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2: Contents

How does one get good performance from a computer
system?

Focus on systems with one CPU (with one core) and floating
point performance.

To get maximum performance from a parallel code it is
important to tune the code running on each CPU.

General advice and not specific systems.

Fortran, some C (hardly any C++) and some Matlab.
Some Java in the compendium.



3: Your situation

A large and old code which has to be optimized. Even a slight
speedup would be of use, since the code may be run on a
daily basis.

A new project, where language and data structures have to be
chosen.
C/C++ usually slower than Fortran for floating point.
Java? Can be slow and use large amounts of memory.
See the article (compendium) for an example.
Should it be parallel?
Test a simplified version of the computational kernel.
Fortran for floating point, C/C++ for the rest.

Things that are done once. Let the computer work.
Unix-tools, Matlab, Maple, Mathematica ...

4: The optimization process

Basic: Use an efficient algorithm.
Simple things:

Use (some of) the optimization options of the compiler.
Optimization can give large speedups (and new bugs, or reveal
bugs).

Save a copy of the original code.
Compare the computational results before and after
optimization.
Results may differ in the last bits and still be OK.

Read the manual page for your compiler.
Even better, read the tuning manual for the system.

Switch compiler and/or system.



5: The Intel compiler

Compiler options, flags, of the Intel Fortran90-compiler, more
than 300.

Names not standardized.

Some of the flags are passed on to the preprocessor (locations
and names of header files) and to the linker (locations and
names of libraries).

There is a user and reference guide, PDF (> 3800 pages, for
Fortran, C++-manual 1894 pages).

Here a few av the more than 1000 lines produced by
icc -help and ifort -help .

The Cray compiler has similar options (often with the same
names). See http://docs.cray.com/ .

6: The Intel compiler cont.

• Optimization
...
-O2 optimize for maximum speed (DEFAULT)
-O3 optimize for maximum speed and enable more aggressive
optimizations that may not improve performance on some
programs may be slower, TE’s comment
-O same as -O2
...
-O0 disable optimizations
-fast enable -xHOST -O3 -ipo -no-prec-div -static
-fno-alias assume no aliasing in program
...
• Code Generation
-x<code1> generate specialized code to run exclusively on
processors indicated by <code> as described below



7: The Intel compiler cont.

• Interprocedural Optimization (IPO)
-[no-]ip enable(DEFAULT)/disable single-file IP optimization
within files
-ipo[n] enable multi-file IP optimization between files
...
• Advanced Optimizations
...
-[no-]vec enables(DEFAULT)/disables vectorization
...
Here is an incomplete list of the remaining categories:
• Profile Guided Optimization (PGO)
• Optimization Reports
• OpenMP* and Parallel Processing
• Floating Point
• Inlining

8: The Intel compiler cont.

• Output, Debug, PCH (pre compiled header files)
-c compile to object (.o) only, do not link
-S compile to assembly (.s) only, do not link
-o <file> name output file
-g produce symbolic debug information in object file (implies -O0
when another optimization option is not explicitly set)
• Preprocessor
• Compiler Diagnostics
• Linking/Linker



9: If you are willing to work more...

Decrease number of disk accesses (I/O, virtual memory)

(LINPACK, EISPACK) → LAPACK

Use numerical libraries tuned for the specific system, BLAS

Find bottlenecks in the code (profilers). Attack the subprograms
taking most of the time. Find and tune the important loops.
Tuning loops has several disadvantages:

The code becomes less readable and you may introduce bugs.

Detailed knowledge about the system, such as cache
configuration, may be necessary.

What is optimal for one system need not be optimal for
another; faster on one machine may actually be slower on
another. This leads to problems with portability.

10: If you are willing to work more..., cont.

Code tuning is not a very deterministic business.
The combination of tuning and the optimization done by the
compiler may give an unexpected result.

The computing environment is not static; compilers become
better and there will be faster hardware of a different
construction.
The new system may require different (or no) tuning.

The goal of the tuning effort is to keep the FPU(s) busy.
Accomplished by efficient use of the

memory hierarchy

parallel capabilities



11: If you are willing to work more..., cont.

L1 caches

Instruction

Data

DisksL2 cache memory
Main

CPU

Size

Speed

Superscalar: start several instructions per cycle.

Pipelining: work on an instruction in parallel.

Vectorization: parallel computation on short arrays.

12: If you are willing to work more..., cont.

Locality of reference, data reuse

Avoid data dependencies and other constructions that give
pipeline stalls

Keywords: memory locality, data dependencies



13: What can you hope for?

Many compilers are good.
May be hard to improve on their job.
We may even slow the code down.

Depends on code, language, compiler and hardware.

Could introduce errors.

But: can give significant speedups.

Not very deterministic, in other words.

Do not rewrite all the loops in your code.

Save a copy of the original code. If you make large changes to
the code, use som kind of version control system.

Compare computational results before and after tuning.

14: Choice of language

Fortran, C/C++ dominating languages for high performance
numerical computation.
There are excellent Fortran compilers due to the competition
between manufacturers and the design of the language.
It may be harder to generate fast code from C/C++ and it is easy
to write inefficient programs in C++. Now a toy example.

void add1(const double a[], const double b[],
double c[], double f, int n)

{
int k;

for(k = 0; k < n; k++)
c[k] = a[k] + f * b[k];

}



15: Choice of language, contd.

n, was chosen such that the three vectors would fit in the
L1-cache, all at the same time.
On some platforms the Fortran routine can be twice as fast.

From the Fortran 90 standard (section 12.5.2.9):

“Note that if there is a partial or complete overlap
between the actual arguments associated with two
different dummy arguments of the same procedure, the
overlapped portions must not be defined, redefined, or
become undefined during the execution of the
procedure.”

Not so in C. Two pointer-variables with different names may refer
to the same array, this is called aliasing.

16: Choice of language, cont.

A Fortran compiler may produce code that works on several
iterations in parallel.

c(1) = a(1) + f * b(1)
c(2) = a(2) + f * b(2) ! independent

Can use the pipelining in functional units for addition and
multiplication.
The assembly code is often unrolled this way as well. The
corresponding C-code may look like:

// Assuming that n is a multiple of four
for(k = 0; k < n; k += 4) {

c[k] = a[k] + f * b[k];
c[k+1] = a[k+1] + f * b[k+1];
c[k+2] = a[k+2] + f * b[k+2];
c[k+3] = a[k+3] + f * b[k+3];

}



17: Choice of language, cont.

A programmer may write code this way, as well. Unrolling gives:

fewer branches (tests at the end of the loop)

more instructions in the loop; a compiler can change the order
of instructions and can use prefetching

If we make the following call in Fortran, (illegal in Fortran, legal in
C), we have introduced a data dependency.

call add1(a, c, c(2), f, n-1)
| | |
a b c

c(2) = a(1) + f * c(1) ! b and c overlap
c(3) = a(2) + f * c(2) ! c(3) depends on c(2)
c(4) = a(3) + f * c(3) ! c(4) depends on c(3)

18: Choice of language, cont.

If that is the loop you need (in Fortran) write:

do k = 1, n - 1
c(k + 1) = a(k) + f * c(k)

end do

This loop is slower than the first one (slower in C as well).
In C, aliased pointers and arrays are allowed which means that it
may be harder for a C-compiler to produce efficient code.
The C99 restrict type qualifier can be used to inform
the compiler that aliasing does not occur.

void add1(double * restrict a, etc.)

Not supported by all compilers and even if it is supported it may
not have any effect (may need a special flag, e.g. -std=c99 ).



19: Choice of language, cont.

An alternative is to use compiler flags, -fno-alias ,
-xrestrict etc. supported by some compilers.
If you “lie” (or use a Fortran routine with aliasing) you probably
get the wrong answer!
According to an Intel article, their C/C++-compiler can generate
dynamic data dependence testing (checking addresses using
if-statements) to decrease the problem with aliasing.

To see the effects of aliasing we modify add1 .

void add2(double * a, double * b, double * c,
double * f , int n)

{
for(int k = 0; k < n; k++) {

c[k] = a[k] + * f * b[k]; // * f

* f += 1e-7; // update f
}

}

20: Choice of language, cont.

Now for a test. n=5000 and calling the routines 100000 times.
add1 is the original routine.
add2 is the routine above.
add3 uses a temporary f , local to the function.

double tmp = * f; // tmp is local to add3

for(int k = 0; k < n; k++) {
c[k] = a[k] + tmp * b[k];
tmp += 1e-7;

}

* f = tmp;

add4 like add2 with restrict .
add5 calls add1(a, c, &c[1], f, n-1);



21: Choice of language, cont.

Here are some times on an Opteron, Bulldozer, using four different
compilers with suitable compiler options (but assuming aliasing).
Fortran1 is like add1 and Fortran2 like add2 .

Code Intel PathScale PGI GNU

Fortran1 0.4 0.5 0.4 0.5

Fortran2 0.4 0.8 0.8 0.9

add1 0.4 0.5 0.6 0.5

add2 2.9 2.9 3.1 2.9

add3 0.4 0.8 0.8 0.9

add4 0.4 2.9 3.1 2.9

add5 3.5 2.7 2.7 3.5

22: Choice of language, cont.

It is instructive to compare the assembly ouput of add2 and add3 .
gcc -O3 -S add2.c gives assembly output on add2.s .
I used gcc since it generates simple code.
We expect at least two loads, a[k] and b[k] , and one store, c[k] , for
each iteration in the loop.
First 1e-7 is stored in a register, then come the loops:

add2 add3
movsd .LC0(%rip), %xmm1 movsd .LC0(%rip), %xmm2
... ...

.L15: .L20:
mulsd (%rsi,%rax,8), %xmm0 movsd (%rsi,%rax,8), %xmm0
addsd (%rdi,%rax,8), %xmm0 mulsd %xmm1, %xmm0
movsd %xmm0, (%rdx,%rax,8) addsd %xmm2, %xmm1
addq $1, %rax addsd (%rdi,%rax,8), %xmm0
cmpl %eax, %r8d movsd %xmm0, (%rdx,%rax,8)
movsd (%rcx), %xmm0 load f addq $1, %rax
addsd %xmm1, %xmm0 cmpl %eax, %r8d
movsd %xmm0, (%rcx) store f jg .L20
jg .L15 movsd %xmm1, (%rcx)

Note the two extra memory references in add2 .



23: Choice of language, cont.

Now add with complex numbers using Fortran (complex is
built-in) and C++ (“C-arrays” of complex<double> ).
-fno-alias does not help C++.

Code Intel PathScale PGI GNU

Fortran1 1.1 1.0 1.0 1.4

Fortran2 1.3 6.4 1.4 1.3

add1 3.7 14.9 11.2 2.4

add2 5.1 17.8 14.1 3.1

add3 4.4 17.9 13.3 3.1

add5 8.9 14.8 10.9 5.7

Important to test different systems, compilers and compile-options.
The behaviour in the above codes changes when n becomes very
large. CPU-bound (the CPU limits the performance) versus
memory bound (the memory system limits the performance).

24: Tuning Matlab programs

The timings below are for Matlab version R2012a on a 2.27GHz
Intel Xeon. Matlab 6.5 (and newer) has a JIT-accelerator (Just In
Time) which is quite effective.

Use the built-in compiled routines. The Matlab-language is
interpreted (unless JIT can be applied).

Work on the matrix/vector-level, not on element-level.
Different programming style.

Take care when using the dynamic memory allocation.
Preallocate.

Say you want to save a large number of vectors for later analysis.
Some examples, n = 2500 .
It may make a difference if the loops are packaged in a script-file
or in a function.



25: Tuning Matlab programs, cont.

x = rand(n, 1);
A = zeros(n); % preallocate
for k = 1:n

A(:, k) = x; % would have different arrays
end 0.03 s

clear A
for k = 1:n

A(:, k) = x; % terrible in R2010 and earlier
end 0.08 s

A = [];
for k = 1:n

A = [A, x]; % same speed as this one
end 0.07s, 56 s if in a script-file

26: Tuning Matlab programs, cont.

Wis a 8000 × 15-matrix and x is a column vector having 8000
elements.

y = W * W’ * x; y = W * (W’ * x);

1.2 s 0.0003 s

Note that it may be impossible just to form W * W’ even
though y = W * (W’ * x); gives no problem.



27: Tuning Matlab programs, cont.

Do not use more general functions than necessary (inline):

v = rand(3, 1); w = rand(3, 1);

for k = 1:100000
d = dot(v, w); % inner product
v(1) = v(1) + 1e-50; % added to the loops

end % below as well
2.5 s

for k = 1:100000
c = v’ * w;

end
0.1 s

28: Tuning Matlab programs, cont.

for k = 1:100000
c = cross(v, w);

end
Takes 8.5 s

for k = 1:100000
c = [v(2) * w(3)-v(3) * w(2); v(3) * w(1)-v(1) * w(3); ...

v(1) * w(2)-v(2) * w(1)];
end
Takes 0.06 s



29: Basic arithmetic and elementary functions

Many modern CPUs have vector units which can work in parallel
on the elements of short arrays, .e.g. Intel’s SSE (Streaming SIMD
Extensions). Arrays consist of two double precision numbers or
four single precision numbers.

In 2011 Intel released its Sandy Bridge CPU, which can perform
four double precision (eight single) multiply-adds in parallel, AVX
(Advanced Vector Extensions). AMD’s Bulldozer CPU also
supports AVX.

The vector-arithmetic may have different roundoff properties
compared to the usual FPU (x87 in an Intel CPU).

30: Floating point formats

Common that the (x87) FPU can perform + and * in parallel.

a+b* c can often be performed with one round-off,
multiply-add MADD or FMA.

+ and * usually pipelined, so one sum and a product per clock cycle
in the best of cases (not two sums or two products). Often one sum
every clock cycle and one product every other.

/ not usually pipelined and may require 15-40 clock cycles.

May have several computational cores as well as vector units.



31: Floating point formats

Type min min max bits in

denormalized normalized mantissa

IEEE 32 bit 1.4 · 10−45 1.2 · 10−38 3.4 · 1038 24

IEEE 64 bit 4.9 · 10−324 2.2 · 10−308 1.8 · 10308 53

Using single- instead of double precision can give better
performance. Fewer bytes must pass through the memory system.

The arithmetic may not be done more quickly since several systems
will use double precision for the computation regardless (x87).
Using vectorization single is usually faster.

The efficiency of FPUs differ (this on a 2.66 GHz Intel Xeon).

>> A = rand(1000); B = A;
>> tic; C = A * B; toc % takes 0.19 seconds.
>> A = 1e-320 * A;
>> tic; C = A * B; toc % takes 64 seconds.

32: Floating point formats, contd.

Try to avoid division:

vector / scalar vector * (1.0 / scalar)

Integer multiplication and multiply-add can be slower than their floating
point equivalents.

integer, dimension(10000) :: arr = 1
integer :: s = 0
do k = 1, 100000

s = s + dot_product(arr, arr)
end do

Change types to real and then to double precision . A few tests:

integer (32 bit) single double

0.5 0.18 0.36

0.7 1.0 1.0

1.0 1.6 1.6

0.92 0.22 0.44

0.74 0.20 0.27



33: Elementary functions

Often coded in C, may reside in the libm -library.

argument reduction

approximation

back transformation

Can take a lot of time (much more than +, * ).

>> v = 0.1 * ones(10000, 1);
>> tic; for k = 1:1000, s = sin(v); end; toc
Elapsed time is 0.089619
% time increases after pi/4
>> v = 1e5 * ones(10000, 1); tic etc.
Elapsed time is 0.352703 seconds.

>> v = 1e10 * ones(10000, 1); tic etc.
Elapsed time is 1.711913

34: Elementary functions, contd.

double precision :: x = 2.5d1

do k = 1, 17, 2
print’(1p2e10.2)’, x, sin(x)
x = x * 1.0d2

end do

% a.out
2.50E+01 -1.32E-01
2.50E+03 -6.50E-01
2.50E+05 -9.96E-01
2.50E+07 -4.67E-01
2.50E+09 -9.92E-01
2.50E+11 -1.64E-01
2.50E+13 6.70E-01
2.50E+15 7.45E-01
2.50E+17 4.14E+07



35: Elementary functions, contd.

Some compilers are more clever than others, which is shown on the
next page. Unless x is an integer, vx is computed like this:

vx = elog(vx) = ex log v, 0 < v, x

double precision, dimension(n) :: vec

do k = 1, n
vec(k) = vec(k) ** 1.5d0 ! so vec(k)ˆ1.5

end do

Times with n = 10000 and called 10000 on a 2 GHz AMD64.

Compiler -O3 code above my opt. code

Intel 1.2 1.2

gfortran 8.1 1.6

36: Elementary functions, contd.

Looking at the assembly output from Intel’s compiler:

fsqrt
fmulp %st, %st(1)

gfortran calls pow (uses exp and log).
In my optimized routine I have written the loop this way:

do k = 1, n
vec(k) = sqrt(vec(k)) * vec(k)

end do

Interesting when dealing with 1/r2-forces.

F = c
r/|r|

|r|2
=

c r

|r|3
=

c r
(√

r21 + r22 + r23

)3
=

c r
(
r21 + r22 + r23

)1.5



37: Elementary functions, contd.

Vector versions of elementary functions as well as slightly less
accurate versions area available in AMD’s ACML and Intel’s MKL.
Performance depends on the type of function, range of arguments
and vector length. With n=100000 and 1000 repetitions (one one
thread, seems optimal).

Function loop vec less acc. vec prec

sin 2.3 0.49 0.40 single

exp 1.6 0.36 0.33

atan 2.1 0.83 0.51

sin 3.0 1.3 1.3 double

exp 2.1 0.8 0.8

atan 7.2 2.2 2.0

loop: standard routine and a loop (or sinv = sin(v) ).
vec: vector routine from VML and less acc: less accurate version.
Newer Intel compilers use vectorized routines automatically.

38: An SSE-example

We need an optimizing compiler that produces code using the
special vector instructions (or we can program in assembly).

s = 0.0
do k = 1, 10000

s = s + x(k) * y(k)
end do

Called 100000 times. Here are some typical times on three systems
(the last has 256-bit SSE-instructions):

single double
no vec vec no vec vec

1.60 0.38 1.80 0.92
0.83 0.41 0.99 0.80
1.54 0.28 1.53 0.46

Some compilers vectorize automatically. Speedup may differ. You
may get different results using vectorization (due to different
round-off properties).



39: An SSE-example, contd.

Not all codes can be vectorized:

double precision :: a, b
double precision, dimension(n) :: v

do k = 2, n - 1
v(k + 1) = a * v(k) + b * v(k - 1)

end do

% ifort -c -O3 -vec_report=3 rec.f90
loop was not vectorized: existence of

vector dependence.
vector dependence: assumed FLOW dependence

between v line 8 and v line 8.

% pgf90 -c -O3 -Mvect -Mneginfo=vect rec.f90
Loop not vectorized: data dependency

40: Eliminating constant expressions from loops

pi = 3.14159265358979d0
do k = 1, 1000000

x(k) = (2.0 * pi + 3.0) * y(k) ! eliminated
end do

do k = 1, 1000000
x(k) = exp(2.0) * y(k) ! probably eliminated

end do

do k = 1, 1000000
! cannot be eliminated
x(k) = my_func(2.0) * y(k)

end do

Should use PUREfunctions, my func may have side-effects.



41: Virtual memory and paging

Simulate larger memory using disk.

Virtual memory is divided into pages, perhaps 4 or 8 kbyte.

Moving pages between disk and physical memory is known as
paging.

Avoid excessive use. Disks are slow.

Paging can be diagnosed by using your ear (if you have a local
swap disk), or using the sar -command,
sar -B interval count , so e.g. sar -B 1 3600 .
vmstat works on some unix-systems as well and the
time -command built into tcsh reports a short summary.

42: Input-output

We need to store 108 double precision numbers in a file.
A local disk was used for the tests. Intel’s Fortran compiler on an
Intel Core Duo. Roughly the same times in C.

Test Statement time (s) Gbyte

1 write(10, ’(1pe23.16)’) x(k) 415.1 2.24

2 write(10) x(k) 274.4 1.49

3 write(10) (vec(j), j = 1, 10000) 1.1 0.74

In the third case we write 108/104 records of 104 numbers each.



43: Input-output, contd.

File sizes:

1 : 108
︸︷︷︸

# of numbers

· (23 + 1)
︸ ︷︷ ︸

characters + newline

/ 230
︸︷︷︸

Gbyte

≈ 2.24

2 : 108
︸︷︷︸

# of numbers

· (8 + 4 + 4)
︸ ︷︷ ︸

number + delims

/ 230
︸︷︷︸

Gbyte

≈ 1.49

3 :



 108
︸︷︷︸

# of numbers

· 8
︸︷︷︸

number

+(108/104) · (4 + 4)
︸ ︷︷ ︸

delims



 / 230
︸︷︷︸

Gbyte

≈ 0.74

44: Portability of binary files?

Perhaps

File structure may differ

Byte order may differ

Big-endian, most significant byte has the lowest address
(“big-end-first”).

The Intel processors are little-endian (“little-end-first”).

Compilers may have conversion flags.

On a big-endian machine
write(10) -1.0d-300, -1.0d0, 0.0d0, 1.0d0, 1.0d300

Read on a little-endian
2.11238712E+125 3.04497598E-319 0.
3.03865194E-319 -1.35864115E-171



45: Optimizing for locality, data re-use, loop fusion

Compute min(v) and max(v) , where v is a vector.

v_min = v(1)
do k = 2, n

if ( v(k) < v_min ) v_min = v(k) ! fetch v(k)
end do

In v_min = v(k) , v(k) is stored in a register and not fetched
again.

v_max = v(1)
do k = 2, n

! fetch v(k) again
if ( v(k) > v_max ) v_max = v(k)

end do

46: Optimizing for locality, data re-use, loop fusion, contd.

Merge loops data re-use, less loop overhead.

v_min = v(1)
v_max = v(1)
do k = 2, n

if ( v(k) < v_min ) then ! fetch
v_min = v(k)

elseif ( v(k) > v_max ) then ! re-use
v_max = v(k)

end if
end do

if(v_min < vk) v_min = v(k) ! may be faster
if(v_max > vk) v_max = v(k) ! on some systems

v_min = min(v_min, v(k)) ! or like this
v_max = max(v_max, v(k))



47: Optimizing for locality, loop-splitting

When dealing with large, but unrelated, data sets it may be faster
to split the loop in order to use the caches better. Here is a
contrived example:

integer, parameter :: n = 30000
double precision, dimension, allocatable(:,:) &

:: A,B,C,D,E,F ! 40 Gbyte matrix storage
...
allocate(A(n, n)) ! allocate (the matrices)
A = 1.0d0 ! and initilize
sum_ab = 0.0; sum_cd = 0.0; sum_ef = 0.0
do col = 1, n

do row = 1, n ! independent sums
sum_ab = sum_ab + A(row, col) * B(col, row)
sum_cd = sum_cd + C(row, col) * D(col, row)
sum_ef = sum_ef + E(row, col) * F(col, row)

end do
end do

48: Optimizing for locality, loop-splitting, contd.

sum_ab = 0.0
do col = 1, n

do row = 1, n
sum_ab = sum_ab + A(row, col) * B(col, row)

end do
end do

! and similarly for sum_cd and sum_ef

On a 48 Gbyte 2.66 GHz Intel Xeon 5650 the first loop took
126.8 s and the second three 3 × 19.5 = 58.5 s (together).
Speedup depends on n, hardware and compiler.

Loop splitting is worth trying only if the matrices are large.



49: The importance of small strides

If no data re-use, try to have locality of reference.
Use small strides.
v(1), v(2), v(3),... , stride one
v(1), v(3), v(5),... , stride two

slower faster
s = 0.0 s = 0.0
do row = 1, n do col = 1, n

do col = 1, n do row = 1, n
s = s + A(row, col) s = s + A(row, col)

end do end do
end do end do

Some compilers can switch loop order (loop interchange).

50: The importance of small strides, contd.

First loop Second loop
A(1, 1) A(1, 1) First column
A(2, 1) A(2, 1)
A(3, 1) A(3, 1)

... ...
A(n, 1) A(n, 1)
A(1, 2) A(1, 2) Second column
A(2, 2) A(2, 2)

... ...
A(n, 2) A(n, 2)

...
A(1, n) A(1, n) n:th column
A(2, n) A(2, n)

... ...
A(n, n) A(n, n)

In C the leftmost alternative will be the faster.



51: The importance of small strides, contd.

Performance on three systems. Compiling using -O3 in the first
test and using -O3 -ipo in the second.

C Fortran C Fortran C Fortran

By row 0.7 s 2.9 s 0.6 s 2.4 s 0.5 s 1.5 s

By column 4.6 s 0.3 s 2.4 s 0.6 s 1.6 s 0.5 s

By row -ipo 0.3 s 0.3 s 0.6 s 0.6 s 0.5 s 0.5 s

By column -ipo 2.9 s 0.3 s 0.6 s 0.6 s 1.5 s 0.5 s

-ipo , interprocedural optimization i.e. optimization between
routines (even in different files) gives a change of loop order, at
least for Fortran, in this case. Some Fortran compilers can do this
just specifying -O3 (if s is local or the return value of a function).

52: Blocking and large strides

Sometimes loop interchange is of no use.

s = 0.0
do row = 1, n

do col = 1, n
s = s + A(row, col) * B(col, row)

end do
end do

Bad locality for A good for B.
Blocking is good for data re-use, and when we have large strides.
Partition A and B in square sub-matrices each having the same
order, the block size.
Treat pairs of blocks, one in A and one in B such that we can use
the data which has been fetched to the L1 data cache.



53: Blocking and large strides, contd.
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54: Blocking and large strides, contd.

Looking at two (shaded) blocks:

cache line

block size

block (k, j) inblock (j, k) in A  B

The block size must not be too large. Must be able to hold all the
grey elements in A in cache (until they have been used).



55: Blocking and large strides, contd.

This code works even if n is not divisible by the block size).

! first_row = the first row in a block etc.

do first_row = 1, n, block_size
last_row = min (first_row + block_size - 1, n)
do first_col = 1, n, block_size

last_col = min (first_col + block_size - 1, n)

! sum one block
do row = first_row, last_row

do col = first_col, last_col
s = s + A(row, col) * B(col, row)

end do
end do

end do
end do

56: Blocking and large strides, contd.

Left plot, n = 5000, different block sizes using ifort -O3 on an
Intel Core Duo. Right plot, speedup for n = 103, 2 · 103, . . . , 104

with optimal block size.
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57: Blocking and large strides, contd.

One can study the behaviour in more detail.
PAPI = Performance Application Programming Interface
http://icl.cs.utk.edu/papi/index.html .
PAPI uses hardware performance registers, in the CPU, to count
different kinds of events, such as L1 data cache misses and
TLB-misses.

TLB = Translation Lookaside Buffer, a cache in the CPU that is
used to improve the speed of translating virtual addresses into
physical addresses.
See the Springer article for an example.

58: Two important libraries

BLAS (the Basic Linear Algebra Subprograms) are the
standard routines for simple matrix computations.
(s single, d double, c complex, z double complex).

Examples:
BLAS1: y := a * x + y one would use daxpy
BLAS2: dgemv can compute y := a * A* x + b* y
BLAS3: dgemmforms C := a * A* B + b* C

daxpy : O(n) data, O(n) operations
dgemv: O(n2) data, O(n2) operations
dgemm: O(n2) data, O(n3) operations, data re-use



59: Two important libraries, contd.

Multiplication of n × n-matrices, Intel Core Duo.
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60: Two important libraries, contd.

Tested textbook “row times column” using gfortran and
ifort with and without vectorization. MKL is Intel’s
MKL-library. Goto is Goto-BLAS by Kazushige Goto.
The fast codes use blocking and other tricks. A goal of
Goto-BLAS is to minimize the number of TLB-misses.
Goto-BLAS on two threads is roughly equal to MKL on two
threads.

The next figure shows the number of (+, *)-pairs executed per
second. The dashed lines show the clock frequency and twice the
frequency.



61: Two important libraries, contd.
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62: Two important libraries, contd.

LAPACK is the standard library for (dense):

linear systems

eigenvalue problems

linear least squares problems

No support for large sparse problems, but there are routines for
banded matrices of different kinds.
LAPACK is built on top of BLAS (BLAS3 where possible).
When using LAPACK, it is important to have optimized BLAS.

In this example we compute the Cholesky decomposition of a
symmetric and positive definite matrix A, so A = CCT, where C is
undertriangular.
“textbook”, in the figure on the next page, is one common way,
often presented in textbooks, for computing C.
Here is a Matlab-code:



63: Two important libraries, contd.

n = length(A);
for k = 1:n

A(k, k) = sqrt(A(k, k) - sum(A(k, 1:k-1).ˆ2));
for i = k+1:n

A(i, k) = (A(i, k) - ...
sum(A(i, 1:k-1) . * A(k, 1:k-1))) / A(k, k);

end
end

The number of + and * is roughly n3/6.
The following figure shows the results of five runs.
The textbook algorithm compiled with gfortran and ifort .

Using LAPACK’s dpotrf with Goto-BLAS on one and two threads.

Using MKL’s dpotrf on one thread.

64: Two important libraries, contd.
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Do not use simplistic algorithms from textbooks!



65: Inlining

Inlining: moving the body of a short procedure to the calling
routine.
Calling a procedure or a function takes time and may break the
pipelining. So the compiler (or the programmer) can move the
body of a short subprogram to where it is called. Some compilers
do this automatically when the short routine resides in the same
file as the calling routine. A compiler may have a flag telling the
compiler to look at several files. Using some compilers you can
specify which routines are to be inlined.

66: Indirect addressing, pointers

Sparse matrices, PDE-meshes...
Bad memory locality, poor cache performance.

do k = 1, n
j = ix(k) ! a sparse daxpy
y(j) = y(j) + a * x(j)

end do

system random ix ordered ix no ix
1 39 16 9
2 56 2.7 2.4
3 83 14 10



67: If-statements

If-statements in a loop may stall the pipeline. Modern CPUs and
compilers are good at handling branches, so there may not be a
large delay.

Original version Optimized version

do k = 1, n take care of k = 1
if ( k == 1 ) then do k = 2, n

statements statements for
else k = 2 to n

statements end do
end if

end do

68: If-statements, contd.

if ( most probable ) then
...

else if ( second most probable ) then
...

else if ( third most probable ) then
...

Suppose f and g are (time consuming) logical functions.
if (f(k) .and. g(k)) then , least likely first
if (f(k) .or. g(k)) then , most likely first

Make sure that g does not have side-effects.



69: Closing notes

Two basic tuning principles:

Improve the memory access pattern

Locality of reference
Data re-use

Stride minimization, blocking and the avoidance of indirect
addressing and aliasing.

Use parallel capabilities of the CPU

Avoid data dependencies and aliasing
Inlining
Elimination of if-statements
(Loop unrolling)

Choosing a good algorithm and a fast language, handling files in
an efficient manner, getting to know ones compiler and using
tuned libraries are other very important points.


