
OpenMP - shared memory parallelism

Thomas Ericsson

Computational Mathematics

Chalmers University of Technology

and the University of Gothenburg

PDC Summer School 2012

2: Contents

Some important concepts in parallel computing.

OpenMP, a simple way to parallelise a code using threads on a
shared memory (multicore) computer. We add special comments,
parallel constructs, to the code. The compiler reads the comments
and generates parallel code.

The lecture will cover the most common constructs, some
optimization techniques, things to avoid.
Most examples will consist of a few lines of code.
C, Fortran and some Matlab.
The lecture ends with a simple case study, solving a system of
stiff odes, parallelising the computation of the Jacobian matrix.

3: A few words about parallel computing

The focus of the Summerschool is on high performance of
programs. We can increase the performance using:

Code optimization on one CPU or core (tomorrow).

Parallel computing using threads and shared memory (today).

GPU-programming, special hardware.

Parallel computing using processes, MPI.

When we optimize a code we are interested in the
speedup = time before optimization / time after optimization.
In a parallel context, using P CPUs/cores, we look at

speedup(P) =
time on one CPU

time on P CPUs

where the time is the wct, wall-clock time and not the total
CPU-time (adding the times for all processes/threads together).

4: A few words about parallel computing, cont.

Instead of running the parallel program on one CPU it may be
more interesting to compare the parallel code with the best
sequential (serial) code. Perhaps we had to use a different
algorithm to make the code parallel.

We hope to achieve linear speedup, speedup(P) = P.

It is possible to have super linear speedup, speedup(P) > P, this is
usually due to better cache locality or decreased paging.

5: A few words about parallel computing, cont.

If our algorithm contains a section that is sequential (cannot be
parallelised), it will limit the speedup, Amdahl’s law.

Let the sequential part be s, 0 ≤ s ≤ 1 (part wrt time), so the
part that can be parallelised is 1 − s. Hence,

speedup(P) =
1

s + (1 − s)/P
≤

1

s

regardless of the number of CPUs.

6: A few words about parallel computing, cont.

Let n be a measure of problem size (e.g. matrix dimension). Often

wct(n, P) ≈
comp(n)

P
+ serial + P · comm(n)

so it is not optimal letting P → ∞, unless the problem is
embarrassingly parallel, no communication.
We are interested in how well the program scales with n and P.
Efficiency is another measure for understanding the balance
between computation, communication and synchronisation.

efficiency(P) =
speedup(P)

P

So, if speedup(P)=Pc, efficiency(P) = c. Amdahl’s model gives:

efficiency(P) =
1

Ps + 1 − s

so efficiency(1) = 1, efficiency(∞)=0 (if s > 0).

7: OpenMP - shared memory parallelism

OpenMP is a specification for a set of compiler directives, library
routines, and environment variables that can be used to specify
shared memory parallelism in Fortran and C/C++ programs.

Fortran version 1.0, 1997, ver. 2.0, 2000.

C/C++ ver. 1.0 1998, ver. 2.0, 2002.

Version 2.5, 2005, combined the Fortran and C/C++
specifications into a single one and fixed inconsistencies.

Version 3.1, 2011, not supported by all compilers.

v2.5 mainly supports data parallelism (SIMD), all threads
perform the same operations but on different data.
v3.0 added “tasks”, different threads perform different operations.
Specifications: www.openmp.org .
Books: http://openmp.org/wp/resources/#Books

8: The basic idea - fork-join programming model

!$OMP end parallel

... code run i parallel ...

... serial code ...

... code run i parallel ...

!$OMP end parallel do

... serial code ...

program test

... serial code ...

!$OMP parallel shared(A, n)

!$OMP parallel do shared(b, c) fork

join

fork

join

master thread

9: Some important points

when reaching a parallel part the master thread (original
process) creates a team of threads and it becomes the
master of the team

the team executes concurrently on different parts of the loop
(parallel construct)

upon completion of the parallel construct, the threads in the
team synchronise at an implicit barrier, and only the master
thread continues execution

the number of threads in the team is controlled by
environment variables and/or library calls, e.g.
export OMP NUMTHREADS=7
call omp set num threads(5) (overrides)

the code executed by a thread must not depend on the result
produced by a different thread

10: MPI versus OpenMP

Parallelising using distributed memory (MPI):

Requires large grain parallelism to be efficient (process based).

Large rewrites often necessary, difficult with “dusty decks”.
May end up with parallel and non-parallel versions.

Domain decomposition; indexing relative to the blocks.

Requires global understanding of the code.

Hard to debug.

Runs on most types of computers.

11: Using shared memory (OpenMP)

Can utilise parallelism on loop level (thread based).
Harder on subroutine level, resembles MPI-programming.

Minor changes to the code necessary. A detailed knowledge of
the code not necessary. Only one version.
Can parallelise using simple directives in the code.

No partitioning of the data.

Less hard to debug.

Not so portable; requires a shared memory computer
(but common with multi-core computers).

Less control over the “hidden” message passing and memory
allocation.

12: A simple example

#include <stdio.h>
#include <math.h>
#include <omp.h>

int main()
{

int i, n = 10000;
double a[n], b[n];

// a parallel for loop
#pragma omp parallel for private(i) shared(a, b)

for (i = 0; i < n; i++) {
b[i] = sin(1.0e-5 * i);
a[i] = 1.23 * b[i] + exp(b[i]);

}
printf("%f, %f\n", a[0], a[n - 1]); // the master
printf("num threads = %d\n",omp_get_num_threads());

13: A simple example cont.

#pragma omp parallel // a parallel region
{

// an automatic variable, like i_am, is private
int i_am = omp_get_thread_num(); // 0 to #threads - 1
printf("i_am = %d\n", i_am); // all threads print

#pragma omp master
{

// number of executing threads
// max. number of threads that can be started
// number of available cores
printf("num threads = %d, max threads = %d, max cpus = %d\n",

omp_get_num_threads(), omp_get_max_threads(),
omp_get_num_procs());

} // use { } for begin/end
}
return 0;

}

14: Some important points

Use shared when a variable is not modified in the loop (read
only) or when threads write to different elements in an array

All variables except the loop-iteration variable are shared by
default. default(none) turns off the default.

At the end of the parallel for, the threads join and they
synchronise at an implicit barrier.

Output from several threads may be interleaved. To avoid
multiple prints we may ask the master thread (thread zero) to
print.

15: Compiling and executing

% icc -openmp omp1.c -lm use -openmp
% export OMP_NUM_THREADS=1
(setenv OMP_NUM_THREADS 1 in tcsh)
% a.out
1.000000, 1.227759
num threads = 1 Only the master
i_am = 0
num threads = 1, max threads = 1, max cpus = 16

% export OMP_NUM_THREADS=3
% a.out
1.000000, 1.227759
num threads = 1 Only the master
i_am = 0
num threads = 3, max threads = 3, max cpus = 16
i_am = 1 Not in order
i_am = 2

16: Compiling and executing cont.

Some systems warn you if # of threads > # of cores/cpus.

Make no assumptions about the order of execution between
threads.

Output from several threads may be interleaved.

ifort -openmp ... , icc -openmp ... Intel

gfortran -fopenmp ... , gcc -fopenmp ... GNU

pgf90 -mp ... , pgcc -mp ... Portland group

Cray-compiler, OpenMP enabled by default.

17: The same example in Fortran

program example
use omp_lib ! or include "omp_lib.h"

! or something non-standard
implicit none
integer :: i, i_am
integer, parameter :: n = 10000
double precision, dimension(n) :: a, b

!$omp parallel do private(i), shared(a, b)
do i = 1, n

b(i) = sin(1.0d-5 * i)
a(i) = 1.23d0 * b(i) + exp(b(i))

end do
!$omp end parallel do ! not necessary

print * , a(1), a(n) ! only the master
print * , ’num threads = ’, omp_get_num_threads()

18: The same example in Fortran cont.

!$omp parallel private(i_am) ! a parallel region
i_am = omp_get_thread_num() ! 0, ..., #threads - 1
print * , ’i_am = ’, i_am

!$omp master
print * , ’num threads = ’, omp_get_num_threads()
print * , ’max threads = ’, omp_get_max_threads()
print * , ’max cpus = ’, omp_get_num_procs()

!$omp end master
!$omp end parallel

end program example

!$omp or !$OMP. See the standard for Fortran77.
!$omp end ... instead of } .

19: Things one should not do

First a silly example:

int a, i;

#pragma omp parallel for private(i) shared(a)
for (i = 0; i < 1000; i++)

a = i; // all threads write to (the same) a
printf("%d\n", a);

Repeated runs may give different values 999 , 874 etc.
Now for a less silly example:

int i, n = 12, a[n], b[n];

for (i = 0; i < n; i++) {
a[i] = 1; b[i] = 2; // Init.

}

20: Things one should not do, contd.

#pragma omp parallel for private(i) shared(a, b)
for (i = 0; i < n - 1; i++)

a[i + 1] = a[i] + b[i];

for (i = 0; i < n; i++)
printf("%d ", a[i]); // Print results.

printf("\n");

A few runs:
1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23 one thread
1, 3, 5, 7, 9, 11, 13, 3, 5, 7, 9, 11 four
1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 3, 5 four
1, 3, 5, 7, 9, 11, 13, 3, 5, 7, 3, 5 four

Why? Assume thread zero does the first three iterations, thread one the

next three etc.

21: Things one should not do cont.

thread computation
0 a[1] = a[0] + b[0]
0 a[2] = a[1] + b[1]
0 a[3] = a[2] + b[2]

1 a[4] = a[3] + b[3]
1 a[5] = a[4] + b[4]
1 a[6] = a[5] + b[5]

2 a[7] = a[6] + b[6]
2 a[8] = a[7] + b[7]
2 a[9] = a[8] + b[8]

3 a[10] = a[9] + b[9]
3 a[11] = a[10] + b[10]

We have a data dependency between iterations, causing a so-called race

condition.

22: Things one should not do cont.

Can “fix” the problem (but the threads do not run in parallel):

// Yes, you need ordered in both places
#pragma omp parallel for private(i) shared(a,b) \

ordered
for (i = 0; i < n - 1; i++)
#pragma omp ordered

a[i + 1] = a[i] + b[i];

This may be used in a parallel region but one would not use it in a

standalone loop.

23: Things one should not do cont.

It is illegal to jump out from a parallel loop.
The following for-loop in C is illegal:

#pragma omp parallel for private(k, s)
for(k = 0; s <= 10; k ++) { // different variables

...
}

The same variable must occur in all three parts of the loop.
More general types of loops are illegal as well, e.g.

for(;;) { // no loop variable
}

In Fortran, do-while loops are not allowed. See the standard for details.
Not all compilers provide warnings. Here a Fortran-loop with a jump.

24: Things one should not do, cont.

a = (/ 1, 2, 3, 4, 5, 6 /)
!$omp parallel do private(k) shared(a)

do k = 1, n
a(k) = a(k) + 1
if (a(k) > 3) exit ! illegal

end do
print * , a

% ifort -openmp jump.f90
fortcom: Error: jump.f90, line 13: A RETURN, EXIT

or CYCLE statement is not legal in a DO loop
associated with a parallel directive.

if (a(k) > 3) exit ! illegal
---------------------ˆ
compilation aborted for jump.f90 (code 1)

% pgf90 -mp jump.f90 the Portland group
2 3 4 4 5 6 on one thread
2 3 4 5 5 6 on two threads

25: firstprivate variables

When a thread gets a private variable it is not initialised.
Using firstprivate each thread gets an initialised copy.
In this example we use two threads:

int i, v[] = {1, 2, 3, 4, 5};

#pragma omp parallel for private(v)
for (i = 0; i < 5; i++)

printf("%d ", v[i]);
printf("\n");

#pragma omp parallel for firstprivate(v)
for (i = 0; i < 5; i++)

printf("%d ", v[i]);
printf("\n");

% a.out
40928 10950 151804059 0 0
1 2 4 5 3 (using several threads)

26: lastprivate variables

Use lastprivate when you want to keep the result from the last thread.
(Private variables are not defined outside the parallel region.)

int i, n = 16, v[n]; // Set the v[i] to -1

#pragma omp parallel for private(i, v)
for (i = 0; i < n; i++)

v[i] = omp_get_thread_num();
// Print i, :, followed by all the v[i]

#pragma omp parallel for lastprivate(i, v)
for (i = 0; i < n; i++)

v[i] = omp_get_thread_num();
// Print i, :, followed by all the v[i]

% a.out On four threads (note, i not initialized)
839015264: -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
16 : 100 100 -2114056896 32536 26582016 0 26582208 0 0 1 26582208

3 3 3 3 last four numbers

27: Load balancing

We should balance the load (execution time) so that threads
finish their job at roughly the same time.
There are three different ways to divide the iterations between
threads, static, dynamic and guided.
The general format is schedule(kind of schedule, chunk size).

• static
Chunks of iterations are assigned to the threads in cyclic
order. Size of default chunk, roughly = n / number of threads.
Low overhead, good if the same amount of work in each iteration.
chunk can be used to access array elements in groups (may be
more efficient, e.g. using cache memories in better way).

28: Load balancing, static

Here is a small example:

!$omp parallel do private(k) shared(x, n) &
!$omp schedule(static, 4) ! 4 = chunk

do k = 1, n
...

end do

1 2
k : 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
thread 0: x x x x x x x x
thread 1: x x x x x x x x
thread 2: x x x x

The chunk can be set with a variable or an expression as well.
Here is a larger problem, where n = 5000, schedule(static), and
using four threads.

29: Load balancing, static

0 1000 2000 3000 4000 5000

0

1

2

3

iteration

th
re

ad

static

0 1000 2000 3000 4000 5000

0

1

2

3

iteration

th
re

ad

static 100

Note that if the chunk size is 5000 (in this example) only the first thread
would work, so the chunk size should be chosen relative to the number of
iterations.

30: Load balancing, dynamic

• dynamic
If the amount of work varies between iterations we should use dynamic or
guided. With dynamic, threads compete for chunk-sized assignments.
Note that there is a synchronization overhead for dynamic and guided.

!$omp parallel do schedule(dynamic, chunk) private(k)

Here a run with schedule(dynamic,100) (schedule(dynamic), gives a
chunks size of one). The amount of works differs between iterations.

0 1000 2000 3000 4000 5000

0

1

2

3

iteration

th
re

ad

dynamic 100

31: Load balancing, guided

• guided
There is also schedule(guided, chunk) assigning pieces of work
(≥ chunk) proportional to the number of remaining iterations divided
by the number of threads.
Large chunks in the beginning smaller at the end. It requires fewer
synchronisations than dynamic.

0 1000 2000 3000 4000 5000

0

1

2

3

iteration

th
re

ad

guided 100

32: Load balancing, runtime

• runtime
It is also possible to decide the scheduling at runtime, using an
environment variable, OMP SCHEDULE, e.g.

!$omp parallel do private(k) schedule(runtime)

% export OMP_SCHEDULE=dynamic bash
% setenv OMP_SCHEDULE "guided,100" tcsh
% a.out

Useful for testing.

33: Load balancing, nested loops

Suppose we parallelise m iterations over P processors/cores.
No default scheduling is defined in the OpenMP-standard, but
schedule(static, m / P) is a common choice
(assuming that P divides m).
Here comes an example where this strategy works badly. So do not
always use the standard choice.

!$omp ...
do j = 1, m ! parallelise this loop

do k = j + 1 , m ! NOTE: k = j + 1
call work(...) ! each call takes the same time

end do
end do

Suppose m is large and let Tser be the total run time on one thread. If
there is no overhead, the time, Tt, for thread number t is approximately:

Tt ≈
2Tser

P

(

1 −
t + 1/2

P

)

, t = 0, . . . , P − 1

34: Nested loops, an example, contd.

So thread zero has much more work to do compared to the last thread:

T0

TP−1

≈ 2P − 1

a very poor balance. Instead of the optimal speedup P we get:

speedup =
Tser

T0

≈
P

2 − 1/P
≈

P

2

The next example shows this in practice, but first a comment.

35: Nested loops, an example, contd.

// a parallel for loop
#pragma omp parallel for private(k)

for(k = ...

is short for

// a parallel region
#pragma omp parallel private(k)
{

#pragma omp for // with a for loop
for(k = ...

}

but the parallel region is more general.

36: Nested loops, an example, contd.

const int M = 1000, MAX_THREADS = 8;
double s[MAX_THREADS - 1], time;
int j, k, i_am, thr;

for (thr = 1; thr <= MAX_THREADS; thr++) {
omp_set_num_threads(thr) ;

time = omp_get_wtime() ; // a builtin function
#pragma omp parallel private(j, k, i_am) shared(s)
{

i_am = omp_get_thread_num();

#pragma omp for schedule(runtime)
for (j = 1; j <= M ; j++)

for (k = j + 1; k <= M ; k++)
work(&s[i_am]); // Equal amount of work

}
printf("time = %4.2f\n", omp_get_wtime() - time);

}

37: Nested loops, an example, contd.

Here are the times:

#threads static static, 10

1 3.83 3.83

2 2.88 1.94

3 2.13 1.30

4 1.68 0.99

5 1.38 0.80

6 1.17 0.67

7 1.02 0.58

8 0.90 0.51

dynamic and guided give the same times as static,10 , in this case.
A chunk size of 1-20 works well, but more than 50 gives longer execution
times. Note that P/(2 − 1/P) ≈ 4.3 and 3.83/0.9 ≈ 4.26 and
3.83/0.51 ≈ 7.5. So the analysis is quite accurate in this simple case.

38: Misuse of dynamic

Do not misuse dynamic . Here is a contrived example:

int k, i_am, iter[] = { 0, 0, 0, 0 };
double time;

omp_set_num_threads(4);
time = omp_get_wtime();

#pragma omp parallel private(k, i_am) shared(iter)
{

i_am = omp_get_thread_num();

#pragma omp for schedule(runtime)
for (k = 1; k <= 100000000; k++)

iter[i_am]++; // how many iters. am I doing?
}
printf("%5.2f, %d %d %d %d\n",

omp_get_wtime() - time,
iter[0], iter[1], iter[2], iter[3]);

39: Misuse of dynamic, contd.

static
0.01 , 25000000 25000000 25000000 25000000

dynamic , "dynamic,10" , "dynamic,100"
15.53 , 25611510 25229796 25207715 23950979
1.32 , 25509310 24892310 25799640 23798740
0.13 , 29569500 24044300 23285700 23100500

guided
0.00 , 39831740 5928451 19761833 34477976

40: The reduction clause in C

If several threads try to update the same variable this variable has to be
protected so that only one thread at a time can update the variable. It is
OK if several threads read the same memory location at the same time.
Here is a parallelisation of an inner product computation using a
reduction-variable (reduction, many to one).

int i, n = 10000;
double x[n], y[n], s;
// Assign values to x and y
...
// s will behave as shared variable,
// but it is protected
s = 0.0;
#pragma omp parallel for reduction(+: s) shared(n,x,y) private(i)
for (i = 0; i < n; i++)

s += x[i] * y[i]; // s must be protected

41: The reduction clause in C, contd.

In general: reduction(operator: variable list) where
operator is +, * , -, &, |, ˆ, &&, ||, min, max .

A reduction is typically specified for statements of the following form
(expr is of scalar type and does not reference x).

x = x op expr, x = expr op x (except for -)
x binop= expr
x++, ++x, x--, --x

This is what happens in our example above:

each thread gets its local sum-variable, s#thread say

s#thread = 0 before the loop (the thread private variables are
initialised in different ways depending on the operation, zero for +
and - , one for *). See the standard for the other cases.

each thread computes its sum in s#thread

after the loop all the s#thread are added to s in a safe way

42: The reduction clause in Fortran

reduction(operator or intrinsic: variable list)
Valid operators: +, * , -, .and., .or., .eqv., .neqv.
and intrinsics: max, min, iand, ior, ieor (iand is bitwise
and, etc.)

The operator/intrinsic is used in one of the following ways:

x = x operator expression

x = expression operator x (except for subtraction)

x = intrinsic(x, expression)

x = intrinsic(expression, x)

where expression does not involve x .

x may be an array in Fortran (vector reduction) but not so in C.

43: The reduction clause in Fortran, contd.

Here an example where we use an intrinsic function in Fortran:

! Init. vec(k) = 1.0 / k, k = 1, 2, ..., n

min_vec = vec(1) ! important
!$omp parallel do reduction(min: min_vec) &
!$omp shared(vec) private(k)

do k = 1, n
min_vec = min(vec(k), min_vec)

end do

print * , ’min_vec = ’, min_vec

min vec = vec(1) is important, otherwise we will get an undefined
value. Setting min vec = -1 gives a minimum of -1 (in this example).

44: The reduction clause contd, min in C

Now for min in C (not supported by all compilers):

min_vec = vec[0]; // important
#pragma omp parallel for reduction(min: min_vec) \

shared(vec)
for(int k = 0; k < n; k++)

if (vec[k] < min_vec)
min_vec = vec[k];

45: Critical sections

We can implement our summation example without using
reduction -variables. The problem is to update the shared sum in a
safe way. This can be done using a critical section. A critical section is a
piece of code where only one thread at a time is given permission to
execute the piece.

double private_s, shared_s = 0;

#pragma omp parallel private(private_s) \
shared(x, y, shared_s , n)

{
private_s = 0.0; // Done by each thread
#pragma omp for private(i) // A parallel loop
for (i = 0; i < n; i++)

private_s += x[i] * y[i];
// Only one thread at a time may pass through.
// Safe update of shared_s with private_s.
#pragma omp critical
shared_s += private_s;

}

46: Vector reduction in C, two alternatives

Use private summation vector, partial sum, one for each thread.

...
for(int k = 0; k < n; k++) // done by the master

shared_sum[k] = 0;

#pragma omp parallel shared(shared_sum, n)
{ // should check return from malloc

double * private_sum = malloc(n * sizeof(double));
for(int k = 0; k < n; k++)

private_sum[k] = ... // compute ...

// Not too bad with a critical section here.
#pragma omp critical

for(int k = 0; k < n; k++)
shared_sum[k] += private_sum[k];

free(private_sum);
} // end parallel

47: Vector reduction in C, an alternative

We can avoid the critical section if we introduce a shared matrix where
each row (or column) corresponds to the partial sum from the
previous example.

for(k = 0; k < n; k++) // done by the master
shared_sum[k] = 0.0;

#pragma omp parallel private(i_am) \
shared(S,shared_sum ,n_threads)

{
i_am = omp_get_thread_num();

for(k = 0; k < n; k++) // done by all
S[i_am][k] = 0.0;

// Each thread updates its own partial_sum.
for(k = ...

S[i_am][k] = ..

48: Vector reduction in C, an alternative, contd.

// At a barrier the threads synchronise.
#pragma omp barrier // S must be complete

// Add the partial sums together
// (could be stored in S).

#pragma omp for
for(k = 0; k < n; k++)

for(j = 0; j < n_threads; j++)
shared_sum[k] += S[j][k]; // No conflict.

} // end parallel

49: Nested loops

Computing the matrix-vector product in two ways
(contrived example, use BLAS instead).

! Column oriented version
a = 0.0
do j = 1, n

do i = 1, m
a(i) = a(i) + C(i, j) * b(j)

end do
end do

Can be parallelised with respect to i but not with respect to j
(different threads will write to the same a(i)).
May be inefficient since parallel execution is initiated n times.
OK if n small and m large.

50: Nested loops, contd.

Switch loops.
The do i can be parallelised.
Bad cache locality for C.

! Innerproduct version
a = 0.0
do i = 1, m

do j = 1, n
a(i) = a(i) + C(i, j) * b(j)

end do
end do

51: Nested loops, cont.

Here is a test, the loops were run ten times.

m n first loop second loop
1 2 3 4 1 2 3 4

4000 4000 0.41 0.37 0.36 0.36 2.1 1.2 0.98 0.83
40000 400 0.39 0.32 0.27 0.23 1.5 0.86 0.72 0.58

400 40000 0.49 1.2 1.5 1.7 1.9 2.0 2.3 2.3

Cache locality is important.

If second loop is necessary, OpenMP gives speedup.

Large n gives slowdown in first loop.

52: A few other OpenMP directives, C

#pragma omp parallel shared(...
{
#pragma omp single // only ONE thread will execute

... code

#pragma omp for nowait // don’t wait, wait is default
for (...

for (... // all iterations run by all threads

#pragma omp sections
{
#pragma omp section

... code executed by one thread
#pragma omp section

... code executed by another thread
} // end sections, implicit barrier

53: A few other OpenMP directives, C, Fortran

ifdef _OPENMP // conditional compilation
C statements ... Included if we use OpenMP

endif
} // end of the parallel section

Now to Fortran:

!$omp parallel shared(...
!$omp single ! only ONE thread will execute the code

... code
!$omp end single

!$omp do
do ...
end do

!$omp end do nowait ! do not wait (to wait is default)

do ... ! all iterations run by all threads
end do

54: A few other OpenMP directives, Fortran, contd.

!$omp sections
!$omp section

... code executed by one thread
!$omp section

... code executed by another thread
!$omp end sections ! implicit barrier

!$ code ... conditional compilation
the space after !$ is important

!$omp end parallel ! end of the parallel section

55: Misuse of critical, atomic

Do not use critical sections and similar constructions too much. This test
uses reduction, critical and atomic. n = 107 using one to four threads.

#pragma omp parallel for reduction(+: s) private(i)
for (i = 1; i <= n; i++)

s += sqrt(i);

#pragma omp parallel for shared(s) private(i)
for (i = 1; i <= n; i++) {

#pragma omp critical
s += sqrt(i);

}

#pragma omp parallel for shared(s) private(i)
for (i = 1; i <= n; i++) {

#pragma omp atomic // atomic updates a single
s += sqrt(i); // variable atomically.

}

56: Misuse of critical, atomic, cont.

Here are the times:

#threads reduction critical atomic

1 0.036 0.67 0.19

2 0.020 5.57 0.54

3 0.014 5.56 0.84

4 0.010 5.30 1.14

We get a slowdown instead of a speedup, when using critical
or atomic .

57: Workshare in Fortran

Some, but not all, compilers support parallelisation of Fortran90
array operations, e.g.

! a, b and c are arrays
!$omp parallel shared(a, b, c)
!$omp workshare

a = 2.0 * cos(b) + 3.0 * sin(c)
!$omp end workshare
!$omp end parallel

or shorter

!$omp parallel workshare shared(a, b, c)
a = 2.0 * cos(b) + 3.0 * sin(c)

!$omp end parallel workshare

58: Subprograms and OpenMP

Now an example where a function is called from a parallel region. If
we have time leftover there will be more at the end of the lecture.

First a definition:

call sub(A, b, x, n) ! actual parameters
...

subroutine sub(A, b, x, n) ! formal parameters

Formal arguments of called routines, that are passed by reference,
inherit the data-sharing attributes of the associated actual
parameters. Those that are passed by value become private.
In Fortran all variables are passed by reference, so they inherit the
data-sharing attributes of the associated actual parameters.
A C-example comes on the next page.

59: Subprograms and OpenMP

// I have chosen int since it gives short lines.
void work(int [], int [], int, int, int * , int *);
...
int p_vec[n], s_vec[n], p_val, s_val, p_ref, s_ref;
...
#pragma omp parallel private(p_vec, p_val, p_ref)

shared(s_vec, s_val, s_ref)
{

work(p_vec, s_vec, p_val, s_val, &p_ref, &s_ref);
}
void work(int p_vec[], int s_vec[], int p_val,

int s_val, int * p_ref, int * s_ref)
{

// p_vec, p_val, p_ref become private
// s_vec, s_ref become shared
// s_val becomes private , each thread has its own
int k; // becomes private

60: Subprograms and OpenMP, an example

int a[] = { 99, 99, 99, 99 }, i_am;

omp_set_num_threads(4);
#pragma omp parallel private(i_am) shared(a)
{

i_am = omp_get_thread_num();
work(a, i_am);

#pragma omp single
printf("a = %d, %d, %d, %d\n",

a[0], a[1], a[2], a[3]);
}

...
void work (int a[], int i_am)
{

// a[] becomes shared, i_am becomes private
printf("work %d\n", i_am);
a[i_am] = i_am;

}

61: Subprograms and OpenMP, an example

% a.out
work 1
work 3
a = 99, 1, 99, 3
work 2
work 0

Print after the parallel region or add a barrier:

#pragma omp barrier
#pragma omp single

printf("a = %d, %d, %d, %d\n", a[0], a[1], a[2], a[3]);
% a.out

work 0
work 1
work 3
work 2
a = 0, 1, 2, 3

OpenMP makes no guarantee that input or output to the same file is
synchronous when executed in parallel.

62: Matlab and parallel computing

Message passing using the “Distributed Computing Toolbox”.

Matlab R2011b (and later) has support for Nvidia’s CUDA
(Compute Unified Device Architecture), for executing code on the
GPU. Requires compute capability ≥ 1.3.

Threads & shared memory by using the underlying numerical
libraries, AMD’s ACML (AMD Core Math Library) and Intel’s MKL
(Math Kernel Library).

We are only going to look at the last point.
Using the Matlab-function maxNumCompThreads one can set the
number of threads, though in version R2010b it says that
maxNumCompThreadswill be removed in a future version.

Unless you use matlab -singleCompThread Matlab uses all cores

(and possibly hyperthreading).

63: Matlab and parallel computing, contd.

Here is a test using one to four threads computing
C = A * B, x = A \ b and l = eig(A)
(n is the order of the matrices).

n C = A * B x = A \ b l = eig(A)
1 2 3 4 1 2 3 4 1 2 3 4

800 0.3 0.2 0.1 0.1 0.2 0.1 0.1 0.1 3.3 2.5 2.4 2.3
1600 2.1 1.1 0.8 0.6 1.1 0.7 0.6 0.5 20 12 12 12
3200 17.0 8.5 6.0 4.6 7.9 4.8 4.0 3.5 120 87 81 80

So, using several threads can be an option if we have a large problem.
We get a better speedup for multiplication, than for eig , which seems
reasonable. This method can be used to speed up the computation of
elementary functions as well.

64: Using ACML and MKL from Fortran or C

MKL and ACML can be used from Fortran and C as well. Here Ax = b
is solved using dgesv from Lapack (a part of ACML and MKL).

call dgesv(n, nrhs, A, lda, ipiv, b, ldb, info)
% Compile and link with the library,
% and set LD_LIBRARY_PATH

% export OMP_NUM_THREADS=1
% a.out A is a 2000 x 2000 matrix
time = 1.56 on 1 thread
time = 0.84 on 2 threads
time = 0.58 on 3 threads
time = 0.46 on 4 threads

% a.out A is a 4000 x 4000 matrix
time = 11.92
time = 6.09
time = 4.18
time = 3.23

65: Case study: solving a large and stiff IVP system

y′(t) = f(t, y(t)), y(0) = y0, y : R → R
n,

we assume f(t, y) is expensive to evaluate.

LSODE (Livermore Solver for ODE, Alan Hindmarsh) from
www.netlib.org .

BDF routines; Backward Differentiation Formulas.
Implicit methods: tk present time, y(k) approximation of y(tk).

Backward Euler (simplest BDF-method). Find y(k+1) such that:

y(k+1) = y(k) + hf(tk+1, y
(k+1))

LSODE is adaptive (can change both the timestep h and the order).

Use Newton’s method to solve for z ≡ y(k+1):

z − y(k) − hf(tk+1, z) = 0

66: Case study: solving a large and stiff IVP system, contd.

One step of Newton’s method reads:

z(i+1) = z(i) −

[

I − h
∂f

∂y
(tk+1, z

(i))

]

−1

(z(i) − y(k) − hf(tk+1, z
(i)))

The Jacobian ∂f
∂y

is approximated by finite differences a column at a time.

Each Jacobian requires n evaluations of f.

∂f

∂y
ej ≈

[

f(tk+1, z
(i) + ejδj) − f(tk+1, z

(i))
]

/δj

ej is column j in the identity matrix I.
Compare with the scalar case: g′(z) ≈ (g(z + δ) − g(z))/δ.

A modified Newton is used, so one Jacobian and one factorization is

used every timestep.

67: Case study: solving a large and stiff IVP system, contd.

Parallelise the computation of the Jacobian, by computing columns in
parallel. Embarrassingly parallel.

Major costs in LSODE:

Computing the Jacobian, J, (provided f takes time).

LU-factorization of the Jacobian (once for each time step).

Solving the linear systems, given L and U (once for every
Newton-iteration).

What speedup can we expect?

Disregarding communication, the wall clock time for p threads, looks
something like (if we compute J in parallel):

wct(p) = time(LU) + time(solve) +
time(computing J)

p

68: Case study: solving a large and stiff IVP system, contd.

If the parallel part, “computing J”, dominates we expect good
speedup at least for small p. Speedup may be close to linear,
wct(p) = wct(1)/p.

For large p the serial (non-parallel) part will start to dominate.
How should we speed up the serial part?

Switch from Linpack, used in LSODE, to Lapack.

Try to use a parallel library like ACML or MKL.

69: Case study: solving a large and stiff IVP system, contd.

After having searched LSODE (Fortran 66):

c if miter = 2, make n calls to f to approximate j.
j1 = 2 used for indexing
do 230 j = 1,n for each column in J

yj = y(j) save value
r = dmax1(srur * dabs(yj),r0/ewt(j)) = δj

y(j) = y(j) + r perturb
fac = -hl0/r = −h/δj

call f (neq, tn, y, ftem) tn = tk+1, ftem new f-value
do 220 i = 1,n wm(2...) stores the Jacobian

220 wm(i+j1) = (ftem(i) - savf(i)) * fac form diff. quot.
y(j) = yj restore perturbed value
j1 = j1 + n next column

230 continue
...
c add identity matrix.
c do lu decomposition on p.

call dgefa (wm(3), n, n, iwm(21), ier)
100 call dgesl (wm(3), n, n, iwm(21), x, 0) Newton iter.

70: Case study cont.

Simple to parallelise the loop. Can forget the remaining 2500 lines.
The parallel version: important to look at how each variable is used.

j, i, yj, r, fac, ftem are private ftem is the output (y′)
from the subroutine

j1 = 2 offset in the Jacobian; use wm(i+2+(j-1) * n) no index
conflicts

srur, r0, ewt, hl0, wm, savf, n, tn are shared

y is a problem since it is modified. shared does not work.
private(y) will not work either; we get an uninitialised copy.
firstprivate is the proper choice, it makes a private and
initialised copy.

71: Case study cont.

c$omp parallel do private(j, yj, r, fac, ftem)
c$omp+ shared(f, srur, r0, ewt, hl0, wm, savf,
c$omp+ n, neq, tn) firstprivate(y)

do j = 1,n
yj = y(j)
r = dmax1(srur * dabs(yj),r0/ewt(j))
y(j) = y(j) + r
fac = -hl0/r
call f (neq, tn, y, ftem)
do i = 1,n

wm(i+2+(j-1) * n) = (ftem(i) - savf(i)) * fac
end do
y(j) = yj

end do

Did not converge! After reading of the code:

dimension neq(1), y(1), yh(nyh,1), ewt(1), ftem(1)
change to

dimension neq(1), y(n) , yh(nyh,1), ewt(1), ftem(n)

72: More on OpenMP and subprograms

Calling a function, containing OpenMP-directives, from a parallel region.

lexical extent of the parallel region dynamic extent of the parallel region
int main() int main()
{ {

... ...
#pragma omp parallel ... #pragma omp parallel ...
{ {

#pragma omp for ... #pragma omp for ...
...; work(...);; work(...); ...

} }
... ...

} }

void work(...) void work(...)
#pragma omp for (...) { #pragma omp for (...) {

... ...
} }
... ...

} }

73: More on OpenMP and subprograms, cont.

The omp for in work is an orphaned directive (it appears in the
dynamic extent of the parallel region but not in the lexical extent).
This for binds to the dynamically enclosing parallel directive and
so the iterations in the for will be done in parallel (they will be
divided between threads).

Suppose now that work contains the following code and that we have
three threads:

int k, i_am;
char f[] = "%5d %5d %5d\n"; // a format

#pragma omp master
printf(" i_am omp() k\n");

i_am = omp_get_thread_num();

74: More on OpenMP and subprograms, cont.

#pragma omp for private(k)
for (k = 1; k <= 6; k++) // LOOP 1

printf(f, i_am, omp_get_thread_num(), k);

for (k = 1; k <= 6; k++) // LOOP 2
printf(f, i_am, omp_get_thread_num(), k);

#pragma omp parallel for private(k)
for (k = 1; k <= 6; k++) // LOOP 3

printf(f, i_am, omp_get_thread_num(), k);

In LOOP 1thread 0 will do the first two iterations, thread 1 performs

the following two and thread 2 takes the last two. In LOOP 2all threads

will do the full six iterations.

75: More on OpenMP and subprograms, cont.

In the third case we have:

A PARALLELdirective dynamically inside another PARALLEL
directive logically establishes a new team, which is composed of
only the current thread, unless nested parallelism is established.

We say that the loops is serialised. All threads perform six iterations each.
If we want the iterations to be shared between new threads we can set

an environment variable, OMPNESTEDto TRUE, or use
omp set nested(1) .
If we enable nested parallelism we get three teams consisting of three
threads each, in this example.

This is what the (edited) printout from the different loops may look like.

omp() is the value returned by omp get thread num() . The output

from the loops may be interlaced though.

76: More on OpenMP and subprograms, cont.

First loop Second loop Third loop
i am omp() k i am omp() k i am omp() k

1 1 3 0 0 1 1 0 1
1 1 4 1 1 1 1 0 2
2 2 5 1 1 2 1 2 5
2 2 6 2 2 1 1 2 6
0 0 1 0 0 2 1 1 3
0 0 2 0 0 3 1 1 4

1 1 3 2 0 1
1 1 4 2 0 2
1 1 5 2 1 3
1 1 6 2 1 4
2 2 2 2 2 5
2 2 3 2 2 6
2 2 4 0 0 1
2 2 5 0 0 2
2 2 6 0 1 3
0 0 4 0 1 4
0 0 5 0 2 5
0 0 6 0 2 6

77: Conclusions

Optimize for one processor first. If the code still is too slow,
parallelise it. A parallel code can be much faster.

Profile your code to find the computationally expensive parts that
can be run in parallel.

Use the optimization flags and OpenMP-directives.

Do you get reasonable speedup, reasonable Gflop?

Do you get the correct results (for different number of threads)?

Use the tuned numerical libraries, perhaps there are parallel routines.

When you parallelise:

try to avoid synchronisation (barrier , critical , atomic)
try to avoid single -sections
examine the different ways the loop can be parallelised
do not forget single-CPU optimization (cache locality)
choose a suitable schedule

