
Thomas Ericsson
Matematik, Chalmers/GU
2012 1

Poisson’s equation and MPI

In this lab you are going to use a simple parallel algorithm to solve Poisson’s equation on the unit square, using
Dirichlet boundary conditions.

The description of this lab is fairly lengthy since not all participants, in the HPC-course, are so familiar with
partial differential equations, PDEs.

The problem:

Define the computational domain (the unit square) as the following set of points:

D = {(x, y) | 0 < x, y < 1}

The set of points on the boundary of D (the “edges” of the square) is denoted ∂D. You are given functions
f(x, y) and g(x, y). Our PDE-problem can then be formulated in the following way: Find (approximate) u(x, y)
such that:

uxx(x, y) + uyy(x, y) = f(x, y), (x, y) ∈ D

u(x, y) = g(x, y), (x, y) ∈ ∂D

Example:

Let f(x, y) = 2(cos(x + y) − (1 + x) sin(x + y)) and g(x, y) = (x + 1) sin(x + y), then
u(x, y) = (x + 1) sin(x + y) solves the above problem. Let us check the answer by computing the derivatives:

uxx = 2 cos(x + y) − (1 + x) sin(x + y) and uyy = −(1 + x) sin(x + y) so

uxx + uyy = 2(cos(x + y) − (1 + x) sin(x + y)) = f(x, y)

u satisfies the boundary condition, as well, since g = u.
You should use this example in the lab to debug your program, but your program should be
written so that it can cope with any reasonable functions f and g.

The serial algorithm: we discretize the unit square using the meshpoints,
(xj , yk), j = 0, 1, . . . , n + 1, k = 0, 1, . . . , n + 1 where:

0 = x0 < x1 < ... < xn < xn+1 = 1, 0 = y0 < y1 < ... < yn < yn+1 = 1

We let the points be equidistant, with spacing h = 1/(n + 1). So

xk = yk = kh, k = 0, 1, ..., n + 1.

Let uj,k be the approximation of u(xj , yk). We use standard second order approximations of the second deriva-
tives:

uxx(xj , yk) ≈
uj−1,k − 2uj,k + uj+1,k

h2
, uyy(xj , yk) ≈

uj,k−1 − 2uj,k + uj,k+1

h2

This gives a system of n2 linear equations in n2 unknowns (uj,k, 1 ≤ j, k ≤ n):

uj−1,k + uj+1,k + uj,k−1 + uj,k+1 − 4uj,k

h2
= f(xj , yk), 1 ≤ j, k ≤ n

Note that the boundary values (from the g-function) will be used when j or k equals 0 or n + 1 (e.g.
u0,0 = g(x0, y0) = g(0, 0)).

This part of the algorithm is quite realistic, but the following iterative method (for the linear system) is not.
We are going to use a very simple iterative method, a version of Jacobi’s method, to solve the linear system.

High Performance Computing

2

Thomas Ericsson
Matematik, Chalmers/GU

2012

One would probably have used a direct method instead, and even if one would have used an iterative method
there are much more effective available, but I do not want to make this lab more complicated than necessary.
The main advantage of Jacobi’s method is its simplicity and the ease by which it can be parallelized. The big
drawback is its slow convergence (which becomes slower with increasing n). This is not a major issue in this
lab, since you are not learning how to solve PDEs but how to use MPI. The parallelization issues that appear
in the lab are typical and realistic.

One iteration of the standard Jacobi method can be written like follows. We introduce temporary
quantities, ũj,k, 1 ≤ j, k ≤ n, which are computed using two loops over j and k.

ũj,k =
uj−1,k + uj+1,k + uj,k−1 + uj,k+1 − h2f(xj , yk)

4
, 1 ≤ j, k ≤ n

where the g-values are used for the boundary, as mentioned above. In the image below, internal nodes are marked
by circles and boundary nodes by small squares. To form the ũj,k-value marked by a, we use h2f(xj , yk) and an
average of the four u-neighbours, above, below, left of and right of ũj,k (the dashed line show the connections).
The b-node uses a boundary value and the c-node uses two boundary values.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

c

a

b

x

y

When all ũj,k-values have been computed we find out the difference between the two successive approximations
to the solution, by computing:

δ = max
1≤j, k≤n

|ũj,k − uj,k|

Finally we replace uj,k by the temporary values ũj,k, i.e uj,k = ũj,k, 1 ≤ j, k ≤ n. The value of δ is used to
terminate the Jacobi iteration. If δ > τ where τ is a tolerance given by the user of the program (you, the reader,
in other words), the Jacobi-step is repeated. The iterations are continued until δ ≤ τ .
On the next page we are going to modify this algorithm somewhat, but first a section about parallelization.

Parallelization:

We are going to parallelize the algorithm using so called domain decomposition, i.e. we are going to divide the
domain, D, into subdomains. Assume you have four CPUs. We divide the unit square in four smaller squares.
Here is an example. Suppose n is an even number. This way no xj or yk will equal 0.5.

High Performance Computing

Thomas Ericsson
Matematik, Chalmers/GU
2012 3

In the following image n = 8. The internal meshpoints are marked by circles and *. Boundary points are
marked by small squares. We divide D in to the four squares (separated by the dashed lines) marked D1, D2,
D3 and D4. Each CPU is responsible for a subdomain and stores data related with that domain.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x

y

D
4

D
3

D
2

D
1

CPUs can compute the uj,k-values corresponding the circles, in parallel. In order to compute the *-values, CPUs
must first have communicated and exchanged some data with neighbouring domains. To make this efficient, we
want to minimize the number of matrix-elements that are communicated, and when we have to communicate
we want to send as much data as possible in one go.

Now to the modification of Jacobi’s method: to simplify the algorithm and to make it slightly less ineffi-
cient, we overwrite the uj,k (stored on one CPU, so no extra communication) with ũj,k as soon as it has been
used to update the δ-value. So, the latest uj,k available (on one CPU) will be used at all times. Note that it is
sufficient to store ũj,k (and δ) as scalar variables and not as arrays.

The assignment:
write a parallel MPI-routine, as outlined above, in C or Fortran. To make the lab more realistic I have listed
some constraints which your program must satisfy.

• Use four CPUs and the domain decomposition above. Use one master and three slaves (so the master is
taking care of one subdomain). The computation should be done in double precision. You decide how the
subdomains should be mapped to the processes (which Dj corresponds to which process).

• The master should read the value of n (you may assume that it is an even number) and the tolerance τ .
The Jacobi iteration should be terminated when the δ-values (one for each process) all are ≤ τ .

• You should test your code on the example problem above, and it should compare the computed result with
the exact solution, and print the maximum error. The error is composed of three components, roundoff
(which is negligible in this application), discretization error (from approximating the derivatives) and the
solution error from Jacobi’s method. The discretization error is of O(h2), so a large n gives a small error.
The error in Jacobi’s method is controlled by τ . There should be a balance between the two errors. A
tiny τ means that discretization error dominates and a large τ gives a large error from the solution of the

High Performance Computing

4

Thomas Ericsson
Matematik, Chalmers/GU

2012

linear system. How to balance the errors for optimal performance (minimum time) is beyond the scope
of this course.

• When you send the code to me I should be able to run it on the test problem without any modifications
of your code.

• Each process can use n2/2 + 3n + 8 double precision elements for arrays whose length depend on n. You
can use these elements as you please. I used them in the following way. Each process stores a quarter of
the f -matrix (the right hand sides), and a quarter of the u-matrix as described in Hint 4 below. Finally
I use two vectors with n/2 + 2 elements. (I could cope with less in Fortran, but they may be needed in a
C-program.) A process can, of course, use scalar variables and arrays having four elements as well.

• The f(x, y)- and g(x, y)-values should be computed once and stored.

• The communication should be efficient. You may not make a separate communication call for each
*-element, for example.

Hints:

1. If you have no previous experience of this kind of PDE-problem, think through the serial case first.

2. Parallel programming is harder than ordinary serial programming and message passing is usually harder
then using threads. So, it is important to think about algorithm, datastructures and communication
before coding. You will save time by making a plan.

3. If you use Fortran it may be useful to choose the smallest matrix-index to zero (like C). You would also
like to use dynamic memory allocation (since the master will be reading the value of n). See the links (for
this lab) on www, for more details.

4. In my code I let each process store its own uj,k-values as well as neighbouring *-values, in the matrix
U(0:n/2+1, 0:n/2+1), using Fortran syntax (we assumed that n is even). This way I can use the same
Jacobi-subroutine (in each process) as in the serial case. It is a slight waste of storage, but quite convenient.

5. Which process (rank) will take care of which subdomain?

6. Think about how (xj , yk) will be mapped to each U -matrix. How will row- and column-indices correspond
to coordinates?

7. Processes must exchange *-data. When should the communication take place? It is inconvenient to have
it in the update loop. MPI Sendrecv may be a suitable communication routine.

8. You must think about how to terminate the Jacobi iteration. Different processes will get different δ-values,
and your program will not work if just one process, say, ends the iteration.

9. There is a similar, but simpler problem, of computing the maximum error. Each process will have its own
value.

High Performance Computing

