrig är grinden, \\
en ■at fáir vitu, & och få veta, \\
hve hon er í lás lokin. & hur hon i lås är lyckt.
\end{tabular}
and a reasonable (I believe) English translation:
Valgrind is the lattice called,
in the plain that stands,
holy before the holy gates:
ancient is that lattice,
but few only know
how it is closed with lock.
The main gate of Valhall (Eng. Valhalla), hall of the heroes slain in battle.

From the manual:
"valgrind is a flexible program for debugging and profiling Linux executables. It consists of a core, which provides a synthetic CPU in software, and a series of "tools", each of which is a debugging or profiling tool."

The memcheck tool performs a range of memory-checking func tions, including detecting accesses to uninitialized memory, misuse of allocated memory (double frees, access after free, etc.) and detecting memory leaks

\section*{Closing notes}

Two basic tuning principles:
- Improve the memory access pattern
- Locality of reference
- Data re-use

Stride minimization, blocking, proper alignment and the avoidance of indirect addressing and aliasing.
- Use parallel capabilities of the CPU
- Avoid data dependencies and aliasing
- Loop unrolling
- Inlining
- Elimination of if-statements

Choosing a good algorithm and a fast language, handling files in an efficient manner, getting to know ones compiler and using tuned libraries are other very important points.

We will use the cachegrind tool:
cachegrind is a cache simulator. It can be used to annotate every line of your program with the number of instructions executed and cache misses incurred.
valgrind --tool=toolname program args
Call the following routine
void sub0 (double A[1000][1000], double*s)
\{
int j, k, n = 1000;
*s \(=0 ;\)
for (j = 0; j < n ; \(\mathbf{j + + )}\) for ( \(k=0 ; k<n ; k++)\)
*s += A[k][j];
\}
Compile with -g:
\% gcc -g main.c sub.c
I have edited the following printout:
\% valgrind --tool=cachegrind a.out
==5796== Cachegrind, an I1/D1/L2 cache profiler.
\(==5796=\) Copyright (C) 2002-2005, and GNU GPL'd, by Nicholas Nethercote et al.
==5796== For more details, rerun with: -v
\(9.990000 \mathrm{e}+086.938910 \mathrm{e}-01\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline I refs: & 46,146,658 & & & & & \\
\hline I1 misses: & 756 & & & & & \\
\hline L2i misses: & 748 & & & & & \\
\hline I1 miss rate: & 0.00\% & & & & & \\
\hline L2i miss rate: & 0.00\% & & & & & \\
\hline D refs: & 21,073,437 & \multicolumn{2}{|l|}{(18, 053, 809} & rd+3 & 019,628 & wr) \\
\hline D1 misses: & 255,683 & \((\) & 130,426 & rd+ & 125,257 & wr) \\
\hline L2d misses: & 251,778 & \((\) & 126,525 & rd+ & 125,253 & wr) \\
\hline D1 miss rate: & 1.2\% & \((\) & 0.7\% & + & 4.1\% & ) \\
\hline L2d miss rate: & 1.1\% & ( & 0.7\% & + & 4.1\% & ) \\
\hline L2 refs: & 256,439 & \((\) & 131,182 & & 125,257 & \\
\hline L2 misses: & 252,526 & & 127,273 & rd+ & 125,253 & wr) \\
\hline L2 miss rate: & 0.3\% & ( & 0.1\% & + & 4.1\% & \()\) \\
\hline
\end{tabular}
valgrind produced the file, cachegrind.out. 5796
( 5796 is a pid). To see what source lines are responsible for the cache misses we use cg_annotate -pid source-file I have edited the listing and removed the columns dealing with the instruction caches (the lines are too long otherwise).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Dr & D1mr & D2mr & Dw & D1mw & D2mw & \\
\hline - & - & - & - & - & - & void sub0 \\
\hline 0 & 0 & 0 & 2 & 0 & 0 & \(\{\) \\
\hline 0 & 0 & 0 & 1 & 0 & 0 & int j, k, \\
\hline 1 & 0 & 0 & 2 & 0 & 0 & *s \(=0\); \\
\hline 3,002 & 0 & 0 & 1 & 0 & 0 & for (j \(=\) \\
\hline 3,002,000 & 0 & 0 & 1,000 & 0 & 0 & for (k = \\
\hline 7,000,000 & 129,326 & 125,698 & 1,000,000 & 0 & 0 & *s \(+=A[k\) \\
\hline 3 & 0 & 0 & 0 & 0 & 0 & \} \\
\hline
\end{tabular}

Dr: data cache reads (ie. memory reads), D1mr: L1 data cache read misses D2mr: L2 cache data read misses Dw: D cache writes (ie. memory writes) D1mw: L1 data cache write misses D2mw: L2 cache data write misses

To decrease the number of Dw:s we use a local summation variable (no aliasing) and optimze, -03.
```

double local_s = 0;
for (j = 0; j < n; j++)
for (k = 0; k < n; k++)
local_s += A[k][j];
*s = local_s;

```

We can also interchange the loops. Here is the counts for the summation line:
\begin{tabular}{rrrr} 
Dr & D1mr & D2mr \\
\(7,000,000\) & 129,326 & 125,698 & *s \(+=A[k][j] ;\) previous
\end{tabular}

1,000,000 125,995 125,696 local_s, -03
1,000,000 125,000 125,000 above + loop interchange
\(\mathrm{Dw}=\mathrm{D} 1 \mathrm{mw}=\mathrm{D} 2 \mathrm{mw}=0\)
valgrind cannot count TLB-misses, so switch to PAPI, which can.
PAPI \(=\) Performance Application Programming Interface
http://icl.cs.utk.edu/papi/index.html
PAPI requires root privileges to install, so I have tested the code at PDC.

PAPI uses hardware performance registers, in the CPU, to count different kinds of events, such as L1 data cache misses and TLBmisses. Here is (a shortened example):
```

% icc main.c sub.c
% papiex -m -e PAPI_L1_DCM -e PAPI_L2_DCM \
-e PAPI_L3_DCM -e PAPI_TLB_DM -- ./a.out

```

Processor:
Clockrate:
Real usecs:
Real cycles:
Proc usecs:
Proc cycles:

PAPI_L1_DCM:
PAPI_L2_DCM:
PAPI_L3_DCM:
PAPI_TLB_DM:

Itanium 2
1299.000732

880267
1143457807
880000
1143120000

2331
3837287
3118846
24086796

Event descriptions:
Event: PAPI_L1_DCM: Level 1 data cache misses
Event: PAPI_L2_DCM: Level 2 data cache misses
Event: PAPI_L3_DCM: Level 3 data cache misses
Event: PAPI_TLB_DM: Data TLB misses
The values change a bit between runs, but the order of magnitude stays the same. Here are a few tests. I call the function 50 times in a row. time in seconds. cycl \(=10^{9}\) process cycles. L1, L2, L3 and TLB in kilo-misses. local using a local summation variable.
\begin{tabular}{lrrrrr} 
& icc -00 & icc -03 & icc -03 & \multicolumn{1}{l}{ icc -03 } \\
local & loop interc \\
time: & 3.5 & 0.6 & 0.07 & 0.3 & \\
cycl: & 4.6 & 0.8 & 0.09 & 0.4 & Giga \\
L1: & 13 & 4 & 3 & 4 & kilo \\
L2: & 3924 & 3496 & 1923 & 2853 & kilo \\
L3: & 3169 & 3018 & 1389 & 2721 & kilo \\
TLB: & 24373 & 24200 & 24 & 24 & kilo
\end{tabular}
time and cycl are roughly the same, since the clockrate is 1.3 GHz . Note that the local summation variable, in column three, makes a dramatic difference. This is the case for loop interchange as well (column four) where we do not have a local summation variable (adding one gives essentially column three).

Note the drastic reduction of TLB-misses in the fast runs.

Here comes PAPI on the blocking example,
\(\mathbf{s}=\mathbf{s}+\mathbf{A}(\mathbf{i}, \mathbf{k}) \times \mathrm{B}(\mathrm{k}, \mathrm{j})\), with ifort -03.
\(\mathrm{n}=5000\) and ten calls.
On the Itanium:
\begin{tabular}{lrrrrrr} 
bs: & NO BL & 16 & 32 & 40 & 64 & 128 \\
time : & 5.6 & 2.0 & 1.6 & 1.5 & 1.6 & 5.1 \\
L1: & 69 & 46 & 41 & 43 & 44 & 52 kilo \\
L2: & 306 & 51 & 48 & 52 & 54 & 59 Mega \\
L3: & 31 & 33 & 38 & 38 & 36 & 35 Mega \\
TLB: & 257 & 19 & 12 & 10 & 15 & 267 Mega
\end{tabular}

Note again the drastic reduction of TLB-misses.

\section*{Profiling on a higher level}

Most unix systems have prof and gprof which can be used to find the most time consuming routines. gcov (Linux) (tcov Sun) can find the loops (statements), in a routine, that are executed most frequently.
man prof, man gprof, man gcov for details.
This is how you use gprof on the student system.
The flags are not standardised, so you have to read the documentation, as usual.
```

ifort -03 -qp prog.f90 sub.f90
icc -03 -qp prog.c sub.f90
gfortran -03 -pg prog.f90 sub.f90
g95 -03 -pg prog.f90 sub.f90
gcc -03 -pg prog.c sub.c
g++ -03 -pg prog.cc sub.c
./a.out produces gmon.out
gprof

```

One can use other options, of course, and have more than two files. One should link with the profiling options as well since it may include profiled libraries.
Profiling disturbs the run; it takes more time.
The Intel compilers have support for "Profile-guided Optimization", i.e. the information from the profiled run can be used by the compiler (the second time you compile) to generate more efficient code.

Example: Arpack, a package for solving large and sparse eigenvalue problems, \(\boldsymbol{A x}=\boldsymbol{\lambda} \boldsymbol{x}\) and \(\boldsymbol{A x}=\boldsymbol{\lambda} \boldsymbol{B x}\). I fetched a compressed tar-file, unpacked, read the README-file, edited the configuration file, and compiled using make. After having corrected a few Makefiles everything worked. I then recompiled using the compiler options for gprof and tcov (on a Sun; I have not run this one the AMD-system).

I used the f90-compiler even though Arpack is written in Fortran77. (There is also Arpack ++ , a collection of classes that offers C++ programmers an interface to Arpack.)

\section*{First gprof:}
 etc.

The first part of the output is the flat profile, such a profile can be produced by prof as well. Part of it, in compressed form, comes on the next page. The flat profile may give a sufficient amount of information.

\section*{A few words about gcov. This command tells us}
- how often each line of code executes
- what lines of code are actually executed

Compile without optimization. It works only with gec. So it should work with g 95 and gfortran as well. There may, however, be problems with different versions of gec and the geclibraries. See the web-page for the assignment for the latest details.

To use gcov on the student system (not Intel in this case) one should be able to type:
```

g95 -fprofile-arcs -ftest-coverage prog.f90 sub.f90
./a.out
gcov prog.f90 creates prog.f90.gcov
gcov sub.f90 creates sub.f90.gcov
less prog.f90.gcov etc.
and for C

```

```

similarly for gfortran and g++.

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \% & cumulative & self & & self & total & \\
\hline time & seconds & seconds & calls & s/call & s/call & name \\
\hline 79.10 & 8.10 & 8.10 & 322 & 0.03 & 0.03 & dgemv_ \\
\hline 8.50 & 8.97 & 0.87 & 60 & 0.01 & 0.01 & dger_ \\
\hline 4.10 & 9.39 & 0.42 & 58 & 0.01 & 0.01 & dgttrs \\
\hline 3.22 & 9.72 & 0.33 & 519 & 0.00 & 0.00 & dcopy_ \\
\hline 2.25 & 9.95 & 0.23 & 215 & 0.00 & 0.00 & dnrm2_ \\
\hline \multirow[t]{2}{*}{0.49} & 10.00 & 0.05 & 562 & 0.00 & 0.00 & _open \\
\hline & \multicolumn{6}{|r|}{of lines deleted ...} \\
\hline \multirow[t]{2}{*}{0.00} & 10.24 & 0.00 & 1 & 0.00 & 10.14 & main \\
\hline & . lot & \multicolumn{2}{|l|}{s of lines dele} & ed & & \\
\hline 0.00 & 10.24 & 0.00 & 1 & 0.00 & 0.00 & strchr \\
\hline
\end{tabular}
name is the name of the routine (not the source file). The Suncompiler converts the routine name to lower case and adds _ . ___open is a system (compiler?) routine.

The columns are:
\% time the percentage of the total running time of the program used by this function. Not the one it calls, look at main.
cumulative secondsa running sum of the number of seconds accounted for by this function and those listed above it.
self secondsthe number of seconds accounted for by this function alone. This is the major sort for this listing.
calls the number of times this function was invoked, if this function is profiled, else blank.
self ms/callthe average number of milliseconds spent in this function per call, if this function is profiled, else blank.
total ms/callthe average number of milliseconds spent in this function and its descendents per call, if this function is profiled, else blank. Note main.
dgemv is a BLAS routine, double general matrix vector multiply:
```

dgemv - perform one of the matrix-vector operations
y := alpha*A*x + beta*y or y := alpha*A'*x + beta*y

```

I have compiled the Fortran code instead of using a faster performance library so we can look at the source code.

Let us run tcov on dgemv.
Part of the output (compressed):
\begin{tabular}{|c|c|}
\hline 168 -> & DO 60, J \(=1, \mathrm{~N}\) \\
\hline 4782 -> & IF ( X (JX) . NE. ZERO ) THEN \\
\hline 4740 -> & TEMP \(=\) ALPHA* \(\mathbf{X}\) (JX) \\
\hline 77660160 -> & \[
\text { DO } \begin{aligned}
50, I & =1, M \\
Y(I) & =Y(I)+\operatorname{TEMBA}(I, J)
\end{aligned}
\] \\
\hline 50 & CONTINUE \\
\hline & END IF \\
\hline 4782 -> & \(J X=J X+I N C X\) \\
\hline 60 & CONTINUE \\
\hline
\end{tabular}
\begin{tabular}{lr} 
Top 10 & Blocks \\
Line & Count \\
& \\
211 & 77660160 \\
238 & 50519992 \\
177 & 871645
\end{tabular}

Note that this code is very poor. Never use the simple Fortran BLAS- or Lapack routines supplied with some packages. One lab deals with this issue.

Matlab has a built-in profiling tool. help profilefor more details. Start Matlab (must use the GUI)
>> profile on
>> run \% The assignment
Elapsed time is 1.337707 seconds.
Elapsed time is 13.534952 seconds.
>> profile report \% in mozilla or netscape
>> profile off
You can start the profiler using the GUI as well (click in "Profiler" using "Desktop" under the main meny). The output comes in a new window and contains what looks like the flat profile from gprof.

One can see the details in individual routines by clicking on the routine under Function Name This produces a gcov-type of listing. It contains the number of times a line was executed and the time it took.

\section*{More about gprof}
gprof produces a call graph as well. It shows, for each function, which functions called it, which other functions it called, and how many times. There is also an estimate of how much time was spent in the subroutines called by each function. This list is edited.


Each routine has an index (see table at the end) and is presented between ---lines. 8.10 s was spent in dgemv itself, \(79.1 \%\) of total (including calls from dgemv). dsapps, dlarf, dsaitr (parents) called dgemv which in turn called lsame, a child. dsapps made 33 out of 322 calls and dgemv took 0.83 s for the calls. dgemv called 1same 1120 of 3179 times, which took no measurable time (self).
children: For dgemv it is the total amount of time spent in all its children (lsame). For a parent it is the amount of that time that was propagated, from the function's children (1same), into this parent. For a child it is the amount of time that was propagated from the child's children to dgemv.

118

\section*{Using Lapack from Fortran and C}

Use Lapack to solve a problem like:
\[
\left[\begin{array}{rrrrr}
1 & -1 & -2 & -3 & -4 \\
1 & 1 & -1 & -2 & -3 \\
2 & 1 & 1 & -1 & -2 \\
3 & 2 & 1 & 1 & -1 \\
4 & 3 & 2 & 1 & 1
\end{array}\right] x=\left[\begin{array}{r}
-9 \\
-4 \\
1 \\
6 \\
11
\end{array}\right]
\]

The solution is the vector of ones. We use the Lapack-routine dgesv from Lapack. Here is a man-page:

\section*{NAME}

DGESV - compute the solution to a real system of linear equations \(A\) * \(X=B\),

SYNOPSIS
SUBROUTINE DGESV( N, NRHS, A, LDA, IPIV, B, LDB, INFO )
INTEGER INFO, LDA, LDB, N, NRHS
INTEGER IPIV (*)
DOUBLE PRECISION A( LDA, * ), B( LDB, * )

\section*{PURPOSE}

DGESV computes the solution to a real system of linear equations \(A * X=B\), where \(A\) is an \(N-b y-N\) matrix and \(X\) and \(B\) are \(N\)-by-NRHS matrices.
The LU decomposition with partial pivoting and row
interchanges is used to factor \(A\) as \(A=P * L * U\),
where \(P\) is a permutation matrix, \(L\) is unit lower
triangular, and \(U\) is upper triangular. The factored
form of \(A\) is then used to solve the system of equations
A * \(\mathbf{X}=\mathrm{B}\).

\section*{ARGUMENTS}

N (input) INTEGER
The number of linear equations, i.e., the order of the matrix \(A\). \(N>=0\).

The number of right hand sides, i.e., the numbe of columns of the matrix \(B\). NRHS \(>=0\).
(input/output) DOUBLE PRECISION array, dimensio (LDA,N) On entry, the \(N-b y-N\) coefficient matrix A. On exit, the factors \(L\) and \(U\) from the factorization \(A=P * L * U\); the unit diagonal elements of \(L\) are not stored.
(input) INTEGER
The leading dimension of the array \(A\). LDA \(>=\max (1, N)\).

IPIV
(output) INTEGER array, dimension (N)
The pivot indices that define the permutation matrix \(P\); row \(i\) of the matrix was interchanged with row IPIV(i).

B

\section*{(input) INTEGER}

The leading dimension of the array \(B\).
LDB \(>=\max (1, N)\).
INFO (output) INTEGER
= 0 : successful exit
\(<0\) : if INFO = -i, the i-th argument had an illegal value
\(>0\) : if INFO = \(i\), \(U(i, i)\) is exactly zero. The factorization has been completed, but the factor \(U\) is exactly singular, so the solution could not be computed.

121

The following optimized libraries contain Lapack and BLAS (and perhaps routines for fft, sparse linear algebra, etc. as well).
- AMD: ACML (AMD Core Math Library).
- Intel: MKL (Intel Math Kernel library).
- SGI: complib.sgimath (Scientific and Mathematical Library).
- IBM: ESSL (Engineering and Scientific Subroutine Library).
- Sun: Sunperf (Sun Performance Library).

There may be parallel versions.
Now for \(\mathbf{C}\) and \(\mathrm{C}++\)
Fairly portable (do not use local extensions of the compiler). Think about: In C/C++
- matrices are stored by row (not by column as in Fortran)
- matrices are indexed from zero
- call by reference for arrays, call by value for scalars
- the Fortran compiler MAY add an underline to the name
- you may have to link with Fortran libraries
(mixing C and Fortran I/O may cause problems, for example)
- \(\mathrm{C}++\) requires an extern-declaration, in C you do not have to supply it (but do)
- make sure that C and Fortran types are compatible (number of bytes)
- some systems have C-versions of Lapack

In the example below I have linked with the Fortran-version since not all systems have C-interfaces. Make sure not to call dgesv from C on the Sun, if you want the Fortran-version (dgesv gives you the C -version).

In Fortran90, but using the F77 interface, and F77-type declarations (to get shorter lines) this may look like:
```

program main
integer, parameter : $\mathrm{n}=10$, lda $=\mathrm{n}, \&$
$l \mathrm{db}=\mathrm{n}, \mathrm{nrhs}=1$
integer : info, row, col, ipiv(n)
double precision $:: A(l d a, n), b(l d b)$
do $\operatorname{col}=1, \mathrm{n}$
do row $=1$, n
$A($ row, col) $=$ row - col
end do
$\mathrm{A}(\mathrm{col}, \mathrm{col})=1.0 \mathrm{dO}$
b(col) $\quad=1+(n *(2 * \operatorname{col}-n-1)) / 2$
end do
call dgesv (n, nrhs, A, lda, ipiv, $b, l d b, i n f o$)
if (info $==0$) then
print*, "Maximum error $=$ ", maxval (abs (b - 1.OdO))
else
print*, "Error in dgesv: info = ", info
end if
end program main
\% Compile and link, somehow, to Lapack
\% a.out
Maximum error $=4.218847493575595 \mathrm{E}-15$

```

Where can we find dgesv? There are several options. Fetching the Fortran-code from Netlib, using a compiled (optimized) library etc. One of the assignments, Lapack (Uniprocessor optimization), deals with these questions.
```

\#include <math.h>
\#include <stdio.h>
\#define _N 10
\#ifdef __cplusplus
extern "C" void /* For C++ */
\#else
extern void /* For C */
\#endif
dgesv_(int *, int *, double *, int *, int[],
double[], int *, int *);
/*
* int [] or int *. double [][] is NOT OK but
* double [][10] is, provided we
* call dgesv_ with A and not \&A[O][O].
*/
int main()
{
int n = _N, lda = _N, ldb = _N, nrhs = 1,
info, row, col, ipiv[_N];
double A[_N][_N], b[_N], s, max_err;
/* Make sure you have the correct mix of types.*/
printf("sizeof(int) = %d\n", sizeof(int));
/* Indexing from zero.*/
for (col = 0; col < n; col++) {
for (row = 0; row < n; row++)
A[col][row] = row - col; A Note TRANSPOSE */
b[col] = 1 + (n * (1 + 2 * col - n)) / 2;
A[col][col] = 1;
}

```
```

/* Note underline and \& for the scalar types.
* \&A[0][0] not to get a
* conflict with the prototype.
*/
dgesv_(\&n, \&nrhs, \&A[0][0], \&lda, ipiv, b,
\&ldb, \&info);
if (info) {
printf("Error in dgesv: info = %d\n", info);
return 1;
} else {
max_err = 0.0;
for (row = 0; row < n; row++) {
s = fabs(b[row] - 1.0);
if (s > max_err)
max_err = s;
}
printf("Maximum error = %e\n", max_err);
return 0;
}
}

```

We would call the function by typing:
>> [x, info] = bandsolve (A, b);
where \(A\) stores the matrix in compact form. info returns some status information (A not positive definite, for example).
bandsolve can be an m-file, calling a MEX-file. Another alternative is to let bandsolve be the MEX-file. The first alternative is suitable when we need to prepare the call to the MEX-file or clean up after the call.

The first alternative may look like this:
function \([x\), info] = bandsolve ( \(A, b\) )
A_tmp \(=\mathrm{A}\); \(\%\) copy A
b_tmp \(=\mathrm{b}\); \% copy b
\% Call the MEX-routine
[x, info] = bandsolve_mex (A_tmp, b_tmp);
I have chosen to make copies of \(A\) and \(b\). The reason is that the Lapack-routine replaces A with the Cholesky factorization and \(b\) by the solution. This is not what we expect when we program in Matlab. If we have really big matrices, and if we do not need \(A\) and \(b\) afterwards we can skip the copy (although the Matlab-documentation says that it "may produce undesired side effects").

I will show the code for the second case where we call the MEXfile directly. Note that we use the file name, bandsolve when invoking the function. There should always be a mexFunctionin the file, which is the entry point. This is similar to a C-program, there is always a main-routine.

It is possible to write MEX-files in Fortran, but is more natural to use C.

\section*{Interfacing Matlab with C}

It is not uncommon that we have a program written in C (or Fortran) and need to communicate between the program and Matlab.

The simplest (but not the most efficient) way the fix the communication is to use ordinary text files. This is portable and cannot go wrong (in any major way). The drawback is that it may be a bit slow and that we have to convert between the internal binary format and text format. We can execute programs by using the unix-command (or ! or system).

One can do more, however:
- Reading and writing binary MAT-files from C
- Calling Matlab as a function (Matlab engine)
- Calling a C- or Fortran-function from Matlab (using MEXfiles, compiled and dynamically linked C- or Fortran-routines)

In the next few pages comes a short example on how to use MEX-files.

\section*{MEX-files}

Let us write a C-program that can be called as a Matlab-function. The MEX-routine will call a band solver, written in Fortran, from Lapack for solving an \(A x=b\)-problem. The routine uses a Cholesky decomposition, where A is a banded, symmetric and positive definite matrix.
\(b\) contains the right hand side(s) and \(x\) the solution(s).
I fetched the routines from www. netlib.org
Matlab has support for solving unsymmetric banded systems, but has no special routines for the positive definite case.

First some details about how to store the matrix (for the band solver). Here an example where we store the lower triangle. The dimension is six and the number of sub- (and super-) diagonals is two.
\begin{tabular}{llllll} 
a11 & a22 & a33 & a44 & a55 & a66 \\
a21 & a32 & a43 & a54 & a65 & * \\
a31 & a42 & a53 & a64 & * & *
\end{tabular}

Array elements marked* are not used by the routine.
The Fortran-routine, dpbsv, is called the following way:
call dpbsv( uplo, \(n, k d, n B, A, l d a, B, l d b, i n f o)\) where
```

uplo = 'U': Upper triangle of A is stored
'L': Lower triangle of A is stored

```

We will assume that uplo = ' L ' from now on
\(n \quad=\) the dimension of \(A\)
kd \(=\) number of sub-diagonals
\(n B \quad=\) number of right hand sides (in \(B\) )
\(A \quad=\) packed form of \(A\)
lda \(=\) leading dimension of \(A\)
\(B \quad=\) contains the right hand side(s)
ldb \(=\) leading dimension of \(B\)
info \(=0\), successful exit
\(<0\), if info \(=-i\), the \(i-t h\) argument had an illegal value
\(>0\), if info \(=i\), the leading minor of order \(i\) of \(A\) is not positive definite, so the factorization could not be completed, and the solution has not been computed.
Here comes bandsolve.c (I am using C99-style comments). I will assume we use a 62 -bit system.
```

\#include <math.h>
// For Matlab
\#include "mex.h"
void dpbsv_(char *, int *, int *, int *, double *,
int *, double *, int *, int *);
void mexFunction(int nlhs, mxArray*plhs[],
int nrhs, const mxArray*prhs[])
{
double *px, *pA, *pb, *pA_tmp;
mxArray *A_tmp;
char uplo = 'L';
int k, A_rows, A_cols, b_rows, b_cols, kd, info;
// Check for proper number of arguments
if (nrhs != 2) {
mexErrMsgTxt("Two input arguments required.");
} else if (nlhs > 2) {
mexErrMsgTxt("Too many output arguments.");
}

```
    A_rows \(=\) mxGetM (prhs [0]);
    kd \(=\) A_rows - 1; // \# of subdiags
    A_cols \(=\operatorname{mxGetN}(\) prhs [0]); \(/ /=n\)
    b_rows \(=\) mxGetM (prhs [1]);
    b_cols \(=\) mxGetN (prhs[1]);
    if (b_rows !=A_cols || b_cols \(<=0\) )
        mexErrMsgTxt("Illegal dimension of \(b . ")\);

Some comments:
nrhs is the number of input arguments to the MEX-routine. prhs is an array of pointers to input arguments. prhs [0] points to a so-called, mxArray, a C-struct containing size-information and pointers to the matrix-elements.
prhs [0] corresponds to the first input variable, A etc.
Since one should not access the member-variables in the struct directly, there are routines to extract size and elements.
A_rows = mxGetM (prhs [0]) ;extracts the number of rows and A_cols \(=\) mxGetN (prhs [0]) ;extracts the number of columns.

The lines
```

plhs[0]=mxCreateDoubleMatrix(b_rows, b_cols, mxREAL)
plhs[1]=mxCreateDoubleMatrix(1, 1, mxREAL);

```
allocate storage for the results (of type mxREAL, i.e. ordinary double).

A_tmp \(=\) mxCreateDoubleMatrix (A_rows, A_cols, mxREAL); allocates storage for a copy of \(A\), since the Lapack-routine destroys the matrix.
\(\mathrm{px}=\mathrm{mxGetPr}(\mathrm{plhs}[0])\); extracts a pointer to the (real-part) of the matrix elements and stores it in the pointer variable, \(\mathbf{p x}\).

The first for-loop copies \(\mathbf{b}\) to \(\mathbf{x}\) (which will be overwritten by the solution). The second loop copies the matrix to the temporary storage, pointed to by A_tmp. This storage is later deallocated using mxDestroyArray

Note that neither the input- nor the output-arguments should be deallocated.
```

// Create a matrix for the return argument
// and for A. dpbsv destroys A and b).
// Should check the return status.
plhs[0]=mxCreateDoubleMatrix(b_rows, b_cols, mxREAL)
if (nlhs == 2) // if two output arguments
plhs[1] = mxCreateDoubleMatrix(1, 1, mxREAL);
A_tmp = mxCreateDoubleMatrix(A_rows, A_cols, mxREAL)
px = mxGetPr(plhs[0]); // Solution x
pA = mxGetPr(prhs[0]); // A
pA_tmp = mxGetPr(A_tmp); // temp for A
pb = mxGetPr(prhs[1]); // b
for (k = 0; k < b_rows * b_cols; k++) // b -> x
*(px + k) = * (pb + k);
for (k = 0; k < A_rows * A_cols; k++) // A -> A_tmp
*(pA_tmp + k) = * (pA + k);
dpbsv_(\&uplo, \&A_cols, \&kd, \&b_cols, pA_tmp,
\&A_rows, px, \&b_rows, \&info);
if (info)
mexWarnMsgTxt("Non zero info from dpbsv.");
if (nlhs == 2)
mxGetPr(plhs[1]) = info; // () higher prec. than
// Should NOT destroy plhs[0] or plhs[1]
mxDestroyArray (A_tmp);
}

```

It is now time to compile and link (updated 2011-04-15, to work on the 64 -bit student machines). This is done using the Bourneshell script mex. Since we would like to change some parameters when compiling, we will copy and edit an options file, mexopts.sh
\% which matlab
/chalmers/sw/sup/matlab-2009b/bin/matlab
(ls -ld/chalmers/sw/sup/matlab to see the versions)
\% cp /chalmers/sw/sup/matlab-2009b/bin/mexopts.sh .
Edit mexopts.sh and search for glnxa64, change
```

 CFLAGS='-ansi -D_GNU_SOURCE'
 to
CFLAGS='-Wall -std=c99 -D_GNU_SOURCE'

```
to get more warnings and to use C99-style comments.
You can choose between using g95 (default) and gfortran
If you use g95, continue editing and change
```

CLIBS="$CLIBS -lstdc++"
CLIBS="$CLIBS -L. -lstdc++"

```
to

Then save the file and give the Linux-command:
\% In -s /usr/lib64/libstdc++.so.6.0.8 libstdc++.so
If you want to use gfortran instead, change FC to

\section*{FC=' gfortran'}
in which case none of the libstdc++stuff above is necessary. Now it is time to compile, I assume we have the Fortran-files available:
\% mex -f ./mexopts.sh bandsolve.c*.f
which creates bandsolve.mexa64

We can now test a simple example in Matlab:
>> \(A=[2\) * ones \((1,5)\); ones \((1,5)]\)
A \(=\)
\begin{tabular}{lllll}
2 & 2 & 2 & 2 & 2 \\
1 & 1 & 1 & 1 & 1
\end{tabular}
>> [x, info] = bandsolve(A, [3 4443\(]^{\prime}\) );
>> \(x^{\prime}\)
ans \(=1.0000 \mathrm{e}+001.0000 \mathrm{e}+001.0000 \mathrm{e}+001.0000 \mathrm{e}+001.00 c\) >> info
info \(=0\)
Here a case when \(A\) is not positive definite:
>> \(A(1,1)=-2 ; \%\) Not positive definite
>> [x, info] = bandsolve(A, [3 444 3]')
Warning: Non zero info from dpbsv.
\% x equals \(b\), since \(b\) is copied to \(x\)
>> info
info \(=1\)
Note that the first call of bandsolve may take much more time, since the mex-file has to be loaded. Here a small test when \(\mathrm{n}=10000\), \(\mathrm{kd}=50\) :
>> tic; [x, info] = bandsolve(A, b); toc
Elapsed time is 0.099192 seconds.
>> tic; [x, info] = bandsolve(A, b); toc
Elapsed time is 0.055137 seconds.
>> tic; [x, info] = bandsolve (A, b); toc
Elapsed time is 0.055036 seconds.
Now to some larger problems:
With \(\mathrm{n}=1000000\) and \(\mathrm{kd}=10\), dpbsv takes 0.9 s and sparse
backslash 1.3 s on the 64 -bit math compute server.
\(\mathrm{kd}=20\) gives the times 1.3 s and 2.5 s respectively.

\section*{133}

\section*{More on 32- and 64 -bit systems}

There is a potential problem with 32 - and 64 -bit integers. Matlab will crash hard if we get this wrong.
First a program in Fortran (one could use kind for this).
```

% cat test_int.F90 NOTE: F90, the preprocessor is run
\#ifdef _INT_64
\#define _INT integem8
\#else
\#define _INT integer
\#endif
program test_int
integer :: k
_INT :: s = 1
do k = 1, }3
s = 2 * s
if (k >= 30) then
print*, k, s
end if
end do
end
% gfortran test_int.F90
% a.out
30 1073741824
31 -2147483648 called integer overflow
32 0
% gfortran -D_INT_64 test_int.F90
% a.out

30	1073741824
31	2147483648
32	4294967296

```

The same happens on the 64-bit math compute server.
```

% cat test.F90
\#ifdef _INT_64
\#define _INT integew8
\#else
\#define _INT integer
\#endif
subroutine test(i)
_INT :: i
i = 2 * i
end

```

Compiling (the same way on both systems):
\% mex -f ./mexopts.sh sixty_four.c test. F 90
\% ls sixty_four.mex
sixty_four.mexa64k sixty_four.mexgl*
In Matlab on the 32 -bit system:
```

>> sixty_four(2^30) % so, shold be 2^31
ans = -2.1475e+09

```
and on the 64 -bit system
>> sixty_four (2^30)
ans \(=2.1475 e+09\)
>> sixty_four(2^61)
ans \(=4.6117 e+18\)
>> 2^62
ans \(=4.6117 e+18\)
>> sixty_four (2^62)
ans \(=-9.2234 \mathrm{e}+18\)
>> 2^63
ans \(=9.2234 \mathrm{e}+18\)

\section*{Libraries, ar, ld}

Numerical (and other software) is often available in libraries. To use a subroutine from a library one has to use the linker to include the routine. Advantages:
- Fewer routines to keep track of.
- There is no need to have source code for the library routines that a program calls.
- Only the required modules are loaded.

These pages deal with how one can make libraries and use the linker, link-editor, ld.
\% cat sub1.f90
subroutine sub1
print*, 'in sub1'
end
\% cat sub2.f90
subroutine sub2
print*, 'in sub2'
end
\% cat sub3.f90
subroutine sub3
print*, 'in sub3'
call sub2
end
\% cat main.f90
program main
call sub3
end
137

137
\% ls sub*.f90
sub1.f90 sub2.f90 sub3.f90
\% g95 -c sub*.f90
sub1.f90:
sub2.f90:
sub3.f90:
\% ls sub*
sub1.f90 sub1.o sub2.f90 sub2.0 sub3.f90 sub3.0
\% ar -r libsubs.a subt. 0
\% ar -t libsubs.a
sub1.0
sub2.0
sub3.0
\% g95 main.f90 -L. -lsubs
\% a.out
in sub3
in sub2
g95 calls the link-editor, ld, to combine main. o and the object files in the library to produce the executable a.out-file. Note that the library routines become part of the executable.

If you write -lname the link-editor looks for a library file with name libname.a (or libname.so).

On some systems you may have to give the location of the library using the flag -L (ld does not look everywhere). . means current working directory, but you could have a longer path, of course. You can have several -L flags.

\section*{From man ar:}
ar creates an index to the symbols defined in relocatable object modules in the archive when you specify the modifier s. ...

An archive with such an index speeds up linking to the library, and allows routines in the library to call each other without regard to their placement in the archive.
ar seems to do this even with ar -r. . as well.
If your library does not have this index:
\% g95 main.f90 -L. -lsubs
./libsubs.a: could not read symbols:
Archive has no index; run ranlib to add one
\% ranlib libsubs.a
\% g95 main.f90 -L. -lsubs

The order of libraries is important:
\% g95 -c sub4.f90 sub5.f90
sub4.f90:
sub5.f90:
\% ar -r libsub45.a sub[45].o
\% ar -t libsub45.a
sub4.0
sub5.o

\section*{\% cat sub4.f90}
subroutine sub4
print*, 'in sub4'
call sub2
end
\% cat main.f90
program main ! A NEW main
call sub4
end
\% g95 main.f90 -L. -lsubs -lsub45
./libsub45.a(sub4.0) (.text+0x6f): In function 'sub4_':
: undefined reference to 'sub2_'
ld does not go back in the list of libraries.
\% g95 main.f90 -L. -lsub45 -lsubs
\% a.out
in sub4
in sub2
The compiler uses several system libraries, try g95-v....
One such library is the C math-library, /usr/lib/libm.a
\% ar -t /usr/lib/libm.a | grep expm1 | head -1
s_expm1.0
\% man expm1
NAME expm1, expm1f, expm11 - exponential minus 1
\#include <math.h>
double expm1 (double x);
. . .
```

% cat main.c
\#include <math.h>
\#include <stdio.h>
int main()
{
double x = 1.0e-15;
printf("expm1(x) = %e\n", expm1(x));
printf("exp(x) - 1 = %e\n", exp(x) - 1.0);
return 0;
}
% gcc main.c
/tmp/cc40PH10.o(.text+0x2b): In function 'main':
: undefined reference to 'expm1'
/tmp/cc40PH10.o(.text+0x53): In function 'main':
: undefined reference to 'exp'
% gcc main.c -lm
% a.out
expm1(x) = 1.000000e-15
exp(x) - 1 = 1.110223e-15

```

\section*{141}

It is easier to handle new versions, applications do not have to be relinked.

If you link with -lname, the first choice is libname.so and the second libname.a
/usr/lib/libm.so -> ../../lib/libm.so. ©s a soft link (an "alias").
\% ln -s full_path alias
The order is not important when using shared libraries (the linker has access to all the symbols at the same time).

A shared library is created using ld (not ar) or the compiler, the ld-flags are passed on to the linker.
```

% g95 -o libsubs.so -shared -fpic suł.f90
% g95 main.f90 -L. -lsubs
% ./a.out
in sub4
in sub2

```

From man gcc (edited):

\section*{-shared}

Produce a shared object which can then be linked with other objects to form an executable. Not all systems support this option. For predictable results, you mus also specify the same set of options that were used to generate code (-fpic, -fPIC, or model suboptions) when you specify this option. [1]

\section*{-fpic}

Generate position-independent code (PIC) suitable for
use in a shared library, if supported for the target machine. Such code accesses all constant addresses through a global offset table (GOT). The dynamic loader resolves the GOT entries when the program

\section*{Shared libraries}

More about libm. The following output has been shortened.
```

% ls -l /usr/lib/libm*

```
    /usr/lib/libm.a
    /usr/lib/libm.so -> ../../lib/libm.so. 6
\% ls -l /lib/libm.*
    /lib/libm.so.6 \(\rightarrow\) libm-2.5.so
\% ls -1 /lib/libm-2.5.so
-rwxr-xr-x 1 root root 2083526 jan 2009
        /lib/libm-2.5.sc

What is this last file?
\% ar -t /lib/libm-2.5.so
ar: /lib/libm-2.5.so: File format not recognized

Look for symbols (names of functions etc.) :
\% objdump -t /lib/libm-2.5.so | grep expm1

009fa690 w F .text 0000005b expm1
so means shared object. It is a library where routines are loaded to memory during runtime. This is done by the dynamic linker/loader ld.so. The a.out-file is not complete in this case, so it will be smaller.

One problem with these libraries is that they are needed at runtime which may be years after the executable was created. Libraries may be deleted, moved, renamed etc.

One advantage is shared libraries can be shared by every process that uses the library (provided the library is constructed in that way).

142
starts (the dynamic loader is not part of GCC; it is part of the operating system). ...

Since the subroutines in the library are loaded when we run the program (they are not available in a.out) the dynamic linker must know where it can find the library.
\% cd . .
\% Examples/a.out
Examples/a.out: error while loading shared libraries:
libsubs.so: cannot open shared object file: No such file or directory
\% setenv LD_LIBRARY_PATH \$LD_IIBRARY_PATH \(\backslash\) :Examples
\% Examples/a.out
in sub4
in sub2
LD_LIBRARY_PATHcontains a colon separated list of paths where ld. so will look for libraries. You would probably use a full path and not Examples.
\$LD_LIBRARY_PATH is the old value (you do not want to do setenv LD_LIBRARY_PATH Examplesunless LD_LIBRARY_PATH is empty to begin with.

The backslash is needed in [t]csh (since colon has a special meaning in the shell). In sh (Bourbe shell) you may do something like:

\section*{\$ LD_LIBRARY_PATH=\$LD_LIBRARY_PATH:Example \\ \$ export LD_LIBRARY_PATH (or on one line)}

Some form of LD_LIBRARY_PATH is usually available (but the name may be different). The SGI uses the same name for the path but the linker is called rld. Under HPUX 10.20, for example, the dynamic loader is called dld.sl and the path SHLIB_PATH

It is possible to store the location of the library when creating
a. out.
\% unsetenv LD_LIBRARY_PATH
\% g95 -o libsubs.so -shared -fpic sulb.f90
\% g95 main.f90 -L. -lsubs
\% a.out
a.out: error while loading shared libraries:
libsubs.so: cannot open shared object file:
No such file or directory
Add the directory in to the runtime library search path (stored in a.out):
```

-Wl, means pass -rpath `pwd` to ld
% g95 -Wl,-rpath `pwd` main.f90 -L. -lsubs
% cd .. or cd to any directory
% Examples/a.out
in sub4
in sub2

```

A useful command is ldd (print shared library dependencies):
\% ldd a.out
libsubs.so => ./libsubs.so ( \(0 \times 00800000\) )
libm.so. 6 => /lib/tls/libm.so. 6 ( \(0 \times 009 \mathrm{e} 2000\) )
libc.so. 6 => /lib/tls/libc.so. 6 ( \(0 \times 008 \mathrm{~b} 6000\) )
/lib/ld-linux.so. 2 ( \(0 \times 00899000\) )
Used on our a.out-file it will, in the first case, give:
\% ldd Examples/a.out
libsubs.so => not found
In the second case, using rpath, ldd will print the full path.

And now to something related:
Large software packages are often spread over many directories. When distributing software it is customary to pack all the directories into one file. This can be done with the tar-command (tape archive). Some examples:


Other common directories are man (for manual pages), examples, util (for utilities).

README usually contains general information, INSTALL contains details about compiling, installation etc. There may be an installscript and there is usually a Makefile (probably several).

If the package is using X11 graphics there may be an Imakefile The tool xmkmf (using imake) can generate a Makefile using local definitions and the Imakefile

In a Linux environment binary packages (such as the Intel compilers) may come in RPM-format. See http://www.rpm.org/ or type man rpm, for details.

\section*{An Overview of Parallel Computing}

Flynn's Taxonomy (1966). Classification of computers according to number of instruction and data streams.
- SISD: Single Instruction Single Data, the standard uniprocessor computer (workstation).
- MIMD: Multiple Instruction Multiple Data, collection of autonomous processors working on their own data; the most general case.
- SIMD: Single Instruction Multiple Data; several CPUs performing the same instructions on different data.
The CPUs are synchronized.
Massively parallel computers.
Works well on regular problems. PDE-grids,
image processing.
Often special languages and hardware. Not portable.
Typical example, the Connection Machines from Thinking Machines (bankruptcy 1994).
The CM-2 had up to 65536 (simple processors).
PDC had a 16384 proc. CM200.
Often called "data parallel".

Two other important terms:
- fine-grain parallelism - small tasks in terms of code size and execution time
- coarse-grain parallelism - the opposite

We talk about granularity.

\section*{name conflicts).}

Under GNOME there is an Archive Manager (File Roller) with a GUI. Look under Applications/System Tools

\section*{MIMD Systems}

Asynchronous (the processes work independently).
- Shared-memory systems. The programmer sees one big memory. The physical memory can be distributed.
- Distributed-memory systems.

Each processor has its own memory. The programmer has to partition the data.

The terminology is slightly confusing. A shared memory system usually has distributed memory (distributed shared memory). Hardware \& OS handle the administration of memory.

Shared memory
Bus-based architecture

- Limited bandwidth (the amount of data that can be sent through a given communications circuit per second).
- Do not scale to a large number of processors. 30-40 CPUs common.

\section*{149}
- Any processor can access any memory module. Any other processor can simultaneously access any other memory module.
- Expensive.
- Common with a memory hierarchy. Several crossbars may be connected by a cheaper network. NonUniform Memory Access (NUMA).

Example of a NUMA architecture: SGI Origin 2000, R10000 CPUS connected by a fast network.


The hub manages each processor's access to memory (both local and remote) and I/O. Local memory accesses can be done independently of each other. Accessing remote memory is more complicated and takes more time.

To work well each CPU has a cache (a local memory) for temporary storage.


I have denoted the caches by C. Cache coherence.
Common to use a switch to increase the bandwidth. Crossbar:


150


More than two nodes are connected via a router. A router has six ports. Hypercube configuration. When the system grows, add communication hardware for scalability.


Directly connect two 32-node systems via Craylink cables using the one free link on each router

Two important parameters of a network:
Latency is the startup time (the time it takes to send a small amount of data, e.g. one byte).

Bandwidth is the other important parameter.
How many bytes can we transfer per second (once the communication has started)?

A simple model for communication:
time to transfer \(n\) bytes \(=\) latency \(+n /\) bandwidth


A 4-dimensional hypercube. Generally, a hypercube of dimension \(d+1\) is constructed by connecting corresponding processors in two hypercubes of dimension \(d\).

If \(d\) is the dimension we have \(2^{d}\) CPUs, and the shortest path between any two nodes is at most \(d\) steps (passing \(d\) wires). This is much better than in a linear array or a ring. We can try to partition data so that the most frequent communication takes place between neighbours.

A high degree of connectivity is good because it makes it possible for several CPUs to communicate simultaneously (less competition for bandwidth). It is more expensive though.

If the available connectivity (for a specific machine) is sufficient depends on the problem and the data layout.

\section*{Distributed memory}

In a distributed memory system, each processor has its own private memory. A simple distributed memory system can be constructed by a number of workstations and a local network.

Some examples:



A linear array and a ring (each circle is a CPU with memory).
Hypercubes of dimensions 0, 1, 2 and 3.



154

This is a mesh:


We can have meshes of higher dimension.
If we connect the outer nodes in a mesh we get a torus:


\section*{A Note on Cluster Computing}

Many modern parallel computers are built by off-the-shelf components, using personal computer hardware, Intel CPUs and Linux. Some years ago the computers were connected by an Ethernet network but faster (and more expensive) technologies are available. To run programs in parallel, explicit message passing is used (MPI, PVM).

The first systems were called Beowulf computers named after the hero in an Old English poem from around year 1000. They are also called Linux clusters and one talks about cluster computing.

In the poem, Beowulf, a hero of a tribe, from southern Sweden, called the Geats, travels to Denmark to help defeat Grendel (a monster), Grendel's mother and a dragon.
The first few lines (of about 3000) first in Old English and then in modern English:

> ■wæs on burgum
> Beowulf Scyldinga,
> leof leodcyning, longe prage
> folcum gefræge (fæder ellor hwearf,
> aldor of earde), o■æt him eft onwoc
> heah Healfdene; heold penden lifde,
> gamol ond gu■reouw, glæde Scyldingas.
> Now Beowulf bode in the burg of the Scyldings, leader beloved, and long he ruled in fame with all folk, since his father had gone away from the world, till awoke an heir, haughty Healfdene, who held through life, sage and sturdy, the Scyldings glad.

157

\section*{A look at the Lenngren cluster at PDC}

PDC (Parallell-Dator-Centrum) is the Center for Parallel Computers, Royal Institute of Technology in Stockholm.

Lenngren (after the Swedish poet Anna Maria Lenngren, 17541817) is a distributed memory computer from Dell consisting of 442 nodes. Each node has two 3.4 GHz EMT64-Xeon processors (EM64T stands for Extended Memory x 64-bit Technology) and 8GB of main memory. The peak performance of the system is 6Tflop/s. The nodes are connected with gigabit ethernet for login and filesystem traffic. A high performance Infiniband network from Mellanox is used for the MPI traffic.

A word on Infiniband. First a quote from
http://www.infinibandta.org/
"InfiniBand is a high performance, switched fabric interconnect standard for servers. ... Founded in 1999, the InfiniBand Trade Association (IBTA) is comprised of leading enterprise IT vendors including Agilent, Dell, Hewlett-Packard, IBM, SilverStorm, Intel, Mellanox, Network Appliance, Oracle, Sun, Topspin and Voltaire. The organization completed its first specification in October 2000."

Another useful reference is http://en.wikipedia.org
InfiniBand uses a bidirectional serial bus, 2.5 Gbit/s in each direction. It also supports double and quad data rates for 5 Gbit/s or \(10 \mathrm{Gbit} / \mathrm{s}\) respectively. For electrical signal reasons 8 -bit symbols are sent using 10-bits (8B/10B encoding), so the actual data rate is \(4 / 5\) ths of the raw rate.
Thus the single, double and quad data rates carry 2,4 or 8 Gbit/s respectively.

Links can be aggregated in units of 4 or 12 , called 4 X or 12 X . A quad-rate 12 X link therefore carries \(120 \mathrm{Gbit} / \mathrm{s}\) raw, or 96 Gbit/s of user data.

158

\section*{A simple example}

Consider the following algorithm (the power method). A is a square matrix of order \(n\) ( \(n\) rows and columns) and \(x^{(k)}, k=\) \(1,2,3, \ldots\) a sequence of column vectors, each with \(n\) elements.
\[
\begin{aligned}
& x^{(1)}=\text { random vector } \\
& \text { for } \mathrm{k}=1,2,3, \ldots \\
& \quad x^{(k+1)}=\boldsymbol{A} x^{(k)} \\
& \text { end }
\end{aligned}
\]

If A has a dominant eigenvalue \(\boldsymbol{\lambda}(|\boldsymbol{\lambda}|\) is strictly greater than all the other eigenvalues) with eigenvector \(\overline{x, \text { then }} x^{(k)}\) will be a good approximation of an eigenvector for sufficiently large \(k\) (provided \(x^{(1)}\) has a nonzero component of \(x\) ).

\section*{An Example:}
>> \(A=\left[\begin{array}{lllll}-10 & 3 & 6 & 0 & 2 ; 0 \\ 0 & 1\end{array}\right]\) it is not necessary \(\mathrm{A}=\)
\begin{tabular}{rrr}
-10 & 3 & 6 \\
0 & 5 & 2 \\
0 & 0 & 1
\end{tabular}
>> \(x=\operatorname{randn}(3,1)\);
\(\gg\) for \(k=1: 8, x(:, k+1)=A * x(:, k)\); end
>> \(x(: 1: 4)\)
ans \(=\)
\[
\begin{array}{rrrr}
-6.8078 e-01 & 5.0786 e+00 & -5.0010 e+01 & 5.1340 e+02 \\
4.7055 e-01 & 1.3058 e+00 & 5.4821 e+00 & 2.6364 e+01 \\
-5.2347 e-01 & -5.2347 e-01 & -5.2347 e-01 & -5.2347 e-01
\end{array}
\]
>> \(x(:, 5: 8)\)
ans \(=\)
\begin{tabular}{rrrr}
\(-5.0581 e+03\) & \(5.0970 e+04\) & \(-5.0774 e+05\) & \(5.0872 e+06\) \\
\(1.3077 e+02\) & \(6.5281 e+02\) & \(3.2630 e+03\) & \(1.6314 e+04\) \\
\(-5.2347 e-01\) & \(-5.2347 e-01\) & \(-5.2347 e-01\) & \(-5.2347 e-01\)
\end{tabular}

Note that \(x^{(k)}\) does not "converge" in the ordinary sense.
We may have problems with over/underflow.

Revised algorithm, where we scale \(x^{(k)}\) and keep only one copy.
```

$x=$ random vector
$x=x(1 / \max (|x|)) \quad$ Divide by the largest element
for $\mathrm{k}=1,2,3, \ldots$
$t=A x$
$x=t(1 / \max (|t|))$
end

```
\(\boldsymbol{\lambda}\) can be computed in several ways, e.g. \(\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x} / \boldsymbol{x}^{T} \boldsymbol{x}\) (and we already have \(t=A x)\). In practice we need to terminate the iteration as well. Let us skip those details.

How can we make this algorithm parallel on a distributed memory MIMD-machine (given A)? One obvious way is to compute \(t=A x\) in parallel. In order to do so we must know the topology of the network and how to partition the data.


161

Here is an image showing (part of) the algorithm, when \(\# p=4\). White boxes show not yet received parts of the vector. The brick pattern shows the latest part of the vector and the boxes with diagonal lines show old pieces.


Suppose that we have a ring with \(\# p\) processors and that \(\# p\) divides \(n\). We partition \(A\) in blocks of \(\beta=n / \# p\) ( \(\beta\) for block size) rows (or columns) each, so that processor 1 would store rows 1 through \(\beta\), processor 2 rows \(1+\beta\) through \(2 \beta\) etc. Let us denote these blocks of rows by \(A_{1}, A_{2}, \ldots, A_{\# p}\). If we partition \(t\) in the same way \(t_{1}\) contains the first \(\beta\) elements, \(t_{2}\) the next \(\beta\) etc, \(t\) can be computed as:
\[
\left[\begin{array}{c}
t_{1} \\
t_{2} \\
\vdots \\
t_{\# p}
\end{array}\right]=A x=\left[\begin{array}{c}
A_{1} x \\
A_{2} x \\
\vdots \\
A_{\# p} x
\end{array}\right] \begin{gathered}
\leftarrow \text { on proc. } 1 \\
\leftarrow \text { on proc. } 2 \\
\vdots \\
\leftarrow \text { on proc. } \# \mathrm{p}
\end{gathered}
\]

In order to perform the next iteration processor one needs \(t_{2}, \ldots, t_{\# p}\), processor two needs \(t_{1}, t_{3}, \ldots, t_{\# p}\) etc.
The processors must communicate, in other words.

Another problem is how each processor should get its part, \(\boldsymbol{A}_{j}\), of the matrix \(A\). This could be solved in different ways:
- one CPU gets the task to read \(A\) and distributes the parts to the other processors
- perhaps each CPU can construct its \(\boldsymbol{A}_{\boldsymbol{j}}\) by computation
- perhaps each CPU can read its part from a file (or from files)

Let us assume that the \(\boldsymbol{A}_{j}\) have been distributed and look at the matrix-vector multiply.

Some important terminology:
Let wct (wallclock time) be the time we have to wait for the run to finish (i.e. not the total cputime). wct is a function of \(\# p, w c t(\# p)\) (although it may not be so realistic to change \(\# p\) in a ring.
This is a simple model of this function (for one iteration):
\[
w c t(\# p)=\frac{2 n^{2}}{\# p} T_{\text {flop }}+(\# p-1)\left[T_{l a t}+\frac{n}{\# p} T_{b a n d w}\right]
\]
where \(T_{\text {flop }}\) is the time for one flop, \(T_{l a t}\) is the latency for the communication and \(T_{b a n d w}\) is time it takes to transfer one double precision number.

It is often the case that (roughly):
\[
\begin{gathered}
w c t(\# p)=\text { seq. part of comp. }+\frac{\text { parallel part of comp. }}{\# p}+ \\
\# p(\text { communication })
\end{gathered}
\]
\(w c t\) has a minimum with respect to \(\# p\) (it is not optimal with \(\# p=\infty)\). The computational time decreases with \(\# p\) but the communication increases.

The speedup is defined as the ratio:
\[
\operatorname{speedup}(\# p)=\frac{w c t(1)}{w c t(\# p)}
\]

What we hope for is linear speedup, i.e. \(\operatorname{speedup}(\# p)=\# p\).

If you have a problem to solve (rather than an algorithm to study) a more interesting definition may be:
speedup \((\# p)=\frac{\text { time for best implementation on one processor }}{w c t(\# p)}\)
It is possible to have super linear speedup, \(\operatorname{speedup}(\# p)>\# p\); this is usually due to better cache locality or decreased paging.

If our algorithm contains a section that is sequential (cannot be parallelized), it will limit the speedup. This is known as Amdahl's law. Let us denote the sequential part with with \(s\), \(0 \leq s \leq 1\) (part wrt time), so the part that can be parallelized is \(1-s\). Hence,
\[
\operatorname{speedup}(\# p)=\frac{1}{s+(1-s) / \# p} \leq \frac{1}{s}
\]
regardless of the number of processors.

Instead of studying how the speedup depends on \(\# p\) we can fix \(\# p\) and see what happens when we change the size of the problem \(n\). Does the speedup scale well with \(n\) ? In our case:
\[
\begin{aligned}
\operatorname{speedup}(n) & =\frac{2 n^{2} T_{\text {flop }}}{\frac{2 n^{2} T_{\text {flop }}}{\# p}+(\# p-1)\left[T_{l a t}+\frac{n T_{\text {bandw }}}{\# p}\right]} \\
& =\frac{\# p}{1+(\# p-1)\left[\frac{\# p T_{\text {lat }}}{2 n^{2} T_{\text {flop }}}+\frac{T_{\text {bandw }}}{2 n T_{f l o p}}\right]}
\end{aligned}
\]

So
\[
\lim _{n \rightarrow \infty} \operatorname{speedup}(n)=\# p
\]

This is very nice! The computation is \(\mathcal{O}\left(n^{2}\right)\) and the communication is \(\mathcal{O}(n)\). This is not always the case.

If
- the amount of work varies with time
- we share the processors with other users
- processors crash ( \(\# \boldsymbol{p}\) changes)
we may have to rebalance; dynamic load balancing.
Even if the processors are identical (and with equal amount of memory) we may have to compute a more complicated partitioning. Suppose that \(A\) is upper triangular (zeros below the diagonal). (We would not use an iterative method to compute an eigenvector in this case.) The triangular matrix is easy to partition, it is worse if \(A\) is a general sparse matrix (many elements are zero).

Some matrices require a change of algorithm as well. Suppose that \(A\) is symmetric, \(A=A^{T}\) and that we store \(A\) in a compact way (only one triangle).

Say, \(A=U^{T}+D+U\left(\right.\) Upper \(^{T}+\) Diagonal + Upper \()\).
If we store \(U\) and \(D\) by rows it is easy to compute \(U x+D x\) using our row-oriented algorithm. To compute \(U^{T} x\) requires a column-oriented approach (if \(\boldsymbol{U}\) is partitioned by rows, \(\boldsymbol{U}^{T}\) will be partitioned by columns, and a column-oriented algorithm seems reasonable). So the program is a combination of a row and a column algorithm.

Exercise: partition \(\boldsymbol{A}\) by columns instead.

What happens if the processors differ in speed and amount of memory? We have a load balancing problem.

Static load balancing: find a partitioning \(\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \ldots, \boldsymbol{\beta}_{\# p}\) such that processor \(p\) stores \(\beta_{p}\) rows and so that \(w c t\) is minimized over this partitioning. We must make sure that a block fits in the available memory on node \(p\). This leads to the optimization problem:
\[
\min _{\beta_{1}, \beta_{2}, \ldots, \beta_{\# p}} w c t\left(\beta_{1}, \beta_{2}, \ldots, \beta_{\# p}\right)
\]
subject to the equality constraint \(\sum_{p=1}^{\# p} \beta_{p}=n\) and the \(p\) inequality constraints \(8 n \beta_{p} \leq M_{p}\), if \(M_{p}\) is the amount of memory (bytes) available on node \(p\).

166

\section*{A few words about communication}

In our program we had the loop:
for \(j=1\) to \(\# p-1\)
send \(x_{\text {segment }}\) to the next processor
compute segment
receive \(x_{\text {segment }}\) from the previous processor end

Suppose \(\# p=2\) and that we can transfer data from memory (from \(x_{1}\) on processor one to \(x_{1}\) on processor two, from \(x_{2}\) on processor two to \(x_{2}\) on processor one).


There are several problems with this type of communication, e.g.:
- if CPU 1 has been delayed it may be using \(x_{2}\) when CPU 2 is writing in it
- several CPUs may try to write to the same memory location (in a more general setting)
- CPU 1 may try to use data before CPU 2 has written it

So, a few things we would like to able to do:
- wait for a message until we are ready to take care of it
- do other work while waiting (to check now and then)
- find out which processor has sent the message
- have identities of messages (one CPU could send several; how do we distinguish between them)
- see how large the message is before unpacking it
- send to a group of CPUs (broadcast)

An obvious way to solve the first problem is to use synchronisation. Suppose CPU 1 is delayed. CPU 2 will send a "ready to send"-message to CPU 1 but it will not start sending data until CPU 1 has sent a "ready to receive"-message.

This can cause problems. Suppose we have a program where both CPUs make a send and then a receive. If the two CPUs make sends to each other the CPUs will "hang". Each CPU is waiting for the other CPU to give a "ready to receive"-message. We have what is known as a deadlock.

One way to avoid this situation is to use a buffer. When CPU 1 calls the send routine the system copies the array to a temporary location, a buffer. CPU 1 can continue executing and CPU 2 can read from the buffer (using the receive call) when it is ready. The drawback is that we need extra memory and an extra copy operation.

Suppose now that CPU 1 lies ahead and calls receive before CPU 2 has sent. We could then use a blocking receive that waits until the messages is available (this could involve synchronised or buffered communication). An alternative is to use a nonblocking receive. So the receive asks: is there a message? If not, the CPU could continue working and ask again later.
```

\#include <pthread.h>
\#include <stdio.h>
\#include <stdlib.h>
// global shared variables
\#define vEC_LEN 400
\#define N_THREADS 4
double a[VEC_LEN], b[VEC_LEN], sum;
pthread_mutex_t mutexsum;
void *dotprod(void *restrict arg) // the slave
{
int i, start, end, i_am, len;
double mysum;
i_am = (int) (long) arg; // typecasts, need both
len = VEC_LEN / N_THREADS; // assume N_THREADS
start = i_am * len; // divides VEC_LEN
end = start + len;
mysum = 0.0; // local sum
for (i = start; i < end; i++)
mysum += a[i] * b[i];
pthread_mutex_lock(\&mutexsum); // critical section
sum += mysum; // update global sum
pthread_mutex_unlock(\&mutexsum); // with local sum
// terminate the thread, NULL is the null-pointer
pthread_exit(NULL); // not really needed
return NULL; // to silence splint
}
int main()
{
pthread_t thread_id[N_THREADS];
int
i, ret;

```

\section*{POSIX Threads (pthreads)}
(POSIX: Portable Operating System Interface, A set of IEEE standards designed to provide application portability between Unix variants. IEEE: Institute of Electrical and Electronics Engineers, Inc. The world's largest technical professional society, based in the USA.)

Unix process creation (and context switching) is rather slow and different processes do not share much (if any) information (i.e. they may take up a lot of space).

A thread is like a "small" process. It originates from a process and is a part of that process. All the threads share global variables, files, code, PID etc. but they have their individual stacks and program counters.

When the process has started, one thread, the master thread, is running. Using routines from the pthreads library we can start more threads.

If we we have a shared memory parallel computer each thread may run on its own processor, but threads are a convenient programming tool on a uniprocessor as well.

In the example below a dot product, \(\sum_{i=1}^{n} a_{i} b_{i}\), will be computed in parallel. Each thread will compute part of the sum. We could, however, have heterogeneous tasks (the threads do not have do do the same thing).

We compile by:
gcc -std=c99 prog.c -lpthread
```

 sizeof(void *restrict)); // to be sure
 printf("sizeof(long) = %d\n", sizeof(long))
 for (i = 0; i < VEC_LEN; i++) {
 a[i] = 1.0; // initialize
 b[i] = a[i];
 }
 sum = 0.0; // global sum, NOTE declared global
 // Initialize the mutex (mutual exclusion lock).
pthread_mutex_init(\&mutexsum, NULL);
// Create threads to perform the dotproduct
// NUll implies default properties.
for(i = 0; i < N_THREADS; i++)
if(ret = pthread_create(\&thread_id[i], NULL,
dotprod, (void *) (long) i)) {
printf ("Error in thread create\n");
exit(1);
}

```
printf("sizeof(void*restrict) \(=\% d \backslash n "\),
// Wait for the other threads. If the main thread
// exits all the slave threads will exit as well.
    for (i \(\left.=0 ; i<n \_T H R E A D S ; ~ i++\right)\)
        if( ret \(=\) pthread_join(thread_id[i], NULL) ) \{
            printf ("Error in thread join \%d \(\backslash n\) ", ret);
            exit(1);
        \}
    printf ("sum \(=\% f \backslash n ", ~ s u m) ;\)
    pthread_mutex_destroy (\&mutexsum) ;
    return 0;
\}

This is what the run looks like. Since the threads have the same PID we must give a special option to the ps-command to see them.
```

% a.out
sizeof(void *restrict) = 8
sizeof(long) = 8
sum = 400.000000
% ps -fell | grep thomas | grep a.out (edited)
UID PID PPID LWP NLWP CMD
thomas 15483 27174 15483 5 a.out <-- master
thomas 15483 27174 15484 5 a.out
thomas 15483 27174 15485 5 a.out
thomas 15483 27174 15486 5 a.out
thomas 15483 27174 15487 5 a.out

```

LWP id. of light weight process (thread).
NLWP number of lwps in the process.

Note that the PID is the same.

If you use top and press H you well see the individual threads as well.

\section*{Race conditions, deadlock etc.}

When writing parallel programs it is important not to make any assumptions about the order of execution of threads or processes (e.g that a certain thread is the first to initialize a global variable). If one makes such assumptions the program may fail occasionally (if another thread would come first). When threads compete for resources (e.g. shared memory) in this way we have a race condition. It could even happen that threads deadlock (deadlock is a situation where two or more processes are unable to proceed because each is waiting for one of the others to do something).

From the web: I've noticed that under LinuxThreads (a kernellevel POSIX threads package for Linux) it's possible for thread \(B\) to be starved in a bit of code like the fragment at the end of this message (not included). I interpreted this as a bug in the mutex code, fixed it, and sent a patch to the author. He replied by saying that the behavior I observed was correct, it is perfectly OK for a thread to be starved by another thread of equal priority, and that POSIX makes no guarantees about mutex lock ordering. ... I wonder (1) if the behavior I observed is within the standard and (2) if it is, what the \(f \%\) ^\& were the POSIX people thinking? ...
Sorry, I'm just a bit aggravated by this.
Any info appreciated,
Bill Gribble
According to one answer it is within the standard.
When I taught the course 2002, Solaris pthreads behaved this way, but this has changed in Solaris 9. Under Linux (2005) there are no problems, so I will not say more about this subject.

PVM is available in one distribution, pvm3.4.4, (see the home page). (Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek, Vaidy Sunderam.) Free book available on the net (PostScript \& HTML).

Some of the systems PVM runs on (this is an old list; systems have been added):

AFX8, Alliant FX/8, ALPHA, DEC Alpha/OSF-1, ALPHAMP, DEC Alpha/OSF-1 / using shared memory, APOLLO, HP 300 running Domain/OS, ATT, AT\&T/NCR 3600 running SysVR4, BAL, Sequent Balance, BFLY, BBN Butterfly TC2000, BSD386, \(80[345] 86\) running BSDI or BSD386, CM2, Thinking Machines CM-2 Sun front-end, CM5, Thinking Machines CM-5, CNVX, Convex using IEEE floating-point, CNVXN, Convex using native f.p., CRAY, Cray, CRAY2, Cray-2, CRAYSMP, Cray S-MP, CSPP, Convex Exemplar, DGAV, Data General Aviion, E88K, Encore 88000, FREEBSD, 80[345]86 running FreeBSD, HP300, HP 900068000 cpu , HPPA, HP 9000 PA-Risc, HPPAMP, HP 9000 PA-Risc / shared memory transport, KSR1, Kendall Square, 1860, Intel RX Hypercube, IPSC2, Intel IPSC/2, LINUX, 80[345]86 running Linux, M88K, Motorola M88100 running Real/IX, MASPAR, Maspar, MIPS, Mips, NETBSDAMIGA, Amiga running NetBSD, NETBSDHP300, HP 300 running NetBSD, NETBSDI386, 80[345]86 running NetBSD, NETBSDMAC68K, Macintosh running NetBSD, NETBSDPMAX, DEC Pmax running NetBSD, NETBSDSPARC, Sparc running NetBSD, NETBSDSUN3, SUN 3 running NetBSD, NEXT, NeXT, PGON, Intel Paragon, PMAX, DEC/Mips arch (3100, 5000, etc.), RS6K, IBM/RS6000, RS6KMP, IBM SMP / shared memory transport, RT, IBM/RT, SCO, 80[345]86 running SCO Unix, SGI, Silicon Graphics IRIS, SGI5, Silicon Graphics IRIS running \(0 S \geq 5.0\), SGI64, Silicon Graphics IRIS running OS \(\geq 6.0\), SGIMP, Silicon Graphics IRIS / OS 5.x / using shared memory, SGIMP64, Silicon Graphics IRIS / OS 6.x / using shared memory, SP2MPI, IBM SP-2 / using MPI, SUN3, Sun 3, SUN4, Sun 4, 4c, sparc, etc., SUN4SOL2, Sun 4 running Solaris 2.x, SUNMP, Sun 4 / using shared memory / Solaris 2.x, SX3, NEC SX-3, SYMM, Sequent Symmetry, TITN, Stardent Titan, U370, IBM 3090 running AIX, UTS2, Amdahl running UTS, UVAX, DEC/Microvax, UXPM, Fujitsu running UXP/M, VCM2, Thinking Machines CM-2 Vax front-end, X86SOL2, 80[345]86 running Solaris 2.x.

PVM can be run in several different ways. Here we add machines to the virtual machine by using the PVM-console:

pvm> halt
177
\#include <stdio.h>
\#include "mpi.h" /* Important *
int main(int argc, char *argv[])
\{
```

 int message, length, source, dest, tag;
 int n_procs; /* number of processes */
 int my_rank; /* 0, ..., n_procs-1 */
 MPI_Status status;
 MPI_Init(&argc, &argv); & Start up MPI */
 /* Find out the number of processes and my rank*/
 MPI_Comm_size(MPI_COMM_WORLD, &n_procs);
 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
 tag = 1;
 length = 1; /* Length of message */
 if (my_rank == 0) { /* I'm the master process */
 printf("Number of processes = %d\n", n_procs);
 dest = 1; /* Send to the other process*/
 message = 1; /* Just send one int */
 /* Send message to slave*/
 MPI_Send(&message, length, MPI_INT, dest,
 tag, MPI_COMM_WORLD);
 printf("After MPI_Send\n");
 source = 1;
 /* Receive message from slave. length is how much
 room we have and NOT the length of the message*/
 MPI_Recv(&message, length, MPI_INT, source, tag,
 MPI_COMM_WORLD, &status);
 printf("After MPI_Recv, message = %d\n", message);
    ```

Let us look at each call in some detail: Almost all the MPIroutines in C are integer functions returning a status value. I have ignored these values in the example program. In Fortran there are subroutines instead. The status value is returned as an extra integer parameter (the last one).

Start and stop MPI (it is possible to do non-MPI stuff before Init and after Finalize). These routines must be called:
```

MPI_Init(\&argc, \&argv);
MPI_Finalize();

```

MPI_COMM_WORLD is a communicator, a group of processes.
The program can find out the number of processes by calling MPI_Comm_size (note that \(\&\) is necessary since we require a return value).
```

MPI_Comm_size(MPI_COMM_WORLD, \&n_procs);

```

Each process is numbered from 0 to n_procs-1. To find the number (rank) we can use MPI_Comm_rank

MPI_Comm_rank (MPI_COMM_WORLD, \&my_rank) ;
We need the rank when sending messages and to decide how the work should be shared:
```

if (my_rank == O) {
I'm the master
} elseif (my_rank == 1) {

```

The two most basic communication routines (there are many) are:
```

MPI_Send(\&message, length, MPI_INT, dest, tag,
MPI_COMM_WORLD);
MPI_Recv(\&message, length, MPI_INT, source, tag,
MPI_COMM_WORLD, \&status);

```

If the message is an array there should be no \(\&\)

\section*{Some other datatypes are MPI_FLOAT and MPI_DOUBLE}

The Fortran names are MPI_INTEGER MPI_REAL and MPI_DOUBLE_PRECISION

Note that length is the number of elements of the specific type (not the number of bytes).
length in MPI_Send is the number of elements we are sending (the message-array may be longer). length in MPI_Recv is amount of storage available to store the message.

If this value is less than the length of the message, the MPIsystem prints an error message telling us that the message has been truncated.
dest is the rank of the receiving process. tag is a number of the message that the programmer can use to keep track of messages ( \(0 \leq\) tag \(\leq\) at least 32767 ).
```

program simple
implicit none
include "mpif.h"
integer message, length, source, dest, tag
integer my_rank, err
integer n_procs ! number of processes
integer status(MPI_STATUS_SIZE)
call MPI_Init(err) ! Start up MPI
! Find out the number of n_processes and my rank
call MPI_Comm_rank (MPI_COMM_WORLD, my_rank, err)
call MPI_Comm_size(MPI_COMM_WORLD, n_procs, err)
tag = 1
length = 1 ! Length of message
if (my_rank == 0) then ! I'm the master process
print*, "Number of processes = ", n_procs
dest = 1 ! Send to the other process
message = 1 ! Just send one integer
! Send message to slave
call MPI_Send(message, length, MPI_INTEGER, dest,
tag, MPI_COMM_WORLD, err)
print*, "After MPI_Send"
source = 1
! Receive message from slave
call MPI_Recv(message, length, MPI_INTEGER, source,
tag, MPI_COMM_WORLD, status, err)
print*, "After MPI_Recv, message = ", message

```
```

 else ! I'm the slave process
 source = 0
 ! Receive message from master
call MPI_Recv(message, length, MPI_INTEGER, source,
tag, MPI_COMM_WORLD, status, err)
dest = 0 ! Send to the other process
message = message + 1 ! Increase message
! Send message to master
call MPI_Send(message, length, MPI_INTEGER, dest, \&
tag, MPI_COMM_WORLD, err)
end if
call MPI_Finalize(err) ! Shut down MPI

```

\section*{end program simple}

Note that the Fortran-routines are subroutines (not functions) and that they have an extra parameter, err.

One problem in Fortran77 is that status, in MPI_Recv, is a structure. The solution is: status (MPI_SOURCE), status (MPI_TAG) and status (MPI_ERROR) contain, respectively, the source, tag and error code of the received message.

To compile and run (one can add -03 etc.):
```

mpif90 simple.f90
mpiexec -n 2 ./a.out

```
\({ }^{\wedge} \mathrm{C}\) usually kills all the processes.

There are blocking and nonblocking point-to-point Send/Receiveroutines in MPI. The communication can be done in different modes (buffered, synchronised, and a few more). The Send/Receive we have used are blocking, but we do not really know if they are buffered or not (the standard leaves this open). This is a very important question. Consider the following code:
```

integer, parameter :: MASTER = 0, SLAVE = 1
integer, parameter :: N_MAX = 10000
integer, dimension(N_MAX) :: vec = 1
call MPI_Init(err)
call MPI_Comm_rank (MPI_COMM_WORLD, my_rank, err)
call MPI_Comm_size(MPI_COMM_WORLD, n_procs, err)
msg_len = N_MAX; buf_len = N_MAX
if (my_rank == MASTER) then
send_to = SLAVE; tag = 1
call MPI_Send(vec, msg_len, MPI_INTEGER, \&
send_to, tag, MPI_COMM_WORLD, err)
recv_from = SLAVE; tag = 2
call MPI_Recv(vec, buf_len, MPI_INTEGER, \&
recv_from, tag, \&
MPI_COMM_WORLD, status, err)
else
send_to = MASTER; tag = 2
call MPI_Send(vec, msg_len, MPI_INTEGER, \&
send_to, tag, MPI_COMM_WORLD, err)
recv_from = MASTER; tag = 1
call MPI_Recv(vec, buf_len, MPI_INTEGER, \&
recv_from, tag, \&
MPI_COMM_WORLD, status, err)
end if
.

```
if (my_rank == MASTER ) then
    snd_buf = 10 ! init the array
    snd_to = SLAVE; snd_tag = 1
    rec_from = SLAVE; rec_tag = 2
    call MPI_Sendrecv(snd_buf, snd_len, MPI_INTEGER, &
                        snd_to, snd_tag, rec_buf, buf_len, &
                        MPI_INTEGER, rec_from, rec_tag, &
                        MPI_COMM_WORLD, status, err)
    print*, 'master, rec_buf(1:5) = ', rec_buf(1:5)
    else
        snd_buf = 20 ! init the array
    snd_to = MASTER; snd_tag = 2
    rec_from = MASTER; rec_tag = 1
    call MPI_Sendrecv(snd_buf, snd_len, MPI_INTEGER, &
                                    snd_to, snd_tag, rec_buf, buf_len, &
                                    MPI_INTEGER, rec_from, rec_tag, &
                                    MPI_COMM_WORLD, status, err)
    print*, 'slave, rec_buf(1:5) = ', rec_buf(1:5)
end if
call MPI_Finalize(err)
```

end program dead_lock
\% mpiexec -n 2 ./a.out
master, rec_buf(1:5) = 2020202020
slave, rec_buf(1:5) = 1010101010

Another situation which may cause a deadlock is having to sends in a row. A silly example is when a send is missing:

| master | slave |
| :---: | :---: |
| ... call MPI_Recv (...) | |

A blocking receive will wait forever (until we kill the processes).

Sending messages to many processes

There are broadcast operations in MPI, where one process can send to all the others.
\#include <stdio.h>
\#include "mpi.h"
int main(int argc, char*argv[])
\{

```
    int message[10], length, root, my_rank;
    int n_procs, j;
    MPI_Init(&argc, &argv);
    MPI_Comm_size(MPI_COMM_WORLD, &n_procs);
    MPI_Comm_rank (MPI_COMM_WORLD, &mY_rank);
    length = 10;
    root = 2; /* Note: the same for all. */
                            /* Need not be 2, of course.*/
    if (my_rank == 2) {
        for (j = 0; j < length; j++)
            message[j] = j;
        /* Here is the broadcast. Note, no tag.*/
        MPI_Bcast(message, length, MPI_INT, root,
                MPI_COMM_WORLD);
    } else {
        /* The slaves have exactly the same call*/
        MPI_BCast(message, length, MPI_INT, root,
                MPI_COMM_WORLD);
        printf("%d: message[0..2] = %d %d %d\n",
                my_rank, message[0], message[1],
                message[2]);
    }
    MPI_Finalize();
    return 0;
\}
mpiexec -n 4 ./a.out
: message[0..2] = 012
: message[0..2] \(=012\)
3: message[0..2] \(=012\)

Why should we use a broadcast instead of several MPI_Send? The answer is that it may be possible to implement the broadcast in a more efficient manner:
timestep 0: \(0 \rightarrow 1 \quad(->\) means send to)
timestep 1: 0 -> 2, 1 -> 3
timestep 2: 0 -> 4, 1 -> 5, 2 -> 6, 3 -> 7
etc.

So, provided we have a network topology that supports parallel sends we can decrease the number of send-steps significantly.
```

 /* compute the length of the subinterval*/
 interval = (b - a) / n_procs;
 message[0] = a; /* left endpoint */
 message[1] = interval;
 }
/* This code is written in SIMD-form*/
msg_len = 2;
MPI_Bcast(message, msg_len, MPI_DOUBLE, MASTER,
MPI_COMM_WORLD);
/* unpack the message */
a = message[0];
interval = message[1];
/* compute my endpoints */
a = a + my_rank * interval;
b = a + interval;
/* compute my part of the integral*/
my_int = trapez(a, a + interval, 100);
/* my_int is my part of the integral.
All parts are accumulated in I, but only in
the master process.
*/

```
msg_len = 1;
MPI_Reduce (\&my_int, \&I, msg_len, MPI_DOUBLE,
                MPI_SUM, MASTER, MPI_COMM_WORLD);
if (my_rank == MASTER)
    printf("The integral \(=\%\) (n", I);
MPI_Finalize();
return 0;
\}
```

double f(double x)
{
return exp(-x * cos(x))
}
/* An extremely primitive quadrature method.
Approximate integral from a to b of f(x) dx.
We integrate over [a, b] which is different
from the [a, b] in the main program.
*/
double trapez(double a, double b, int n)
{
int k;
double I, h;
h = (b - a) / n;
I = 0.5 * (f(a) + f(b));
for (k = 1; k < n; k++) {
a += h;
I += f(a);
}
return h * I
}

```

To get good speedup the function should require a huge amount of cputime to evaluate.

There are several operators (not only MPI_SUM) that can be used together with MPI_Reduce

MPI_MAX return the maximum
MPI_MIN return the minimum
MPI_SUM return the sum
MPI_PROD return the product
MPI_LAND return the logical and
MPI_BAND return the bitwise and
MPI_LOR return the logical or
MPI_BOR return the bitwise of
MPI_LXOR return the logical exclusive or
MPI_BXOR return the bitwise exclusive or
MPI_MINLOC return the minimum and the location (actually, the value of the second element of the structure where the minimum of the first is found)
MPI_MAXLOC return the maximum and the location
If all the processes need the result (I) we could do a broadcast afterwards, but there is a more efficient routine, MPI_Allreduce See the web for details (under Documentation MPI-routines).

The MPI_Allreduce may be performed in an efficient way. Suppose we have eight processes, \(0, \ldots, 7\). | denotes a split.


Each process accumulates its own sum (and sends it on):
```

sO = x[0] + x[4], s2 = x[2] + x[6], ...
s0 = s0 + s2 = (x[0] + x[4] + x[2] + x[6])
s0 = s0 + s1 = x[0] + ... + x[7]

```

\section*{A page about distributed Gaussian elimination}

In standard GE we take linear combinations of rows to zero elements in the pivot columns. We end up with a triangular matrix.

How should we distribute the matrix if we are using MPI?
The obvious way is to partition the rows exactly as in our power method (a row distribution). This leads to poor load balancing, since as soon as the first block has been triangularized processor 0 will be idle.

After two elimination steps we have the picture ( \(\mathbf{x}\) is nonzero and the block size is 2):


Another alternative is to use a cyclic row distribution. Suppose we have four processors, then processor 0 stores rows \(1,5,9,13\), ... Processor 2 stores rows 2, 6, 10 etc. This leads to a good balance, but makes it impossible to use BLAS2 and 3 routines (since it is vector oriented).

There are a few other distributions to consider, but we skip the details since they require a more thorough knowledge about algorithms for GE.

\section*{One word about Scalapack}

ScaLAPACK (Scalable Linear Algebra PACKage) is a distributed and parallel version of Lapack. ScaLAPACK uses BLAS on one processor and distributed-memory forms of BLAS on several (PBLAS, Parallel BLAS and BLACS, C for Communication). BLACS uses PVM or MPI.

Scalapack uses a block cyclic distribution of (dense) matrices. Suppose we have processors numbered 0, 1, 2 and 3 and a block size of 32. This figure shows a matrix of order \(8 \cdot 32\).
\begin{tabular}{llllllll}
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
2 & 3 & 2 & 3 & 2 & 3 & 2 & 3 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
2 & 3 & 2 & 3 & 2 & 3 & 2 & 3 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
2 & 3 & 2 & 3 & 2 & 3 & 2 & 3 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
2 & 3 & 2 & 3 & 2 & 3 & 2 & 3
\end{tabular}

It turns out that this layout gives a good opportunity for parallelism, good load balancing and the possibility to use BLAS2 and BLAS3.

Doing a Cholesky factorization on the Sun using MPI:
\(\begin{array}{ll}\mathrm{n} & =4000 \\ \text { block size } & =32\end{array}\)
\#CPUs \(=4\)
time \(=27.5\)
rate \(\quad=765\) Mflops
The uniprocessor Lapack routine takes 145 s .

\section*{Some other things MPI can do}
- Suppose you would like to send an int, a double array, and int array etc. in the same message. One way is to pack things into the message yourself. Another way is to use MPI_Pack/MPI_Unpack or (more complicated) to create a new MPI datatype (almost like a C-structure).
- It is possible to divide the processes into subgroups and make a broadcast (for example) in this group.
- You can create virtual topologies in MPI, e.g. you can map the processors to a rectangular grid, and then address the processors with row- and column-indices.
- There is some support for measuring performance.
- It is possible to control how a message is passed from one process to another. Do the processes synchronise or is a buffer used, for example.
- There are more routines for collective communication.

In MPI-2.0 there are several new features, some of these are:
- Dynamic process creation.
- One-sided communication, a process can directly access memory of another process (similar to shared memory model).
- Parallel I/O, allows several processes to access a file in a co-ordinated way.

So, using several threads can be an option if we have a large problem. We get a better speedup for the multiplication, than for eig, which seems reasonable.

This method can be used to speed up the computation of elementary functions as well.

According to MathWorks:
maxNumCompThreads will be removed in a future version. You can set the -singleCompThreadoption when starting MATLAB to limit MATLAB to a single computational thread. By default, MATLAB makes use of the multithreading capabilities of the computer on which it is running.

\section*{OpenMP - shared memory parallelism}

OpenMP is a specification for a set of compiler directives, library routines, and environment variables that can be used to specify shared memory parallelism in Fortran and C/C++ programs.

Fortran version 1.0, Oct 1997, ver. 2.0 Nov. 2000.
C/C++ ver. 1.0 Oct. 1998, ver. 2.0 Mar. 2002.

Version 2.5 May 2005, combines the Fortran and C/C++ specifications into a single one and fixes inconsistencies.

Version 3.0, May 2008, not supported by all compilers (supported by ifort/icc ver 11.0, for example).
v2.5 mainly supports data parallelism (SIMD), all threads perform the same operations but on different data. In v3.0 there is better support for "tasks", different threads perform different operations (so-called function parallelism, or task parallelism).

Specifications (in PDF): www.openmp.org
Good readability to be standards.
For a few books look at:
http://openmp.org/wp/resources/\#Books

The basic idea - fork-join programming model

- when reaching a parallel part the master thread (original process) creates a team of threads and it becomes the master of the team
- the team executes concurrently on different parts of the loop (parallel construct)
- upon completion of the parallel construct, the threads in the team synchronise at an implicit barrier, and only the master thread continues execution
- the number of threads in the team is controlled by environment variables and/or library calls, e.g.
setenv OMP_NUM_THREADS 7 call omp_set_num_threads (5)(overrides)
- the code executed by a thread must not depend on the result produced by a different thread

\section*{So what is a thread?}

A thread originates from a process and is a part of that process. The threads (belonging to the particular process) share global variables, files, code, PID etc. but they have their individual stacks and program counters

Note that we have several processes in MPI.

Since all the threads can access the shared data (a matrix say) it is easy to write code so that threads can work on different parts of the matrix in parallel.

It is possible to use threads directly but we will use the OpenMPdirectives. The directives are analysed by a compiler or preprocessor which produces the threaded code.

\section*{MPI versus OpenMP}

Parallelising using distributed memory (MPI):
- Requires large grain parallelism to be efficient (process based).
- Large rewrites of the code often necessary difficult with "dusty decks".
May end up with parallel and non-parallel versions.
- Domain decomposition; indexing relative to the blocks.
- Requires global understanding of the code.
- Hard to debug.
- Runs on most types of computers.

Using shared memory (OpenMP)
- Can utilise parallelism on loop level (thread based). Harder on subroutine level, resembles MPI-programming.
- Minor changes to the code necessary. A detailed knowledge of the code not necessary. Only one version. Can parallelise using simple directives in the code.
- No partitioning of the data.
- Less hard to debug.
- Not so portable; requires a shared memory computer (but common with multi-core computers).
- Less control over the "hidden" message passing and memory allocation.

\section*{A simple example}
```

\#include <stdio.h>
\#include <omp.h>
int main()
{
int i, i_am, n = 10000;
double a[n],b[n],c[n];
for (i = 0; i < n; i++)
c[i] = 1.242;
// a parallel for loop
\#pragma omp parallel for private(i) shared(a, b, c)
for (i = 0; i < n; i++) {
b[i] = 0.5* (i + 1);
a[i] = 1.23 * b[i] + 3.45 * c[i];
}
printf("%f, %f\n", a[0], a[n - 1]); // the master
// a parallel region
\#pragma omp parallel private(i_am)
{
i_am = omp_get_thread_num(); // 0 to \#threads - 1
printf("i_am = %d\n", i_am); // all threads print
\#pragma omp master
{
printf("num threads = %d\n",omp_get_num_threads())
printf("max threads = %d\n",omp_get_max_threads())
printf("max cpus = %d\n",omp_get_num_procs());
} // use { } for begin/end
}
return 0;
}

```
ferlin > icc -openmp omp1.c
ferlin > setenv OMP_NUM_THREADS 1
ferlin > a.out
4.899900, 6154.284900
i_am \(=0\)
num threads \(=1\)
\(\max\) threads \(=1\)
\(\max\) cpus \(=8\)
ferlin > setenv OMP_NUM_THREADS 4
ferlin > a.out
4.899900, 6154.284900
i_am = 3
i_am \(=0\)
num threads \(=4\)
\(\max\) threads \(=4\)
\(\max\) cpus \(=8\)
i_am \(=2\)
i_am = 1
ferlin > setenv OMP_NUM_THREADS 9
ferlin > a.out
4.899900, 6154.284900
etc.
On some some systems (\# of threads > \# of cpus \(=8\) ):
Warning: MP_SET_NUMTHREADS greater than available cpus
Make no assumptions about the order of execution between threads. Output from several threads may be interleaved.

Intel compilers: ifort -openmp .., icc -openmp ...
GNU: gfortran -fopenmp .., gcc -fopenmp ...
Portland group: pgf90 -mp..., pgcc -mp ...

Use shared when
- a variable is not modified in the loop or
- when it is an array in which each iteration of the loop accesses a different element

All variables except the loop-iteration variable are shared by default. To turn off the default, use default (none).

Suppose we are using four threads. The first thread may work on the first 2500 iterations ( \(n=10000\) ), the next thread on the next group of 2500 iterations etc.

At the end of the parallel for, the threads join and they synchronise at an implicit barrier.

Output from several threads may be interleaved.
To avoid multiple prints we ask the master thread (thread zero) to print. The following numbers are printed:
number of executing threads, maximum number of threads that can be created (can be changed by setting OMP_NUM_THREADSOr by calling omp_set_num_threads) and available number of processors (cpus).

\section*{The same program in Fortran}
```

program example
use omp_lib ! or include "omp_lib.h"
! or something non-standard
implicit none
integer :: i, i_am
integer, parameter $:: n=10000$
double precision, dimension(n) : : a, b, c
$c=1.242 \mathrm{~d} 0$
! \$omp parallel do private (i), shared (a, b, c)
do $i=1$, n
$b(i)=0.5 d 0 * i$
$a(i)=1.23 d 0 * b(i)+3.45 d 0 * c(i)$
end do
! \$omp end parallel do ! not necessary
print*, a(1), a(n) ! only the master
! \$omp parallel private(i_am) ! a parallel region
i_am = omp_get_thread_num() ! 0, ..., \#threads - 1
print*, 'i_am = ', i_am
! \$omp master
print*, ' num threads $=$ ', omp_get_num_threads ()
print*, 'max threads $=$ ', omp_get_max_threads ()
print*, 'max cpus $=$ ', omp_get_num_procs()
! \$omp end master
! \$omp end parallel
end program example
! \$omp or ! \$OMP. See the standard for Fortran77.
! \$omp end . . instead of \}.

```

\section*{Things one should not do}

First a silly example:
int a, i;
\#pragma omp parallel for private(i) shared(a)
for ( \(i=0\); \(i<1000\); \(i++\) ) \(\{\)
a = i;
\}
printf("\%d\n", a);
...
Will give you different values 999, 874 etc.
```

Now for a less silly one:
int i, n = 12, a[n], b[n];
for (i = 0; i < n; i++) {
a[i] = 1;b[i] = 2; // Init.
}
\#pragma omp parallel for private(i) shared(a, b)
for (i = 0; i < n - 1; i++) {
a[i + 1] = a[i] + b[i];
}
for (i = 0; i < n; i++)
printf("%d ", a[i]); // Print results.
printf("\n");

```

A few runs:
1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23 one thread 1, 3, 5, 7, 9, 11, 13, 3, 5, 7, 9, 11 four \(1,3,5,7,9,11,13,15,17,19,3,5\) four 1, 3, 5, 7, 9, 11, 13, 3, 5, 7, 3, 5 four 209
but in this case the threads do not run in parallel. Adding printf("\%3d \%3d\n", i, omp_get_thread_num()); in the loop produces the printout:


It is illegal to jump out from a parallel loop.
The following for-loop in C is illegal:
\#pragma omp parallel for private (k, s)
for (k = 0 ; s <= 10 ; \(k++\) ) \(\{\)
\}
It must be the same variable occurring in all three parts of the loop. More general types of loops are illegal as well, such as
```

for(;;) {
}

```
which has no loop variable. In Fortran, do-while loops are not allowed. See the standard for details.

Not all compilers provide warnings. Here a Fortran-loop with a jump.

Why?
thread
0
0
0
1
1
1
2
2
2

3
3
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{computation} \\
\hline \(a[1]=a[0]+b[0]\) & \\
\hline \(a[2]=a[1]+b[1]\) & \\
\hline \(a[3]=a[2]+b[2]\) & <--| \\
\hline \(a[4]=a[3]+b[3]\) & - - \\
\hline \(a[5]=a[4]+b[4]\) & \\
\hline \(a[6]=a[5]+b[5]\) & <--| \\
\hline & \\
\hline \(a[7]=a[6]+b[6]\) & <-- \\
\hline \(a[8]=a[7]+b[7]\) & \\
\hline \(a[9]=a[8]+b[8]\) & <--| \\
\hline & Problem \\
\hline \(a[10]=a[9]+b[9]\) & - | \\
\hline \(a[11]=a[10]+b[10]\) & \\
\hline
\end{tabular}

We have a data dependency between iterations, causing a so-called race condition.

Can "fix" the problem:
```

// Yes, you need ordered in both places
\#pragma omp parallel for private(i) shared(a,b) orderec
for (i = 0; i < n - 1; i++) {
\#pragma omp ordered
a[i + 1] = a[i] + b[i];
}

```

210
program jump
    implicit none
    integer \(:: \mathbf{k}, \mathrm{b}\)
    integer, parameter \(:\) : \(n=6\)
    integer, dimension(n) : : a
    \(a=(/ 1,2,3,4,5,6 /)\)
    \(b=1\)
    ! \$omp parallel do private(k) shared(a)
        do \(k=1, n\)
            \(a(k)=a(k)+1\)
            if (a(k) > 3 ) exit ! illegal
        end do
    print*, a
end program jump
\% ifort -openmp jump.f90
fortcom: Error: jump.f90, line 13: A RETURN, EXIT or
                CYCLE statement is not legal in a DO loop
        associated with a parallel directive.
        if (a(k) > 3 ) exit ! illegal
compilation aborted for jump.f90 (code 1)
\% pgf90 -mp jump.f90 the Portland group compiler
\% setenv OMP_NUM_THREADS 1
\% a.out
    \(\begin{array}{llllll}2 & 3 & 4 & 4 & 5 & 6\end{array}\)
\% setenv OMP_NUM_THREADS 2
\% a.out
            \(\begin{array}{llllll}2 & 3 & 4 & 5 & 5 & 6\end{array}\)

\section*{firstprivate variables}

When a thread gets a private variable it is not initialised. Using firstprivateeach thread gets an initialised copy.

In this example we use two threads:
. . .
int \(i, v[]=\{1,2,3,4,5\}\);
\#pragma omp parallel for private(i) private(v)
for ( \(i=0\); \(i<5\); \(i++\) )
printf("\%d ", v[i]);
printf("\n");
\#pragma omp parallel for private(i) firstprivate(v)
for ( \(i=0\); \(i<5\); \(i++\) ) printf("\%d ", v[i]);
printf("\n");
\% a.out
409281095015180405900
12453 (using several threads)

\section*{Load balancing}

We should balance the load (execution time) so that threads finish their job at roughly the same time.
There are three different ways to divide the iterations between threads, static, dynamic and guided The general format is schedule (kind of schedule, chunk size.)
- static

Chunks of iterations are assigned to the threads in cyclic order. Size of default chunk, roughly \(=\mathrm{n} /\) number of threads.

Low overhead, good if the same amount of work in each iteration. chunk can be used to access array elements in groups (may be me more efficient, e.g. using cache memories in better way).

Here is a small example:
```

! \$omp parallel do private(k) shared(x, n) \&
! \$omp schedule(static, 4) ! 4 = chunk
do $k=1$, n
...
end do

```
k : 12345678901234567890
thread 0: \(\mathbf{x} \times \mathbf{x} \times\)
thread 1: \(\mathbf{x} \times \mathbf{x} \quad \mathbf{x} \times \mathbf{x}\)
thread 2: \(\quad \mathbf{x} \times \mathbf{x}\)

Here is a larger problem, where \(n=5000\), schedule(static), and using four threads.

Note that if the chunk size is 5000 (in this example) only the first thread would work, so the chunk size should be chosen relative to the number of iterations.

\section*{- dynamic}

If the amount of work varies between iterations we should use dynamic or guided With dynamic, threads compete for chunksized assignments. Note that there is a synchronization overhead for dynamic and guided.
```

!$omp parallel do private(k) shared(x, n) &
!$omp schedule(dynamic, chunk)

```

Here a run with schedule (dynamic, 100)(schedule (dynamic), gives a chunk size of one). The amount of works differs between iterations in the following examples.


\section*{- guided}

There is also schedule (guided, chunk) assigning pieces of work ( \(\geq\) chunk) proportional to the \({ }_{216}\) number of remaining iterations
divided by the number of threads.
Large chunks in the beginning smaller at the end. It requires fewer synchronisations than dynamic.

- runtime

It is also possible to decide the scheduling at runtime, using an environment variable, OMP_SCHEDULE e.g.
! \$omp parallel do private(k) shared(x, n) \&
! \$omp schedule (runtime)
setenv OMP_SCHEDULE "guided,100" tcsh
export OMP_SCHEDULE=dynamic bash
```

Here is a test:
\#include <stdio.h>
\#include <omp.h>
void work(double *);
int main()
{
const int M = 1000, MAX_THREADS = 8;
double s[MAX_THREADS - 1], time;
int j, k, i_am, thr;
for (thr = 1; thr <= MAX_THREADS; thr++) {
omp_set_num_threads (thr);
time = omp_get_wtime(); // a builtin function
\#pragma omp parallel private(j, k, i_am) shared(s)
{
i_am = omp_get_thread_num();
\#pragma omp for schedule(runtime)
for (j = 1; j <= M; j++)
for (k = j + 1; k <= M; k++)
work(\&s[i_am]);
}
printf("time = %4.2f\n", omp_get_wtime() - time);
}
for (j = 0; j < MAX_THREADS; j++)
printf("%e ", s[j]);
printf("\n");
return 0;
}

```

Suppose we parallelise \(m\) iterations over \(\boldsymbol{P}\) processors.
No default scheduling is defined in the OpenMP-standard,
but schedule (static, \(m / P\) ) is a common choice
(assuming that \(P\) divides \(m\) ).
Here comes an example where this strategy works badly.
So do not always use the standard choice.
We have nested loops, where the number of iterations in the inner loop depends on the loop index in the outer loop.
```

!\$omp ...
do j = 1, m ! parallelise this loop
do k = j + 1, m ! NOTE: k = j + 1
call work(...) ! each call takes the same time
end do
end do

```

Suppose \(m\) is large and let \(T_{\text {ser }}\) be the total run time on one thread. If there is no overhead, the time, \(T_{t}\), for thread number \(t\) is approximately:
\[
T_{t} \approx \frac{2 T_{\text {ser }}}{P}\left(1-\frac{t+1 / 2}{P}\right), \quad t=0, \ldots, P-1
\]

So thread zero has much more work to do compared to the last thread:
\[
\frac{T_{0}}{T_{P-1}} \approx 2 P-1
\]
a very poor balance. The speedup is bounded by \(T_{0}\) :
\[
\text { speedup }=\frac{T_{\text {ser }}}{T_{0}} \approx \frac{P}{2-1 / P} \approx \frac{P}{2}
\]
and not the optimal \(P\).
```

void work(double *s)
{
int k;
*s = 0.0;
for (k = 1; k <= 1000; k++)
*s += 1.0 / k;
}
% icc -03 -openmp load_bal.c
% setenv OMP_SCHEDULE static
% a.out run on Ferlin (edited)
time = 3.83
time = 2.88
time = 2.13
time = 1.68
time = 1.38
time = 1.17
time = 1.02
time = 0.90
% setenv OMP_SCHEDULE "static,10"
time = 3.83
time = 1.94
time = 1.30
time = 0.99
time = 0.80
time = 0.67
time = 0.58
time = 0.51

```
dynamic and guided give the same times as static, 10, in this case. A chunk size of \(1-20\) works well, but more than 50 gives longer execution times.

Note that \(P /(2-1 / P) \approx 4.3\) and \(3.83 / 0.9 \approx 4.26\) and \(3.83 / 0.51 \approx 7.5\). So the analysis is quite accurate in this simple case.

Do not misuse dynamic. Here is a contrived example:
...
```

int k, i_am, iter[] = { 0, 0, 0, 0 };
double time;
omp_set_num_threads (4);
time = omp_get_wtime();
\#pragma omp parallel private(k, i_am) shared(iter)
{
i_am = omp_get_thread_num();
\#pragma omp for schedule(runtime)
for (k = 1; k <= 100000000; k++)
iter[i_am]++;
}
printf("time: %5.2f, iter: %d %d %d %d\n",
omp_get_wtime() - time,
iter[0], iter[1], iter[2], iter[3]);
ferlin > setenv OMP_SCHEDULE static
time: 0.01, iter: 25000000 25000000 25000000 25000000
ferlin > setenv OMP_SCHEDULE dynamic
time: 15.53, iter: 25611510 25229796 25207715 23950979
ferlin > setenv OMP_SCHEDULE "dynamic,10"
time: 1.32, iter: 25509310 24892310 25799640 23798740
ferlin > setenv OMP_SCHEDULE "dynamic,100"
time: 0.13, iter: 29569500 24044300 23285700 23100500
ferlin > setenv OMP_SCHEDULE guided
time: 0.00, iter = 39831740 5928451 19761833 34477976

```
221

In Fortran:
reduction(operator or intrinsic: variable list)

Valid operators are: +, *, -, .and., .or., .eqv., .neqv. and intrinsics: max, min, iand, ior, ieor(the iand is bitwise and, etc.)

The operator/intrinsic is used in one of the following ways:
```

- x = x operator expression
- x = expression operator x(except for subtraction)
- x = intrinsic(x, expression)
- x = intrinsic(expression, x)

```
where expression does not involve \(\mathbf{x}\).
Note that \(\mathbf{x}\) may be an array in Fortran (vector reduction) but not so in C. Here is a contrived example which computes a matrix-vector product:

\section*{The reduction clause}
```

int i, n = 10000;
double x[n], y[n], s;
for (i = 0; i < n; i++) {
x[i] = 1.0; y[i] = 2.0; // Init.
}
s = 0.0;
\#pragma omp parallel for private(i) shared(n, x, y)
reduction(+: s) // all on the same line
for (i = 0; i < n; i++)
s += x[i] * y[i];

```

In general: reduction (operator: variable list.)
Valid operators are: +, *, \(-, \&,|, \wedge, \& \&,| |\).
A reduction is typically specified for statements of the form:
```

x = x op expr
x = expr op x (except for subtraction)
x binop= expr
x++
++x
x--
--x

```
where expr is of scalar type and does not reference \(\mathbf{x}\). This is what happens in our example above:
- each thread gets its local sum-variable, \(s_{\# \text { thread }}\) say
- \(s_{\# \text { thread }}=0\) before the loop (the thread private variables are initialised in different ways depending on the operation, zero for + and - , one for \(*)\). See the standard for the other cases.
- each thread computes its sum in \(s_{\# \text { thread }}\)
- after the loop all the \(s_{\# \text { thread }}\) are added to s in a safe way 222

Here an example where we use an intrinsic function in Fortran:
```

program openmp
implicit none
integer :: k
integer, parameter :: n = 20
double precision, dimension(n) :: vec
double precision :: min_vec
do k = 1, n
vec(k) = 1.0d0 / k
end do
min_vec = vec(1) ! important
!$omp parallel do reduction(min: min_vec) &
!$omp shared(vec) private(k)
do k}=1,
min_vec = min(vec(k), min_vec)
end do
print*, 'min_vec = ', min_vec

```
end
min_vec \(=\operatorname{vec}(1)\) is important, otherwise we will get an un-
defined value. Setting min_vec \(=-1\) gives a minimum of -1 .
```

double precision, dimension(n, n) :: A

```
double precision, dimension(n, n) :: A
double precision, dimension(n) :: s, x
double precision, dimension(n) :: s, x
A = .. ! initialize A and b
A = .. ! initialize A and b
b}=
b}=
s}=0.0\textrm{dO
s}=0.0\textrm{dO
!$omp parallel do shared(A, x) reduction(+: s) &
!$omp parallel do shared(A, x) reduction(+: s) &
!$omp private(i) default(none)
!$omp private(i) default(none)
do i = 1, n
do i = 1, n
    s = s + A(:, i) * x(i) ! s = A * x
    s = s + A(:, i) * x(i) ! s = A * x
end do
```

end do

```

We can implement our summation example without using reduction-variables. The problem is to update the shared sum in a safe way. This can be done using critical sections.
```

 double private_s, shared_s;
 ...
shared_s = 0.0;
// a parallel region
\#pragma omp parallel private(private_s)
shared(x, y, shared_s, n)
{
private_s = 0.0; // Done by each thread
\#pragma omp for private(i) // A parallel loop
for (i = 0; i < n; i++)
private_s += x[i] * y[i];
// Here we specify a critical section.
// Only one thread at a time may pass through.
\#pragma omp critical
shared_s += private_s;
}
...

```

We can avoid the critical section if we introduce a shared matrix where each row (or column) corresponds to the partial_sum from the previous example.
```

 for(k = 0; k < n; k++) // done by the master
 shared_sum[k] = 0.0;
 #pragma omp parallel private(i_am) \
 shared(S, shared_sum, n_threads)
 {
 i_am = omp_get_thread_num();
 for(k = 0; k < n; k++) // done by all
 S[i_am][k] = 0.0;
 // Each thread updates its own partial_sum.
 // We assume that this is the time consuming part.
 for(...
 S[i_am][k] = ..
 // Must wait for all partial sums to be ready
 #pragma omp barrier
 // Add the partial sums together.
 // The final sum could be stored in S of course.
 #pragma omp for
 for(k = 0; k < n; k++)
 for(j = 0; j < n_threads; j++)
 shared_sum[k] += S[j][k];
 } // end parallel
    ```

\section*{Vector reduction in C}

Here are two alternatives in C (and Fortran if the compiler does not support vector reduction).

We introduce a private summation vector, partial_sum one for each thread.
```

for(k = 0; k < n; k++) // done by the master
shared_sum[k] = 0.0;
\#pragma omp parallel private(partial_sum, k) \
shared(shared_sum) ...
{
// Each thread updates its own partial_sum.
// We assume that this is the time consuming part.
for(...
partial_sum[k] = ..
// Update the shared sum in a safe way.
// Not too bad with a critical section here.
\#pragma omp critical
{
for(k = 0; k < n; k++)
shared_sum[k] += partial_sum[k];
}
} // end parallel

```
...

Nested loops, matrix-vector multiply
```

a = 0.0
do j = 1, n
do i = 1, m
a(i) = a(i) + C(i, j) * b(j)
end do
end do

```

Can be parallelised with respect to \(i\) but not with respect to \(j\) (since different threads will write to the same a(i)).

May be inefficient since parallel execution is initiated \(\mathbf{n}\) times (procedure calls). OK if \(n\) small and \(m\) large.

Switch loops.
\[
\begin{aligned}
& a=0.0 \\
& \text { do } i=1, m \\
& \text { do } j=1, n \\
& a(i)=a(i)+c(i, j) * b(j) \\
& \text { end do } \\
& \text { end do }
\end{aligned}
\]

The do i can be parallelised. Bad cache locality for \(\mathbf{c}\).
Test on Ferlin using ifort -03 . ... The loops were run ten times. Times in seconds for one to four threads. dgemv from MKL takes \(0.23 \mathrm{~s}, 0.21 \mathrm{~s}, 0.34 \mathrm{~s}\) for the three cases and the builtin matmul takes \(1.0 \mathrm{~s}, 0.74 \mathrm{~s}, 1.1 \mathrm{~s}\). Use BLAS!
\begin{tabular}{|r|r||r|r|r|r||r|r|r|r|}
\hline m & \multicolumn{1}{|c|}{n} & \multicolumn{4}{c|}{ first loop } & \multicolumn{4}{c|}{ second loop } \\
\hline & & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 \\
\hline 4000 & 4000 & 0.41 & 0.37 & 0.36 & 0.36 & 2.1 & 1.2 & 0.98 & 0.83 \\
40000 & 400 & 0.39 & 0.32 & 0.27 & 0.23 & 1.5 & 0.86 & 0.72 & 0.58 \\
400 & 40000 & 0.49 & 1.2 & 1.5 & 1.7 & 1.9 & 2.0 & 2.3 & 2.3 \\
\hline
\end{tabular}
- Cache locality is important.
- If second loop is necessary, OpenMP gives speedup.
- Large \(n\) gives slowdown in first loop.

\section*{A few other OpenMP directives, C}
\#pragma omp parallel shared (a, n)
\#pragma omp single // only ONE thread will
\{ // execute the code
\}
\#pragma omp barrier // wait for all the other threads . . . code
// don't wait (to wait is default)
\#pragma omp for nowait
for (...
for ( ... // all iterations run by all threads
\#pragma omp sections
\{
\#pragma omp section

\section*{... code executed by one thread}
\#pragma omp section

\section*{... code executed by another thread}
\} // end sections, implicit barrier
\# ifdef _OPENMP
C statements ... Included if we use OpenMP,
but not otherwise (conditional compilation)
\# endif
\} // end of the parallel section

\section*{Misuse of critical, atomic}

Do not use critical sections and similar constructions too much.
This test compares three ways to compute a sum.
We try reduction, critical and atomic. \(n=10^{7}\).
```

printf("n_thr time, reduction\n");
for(n_thr = 1; n_thr <= 4; n_thr++) {
omp_set_num_threads(n_thr);
s = 0.0;
t = omp_get_wtime();

```
    \#pragma omp parallel for reduction(+: s) private(i)
    for (i = 1; \(i<=n\); \(i++\) )
            s += sqrt(i);
    printf("\%3d \%10.3f\n", n_thr, omp_get_wtime() - t);
\}
printf("s \(=\%\) \(\backslash \mathbf{n} ", s) ;\)

Change the inner loop to
```

\#pragma omp parallel for shared(s) private(i)
for (i = 1; i <= n; i++) {
\#pragma omp critical
s += sqrt(i);
}

```
and then to
```

\#pragma omp parallel for shared(s) private(i)
for (i = 1; i <= n; i++) {
\#pragma omp atomic
s += sqrt(i);
}

```
atomic updates a single variable atomically.

\section*{A few other OpenMP directives, Fortran}
```

!\$omp parallel shared(a, n) ! a parallel region

```
    ... code run in parallel
! \$omp single ! only ONE thread will execute the code
    ... code
! \$omp end single
! \$omp barrier ! wait for all the other threads
    . . . code
! \$omp do private (k)
            do ...
            end do
! \$omp end do nowait ! don't wait (to wait is default)
    do ... ! all iterations run by all threads
    end do
! \$omp sections
! \$omp section
            ... code executed by one thread
! \$omp section
            ... code executed by another thread
! \$omp end sections ! implicit barrier
! \$ Fortran statements ... Included if we use OpenMP,
! \$ but not otherwise (conditional compilation)
! \$omp end parallel ! end of the parallel section

Here are the times (on Ferlin):
\begin{tabular}{cc} 
n_thr & time, reduction \\
1 & 0.036 \\
2 & 0.020 \\
3 & 0.014 \\
4 & 0.010 \\
& \\
n_thr & time, critical \\
1 & 0.666 \\
2 & 5.565 \\
3 & 5.558 \\
4 & 5.296 \\
& \\
\(n \_t h r\) & time, atomic \\
1 & 0.188 \\
2 & 0.537 \\
3 & 0.842 \\
4 & 1.141
\end{tabular}

We get a slowdown instead of a speedup, when using critical or atomic.

\section*{workshare}

Some, but not all, compilers support parallelisation of Fortran90 array operations, e.g.
```

. . . code
! a, b and c are arrays
!$omp parallel shared(a, b, c)
!$omp workshare
a = 2.0 * cos(b) + 3.0 * sin(c)
!$omp end workshare
!$omp end parallel
... code

```
or shorter
... code
! \$omp parallel workshare shared (a, b, c)
\[
a=2.0 * \cos (b)+3.0 * \sin (c)
\]
! \$omp end parallel workshare
... code

\section*{Subroutines and OpenMP}

Here comes a first example of where we call a subroutine from a parallel region. If we have time leftover there will be more at the end of the lecture. Formal arguments of called routines, that are passed by reference, inherit the data-sharing attributes of the associated actual parameters. Those that are passed by value become private. So:
```

void work(double [], double [], double, double,
double *, double *);
double pr_vec[10], sh_vec[10], pr_val, sh_val,
pr_ref, sh_ref;
\#pragma omp parallel private(pr_vec, pr_val, pr_ref)
shared(sh_vec, sh_val, sh_ref)
{
work(pr_vec, sh_vec, pr_val, sh_val, \&pr_ref, \&sh_ref
}
void work(double pr_vec[], double sh_vec[],
double pr_val, double sh_val,
double *pr_ref, double*sh_ref)
{
// pr_vec becomes private
// sh_vec becomes shared
// pr_val becomes private
// sh_val becomes PRIVATE, each thread has its own
// pr_ref becomes private
// sh_ref becomes shared
int k; // becomes private
}
% a.out
work 1
work 3
a = 99, 1, 99, 3
work 2
work 0

```

Print after the parallel region or add a barrier:
\#pragma omp barrier
\#pragma omp single
printf("a \(=\frac{\circ d,}{\circ} d, \% d, \% d \backslash n "\), \(a[0], a[1], a[2], a[3])\);
\% a.out
work 0
work 1
work 3
work 2
\(a=0,1, \quad 2,3\)

OpenMP makes no guarantee that input or output to the same file is synchronous when executed in parallel. You may need to link with a special thread safe I/O-library.

\section*{Case study: solving a large and stiff IVP}
\(y^{\prime}(t)=f(t, y(t)), y(0)=y_{0}, y, y_{0} \in \Re^{n}, \quad f: \Re \times \Re^{n} \rightarrow \Re^{n}\)
where \(f(t, y)\) is expensive to evaluate.
LSODE (Livermore Solver for ODE, Alan Hindmarsh) from netlib. BDF routines; Backward Differentiation Formulas.

Implicit method: \(t_{k}\) present time, \(y^{(k)}\) approximation of \(y\left(t_{k}\right)\).
Backward Euler (simplest BDF-method). Find \(y^{(k+1)}\) such that:
\[
y^{(k+1)}=y^{(k)}+h f\left(t_{k+1}, y^{(k+1)}\right)
\]

LSODE is adaptive (can change both \(h\) and the order).
Use Newton's method to solve for \(z \equiv y^{(k+1)}\) :
\[
z-y^{(k)}-h f\left(t_{k+1}, z\right)=0
\]

One step of Newton's method reads:
\(z^{(i+1)}=z^{(i)}-\left[I-h \frac{\partial f}{\partial y}\left(t_{k+1}, z^{(i)}\right)\right]^{-1}\left(z^{(i)}-y^{(k)}-h f\left(t_{k+1}, z^{(i)}\right)\right)\)
The Jacobian \(\frac{\partial f}{\partial y}\) is approximated by finite differences one column at a time. Each Jacobian requires \(n\) evaluations of \(f\).
\[
\frac{\partial f}{\partial y} e_{j} \approx\left[f\left(t_{k+1}, z^{(i)}+e_{j} \delta_{j}\right)-f\left(t_{k+1}, z^{(i)}\right)\right] / \delta_{j}
\]
\(e_{j}\) is column \(j\) in the identity matrix \(I\).

Parallelise the computation of the Jacobian, by computing columns in parallel. Embarrassingly parallel.

Major costs in LSODE:
1. Computing the Jacobian, J , (provided \(f\) takes time).
2. LU-factorization of the Jacobian (once for each time step)
3. Solving the linear systems, given \(L\) and \(U\).

What speedup can we expect?
Disregarding communication, the wall clock time for \(p\) threads, looks something like (if we compute J in parallel):
\[
w c t(p)=\operatorname{time}(\mathrm{LU})+\text { time }(\text { solve })+\frac{\text { time }(\text { computing J) }}{p}
\]

If the parallel part, "computing J", dominates we expect good speedup at least for small \(p\). Speedup may be close to linear, \(w c t(p)=w c t(1) / p\).

For large \(p\) the serial (non-parallel) part will start to dominate.

How should we speed up the serial part?
1. Switch from Linpack, used in LSODE, to Lapack.
2. Try to use a parallel library like ACML.

The parallel version
- j, i, Yj, r, fac, ftemare private ftem is the output ( \(y^{\prime}\) ) from the subroutine
- \(\mathbf{j 1}=2\) offset in the Jacobian; use wm (i+2+(j-1)*n) no index conflicts
- srur, ro, ewt, hlo, wm, savf, n, trare shared
- y is a problem since it is modified. shared does not work. private (y) will not work either; we get an uninitialised copy. firstprivateis the proper choice, it makes a private and initialised copy.
```

c$omp parallel do private(j, yj, r, fac, ftem)
c$omp+ shared(f, srur, r0, ewt, hl0, wm, savf,n,neq,tn)
c\$omp+ firstprivate(y)
do j = 1,n
yj = y(j)
r = dmax1(srur*dabs(yj),r0/ewt(j))
y(j) = y(j) + r
fac = -hl0/r
call f (neq, tn, y, ftem)
do i = 1,n
wm(i+2+(j-1)*n) = (ftem(i) - savf(i))*fac
end do
y(j) = yj
end do

```

Did not converge! After reading of the code:
dimension neq(1), \(y(1), \quad y h(n y h, 1), ~ e w t(1), f t e m(1)\)
change to
dimension neq(1), \(y(n), \quad y h(n y h, 1)\), ewt(1), ftem(n)

\section*{More on OpenMP and subprograms}

So far we have essentially executed a main program containing OpenMP-directives. Suppose now that we call a function, containing OpenMP-directives, from a parallel part of the program, so something like:
```

int main()
{
\#pragma omp parallel ... (---
void work(...)
{
\#pragma omp for
for (...) {
}

```
    \}

The omp for in work is an orphaned directive (it appears in the dynamic extent of the parallel region but not in the lexical extent). This for binds to the dynamically enclosing parallel directive and so the iterations in the for will be done in parallel (they will be divided between threads).

Suppose now that work contains the following three loops and that we have three threads:
```

int k, i_am;
char f[]= "%1d:%5d %5d %5d\n"; // a format
\#pragma omp master
printf(" i_am omp() k\n");
i_am = omp_get_thread_num();
\#pragma omp for private(k)
for (k = 1; k <= 6; k++) // LOOP 1
printf(f, 1, i_am, omp_get_thread_num(), k);
for (k = 1; k <= 6; k++) // LOOP 2
printf(f, 2, i_am, omp_get_thread_num(), k);
\#pragma omp parallel for private(k)
for (k = 1; k <= 6; k++) // LOOP 3
printf(f, 3, i_am, omp_get_thread_num(), k);

```

In LOOP 1 thread 0 will do the first two iterations, thread 1 performs the following two and thread 2 takes the last two. In LOOP 2 all threads will do the full six iterations.
In the third case we have:
A paralleldirective dynamically inside another parallel
directive logically establishes a new team, which is
composed of only the current thread, unless nested parallelism is established.

We say that the loops is serialised. All threads perform six iterations each.

\section*{Case study: sparse matrix multiplication}

Task: given a matrix \(\boldsymbol{A}\) which is large, sparse and symmetric we want to:
- compute a few of its smallest eigenvalues OR
- solve the linear system \(\boldsymbol{A x}=\boldsymbol{b}\)
\(n\) is the dimension of \(A\) and \(n z\) is the number of nonzeros.

Some background, which you may read after the lecture:
We will study iterative algorithms based on forming the Krylov subspace: \(\left\{v, A v, A^{2} v, \ldots, A^{j-1} v\right\} . v\) is a random-vector. So, Paige-style Lanczos for the eigenvalue problem and the
conjugate-gradient method for the linear system, for example. When solving \(A x=b\) we probably have a preconditioner as well, but let us skip that part.

The vectors in the Krylov subspace tend to become almost linearly dependent so we compute an orthonormal basis of the subspace using Gram-Schmidt. Store the basis-vectors as columns in the \(n \times j\)-matrix \(V_{j}\).

Project the problem onto the subspace, forming \(T_{j}=V_{j}^{T} A V_{j}\) (tridiagonal) and solve the appropriate smaller problem, then transform back.
\(T_{j}\) and the basis-vectors can be formed as we iterate on \(j\). In exact arithmetic it is sufficient to store the three latest \(v\)-vectors in each iteration.
\(p\) is the maximum number of iterations.
A Lanczos-algorithm may look something like:
\begin{tabular}{ll}
\(v=\operatorname{randn}(\mathrm{n}, \mathrm{1})\) & \(\mathcal{O}(n)\) \\
\(v=v /\|v\|_{2}\) & \(\mathcal{O}(n)\) \\
for \(j=1\) to \(p\) do & \\
\(t=A v\) & \(\mathcal{O}(n z)\) \\
if \(j>1\) then \(t=t-\beta_{j-1} w\) endif & \(\mathcal{O}(n)\) \\
\(\alpha_{j}=t^{T} v\) & \(\mathcal{O}(n)\) \\
\(t=t-\alpha_{j} v\) & \(\mathcal{O}(n)\) \\
\(\beta_{j}=\|t\|_{2}\) & \(\mathcal{O}(n)\) \\
\(w=v\) & \(\mathcal{O}(n)\) \\
\(v=t / \beta_{j}\) & \(\mathcal{O}(n)\) \\
Solve the projected problem and & \(\mathcal{O}(j)\) \\
and check for convergence & \\
end for &
\end{tabular}

The diagonal of \(T_{j}\) is \(\alpha_{1}, \ldots, \alpha_{j}\) and the sub- and super-diagonals contain \(\beta_{1}, \ldots, \boldsymbol{\beta}_{j-1}\).

How can we parallelise this algorithm?
- The \(j\)-iterations and the statements in each iteration must be done in order. Not possible to parallelise.
- It is easy to parallelise each of the simple vector operations (the ones that \(\operatorname{cost} \mathcal{O}(n)\) ). May not give any speedup though.
- The expensive operation in an iteration is usually \(\boldsymbol{A v}\).
- Solving the projected problem is rather fast and not so easy to parallelise (let us forget it).
We will not look at graph-based pre-ordering algorithms.
A block diagonal matrix would be convenient, for example.

\section*{The tricky part, parallelising \(t=A v\)}
\(\boldsymbol{A}\) is large, sparse and symmetric so we need a special data structure which takes the sparsity and the symmetry into account.

First try: store all triples \(\left(r, c, a_{r, c}\right)\) where \(a_{r, c} \neq 0\) and \(r \leq c\). I.e. we are storing the nonzeros in the upper triangle of the matrix.

The triples can be stored in three arrays, rows, cols and \(A\) or as an array of triples. Let us use the three arrays and let us change the meaning of nz to mean the number of stored nonzeros. The first coding attempt may look like:
```

do k = 1, nz
if (rows(k) == cols(k)) then
...
lse
...
end if
end do

```

If-statements in loops may degrade performance, so we must think some more.

If \(\boldsymbol{A}\) has a dense diagonal we can store it in a separate array, diag_A say. We use the triples for all \(a_{r, c} \neq 0\) and \(r<c\) (i.e. elements in the strictly upper triangle).

If the diagonal is sparse we can use pairs \(\left(r, a_{r, r}\right)\) where \(a_{r, r} \neq 0\).
Another way is to use the triples format but store the
diagonal first, or to store \(a_{k, k} / 2\) instead of \(a_{k, k}\).

Vectors must not be too short if we are going to succeed.
The figures show how boye (SGI) computes daxpy for different \(n\) and number of threads.



246

Our second try may look like this, where now nz is the number stored nonzeros in the strictly upper triangle of \(\boldsymbol{A}\).
```

! compute t = diag(A) * v
do k=1, nz ! take care of the off-diagonals
r = rows (k)
c = cols(k)
t(r) = t(r) +A(k)* v(c) ! upper triangle
t(c)=t(c) +A(k)* v(r) ! lower triangle
end do

```
\[
\left[\begin{array}{c}
\vdots \\
t_{r} \\
\vdots \\
t_{c} \\
\vdots
\end{array}\right]=\left[\begin{array}{ccccc}
\ddots & \vdots & & \vdots & \\
\cdots & a_{r, r} & \ldots & a_{r, c} & \cdots \\
& \vdots & \ddots & \vdots & \\
\cdots & a_{c, r} & \cdots & a_{c, c} & \cdots \\
& \vdots & & \vdots & \ddots
\end{array}\right]\left[\begin{array}{c}
\vdots \\
v_{r} \\
\vdots \\
v_{c} \\
\vdots
\end{array}\right]
\]

Let us now concentrate on the loops for the off-diagonals and make it parallel using OpenMP.

Note that we access the elements in \(A\) once.

\section*{! Take care of diag(A)}
! \$omp do default (none), private (k, \(r, c), \&\)
! \$omp shared (rows, cols, \(A, n z, v, t)\)
do \(k=1\), nz ! take care of the off-diagonals
\(r \quad=\) rows (k)
c \(\quad=\operatorname{cols}(k)\)
\(t(x)=t(x)+A(k) * v(c) \quad\) upper triangle
\(t(c)=t(c)+A(k) * v(r) \quad\) ! lower triangle
end do
This will probably give us the wrong answer (if we use more than one thread) since two threads can try to update the same t-element.

Example: The first row in \(A\) it will affect \(t_{1}, t_{3}\) and \(t_{5}\), and the second row in \(A\) will affect \(t_{2}, t_{4}\) and \(t_{5}\). So there is a potential conflict when updating \(t_{5}\) if the two rows are handled by different threads.
\[
\left[\begin{array}{c}
t_{1} \\
t_{2} \\
t_{3} \\
t_{4} \\
t_{5}
\end{array}\right]=\left[\begin{array}{ccccc}
0 & 0 & a_{1,3} & 0 & a_{1,5} \\
0 & 0 & 0 & a_{2,4} & a_{2,5} \\
a_{1,3} & 0 & 0 & 0 & 0 \\
0 & a_{2,4} & 0 & 0 & 0 \\
a_{1,5} & a_{2,5} & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{array}\right]
\]

If the first row is full it will affect all the other rows. A block diagonal matrix would be nice.

As in the previous example it is not possible to use critical sections. Vector reduction is an option and we can do our own as before. Here is a version using a public matrix.
\(\mathbf{x}\) has \(\boldsymbol{n}\) rows and as many columns as there are threads, num_thr below. Each thread stores its sum in \(\mathbf{X}(:, t h r)\), where thr is the index of a particular thread.

Here is the code:
```

!\$omp parallel shared(X, ...)
i_am = omp_get_thread_num() + 1
do i = 1, n ! done by all threads
X(i, i_am) = 0.0 ! one column each
end do
! $omp do
 do i = 1, nz
 r = rows(i)
 c=cols(i)
 X(r, i_am) = X(r, i_am) + A(i) * v(c)
 X(c, i_am) = X(c, i_am) + A(i) * v(r)
 end do
 !$omp end do
! $omp do
 do i = 1, n
 do thr = 1, num_thr
 t(i) = t(i) + x(i, thr)
 end do
 end do
 ...
!$omp end parallel

```

The addition loop is now parallel, but we have bad cache locality when accessing \(X\) (this can be fixed). None of the parallel loops should end with nowait.
One can get a reasonable speedup (depends on problem and system).

We can parallelise this loop (with respect to do \(r\) ) in the same way as we handled the previous one (using the extra array \(\mathbf{x}\) ).

There is one additional problem though.
Suppose that the number of nonzeros per row is fairly constant and that the nonzeros in a row is evenly distributed over the columns.

If we use default static scheduling the iterations are divided among the threads in contiguous pieces, and one piece is assigned to each thread. This will lead to a load imbalance, since the upper triangle becomes narrower for increasing \(r\).

To make this effect very clear I am using a full matrix (stored using a sparse format).

A hundred matrix-vector multiplies with a full matrix of order 2000 takes (wall-clock-times):
\begin{tabular}{|l|c|c|c|c|}
\hline \#threads \(\rightarrow\) & 1 & 2 & 3 & 4 \\
\hline triple storage & 19.7 & 10.1 & 7.1 & 6.9 \\
compressed, static & 20.1 & 16.6 & 12.6 & 10.1 \\
compressed, static, 10 & 20.1 & 11.2 & 8.8 & 7.5 \\
\hline
\end{tabular}

The time when using no OpenMP is essentially equal to the time for one thread.```

