
Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2012 1
A short introdu
tion to C, Fortran 90, Fortran 77, t
sh and bashThomas Eri
ssonComputational Mathemati
sChalmers/GU2012

HPC



2 Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2012Contents1 A short introdu
tion to C 42 Hello World! 43 Fun
tions, a �rst example 64 Separate 
ompilation and ld 95 More on prototypes and type 
onversion 96 void fun
tions, passing parameters 117 Arrays 147.1 Two-dimensional arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 A matter of style 179 If-statements and logi
al expressions 1810 Some useful C-tools 1911 A few words about the C99 standard 1912 More on 
pp 2113 Using the man-
ommand 2214 More on matri
es 2314.1 Dynami
 memory allo
ation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2414.2 This will not work with Fortran . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2614.3 This will work with Fortran . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2714.4 C and large arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2815 A note on stru
ts and 
onst 3015.1 Stru
tures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3015.2 
onst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3115.3 
onst and stru
tures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3116 Pre
eden
e and asso
iativity of C-operators 3317 A short introdu
tion to Fortran 3518 A simple example 3619 Numeri
al 
onstants 3819.1 Warning: do not mix single and double pre
ision . . . . . . . . . . . . . . . . . . . . . . . . . . . 3820 The simple example in Fortran 77 3921 How to 
ompile 4222 If-statements and logi
al expressions 4223 A small Fortran 90-example 43HPC



Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2012 324 A 
ommon Fortran 
onstru
tion 4425 Dynami
 memory allo
ation in Fortran 90 4726 Some dangerous things 4727 Pre
eden
e of Fortran 90-operators 5028 A few words about t
sh and bash 5128.1 The path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5128.2 Now something about bash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5328.3 A note on the student environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

HPC



4 Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU20121 A short introdu
tion to CC is a widely used programming language, espe
ially in Unix appli
ations. The language was developed in 1972by Dennis Rit
hie at Bell Labs for use with the Unix operating system. I learnt C reading the 
lassi
 book �TheC Programming Language� by Brian Kernighan and Dennis Rit
hie. The book was published 1978. C is a fairlysmall language, the book is only 228 pages. I have several C++ books, all 
ontaining more than 1000 pagesea
h. Sin
e C was used to develop the Unix system, it has support for low level operations, su
h as �nding outthe address of a variable. It is also a very 
on
ise language, having abbreviations for 
ommon operations.k = k + 1 and s = s + term 
an be written k++ and s += term, for example.This is 
onvenient if you are an experien
ed C-programmer, but it may 
ause problems for the novi
e.Here is another C-feature. In C an assignment su
h as k = 2 * j - m; has a value, whi
h is the value of k, theleftmost variable. Matlab follows C when it 
omes the logi
al values in if-statements, zero is false and non-zerois true. This means that the following C-statement is 
orre
tif ( k = 2 * j - m ) {do something}It 
omputes the value of k and 
he
ks if it is non-zero. If we had intended to do something when k equals2 * j - m we should have writtenif ( k == 2 * j - m ) {do something}Another, more severe, problem is that there is no index 
ontrol for array indi
es, like there is in Matlab. Onetends to use pointers (addresses) frequently as well and there is little 
ontrol of these. So, in short, one shouldbe very 
areful when writing C-programs, or there is a large risk that one has to spend long hours debugging.In 1989 C be
ame an ANSI standard, often referred to C89, and the year after 
ame the ISO-standard, C90(although C89 and C90 des
ribe the same language). In 1999 
ame a new standard, C99.For more history and ba
kground see the Wikipedia arti
le:http://en.wikipedia.org/wiki/C_(programming_language) .There is also a page about the book:http://en.wikipedia.org/wiki/The_C_Programming_Language_(book) .The following introdu
tion is su�
ient for the assignments, but you need more for real programming.I have not tried to show all the di�erent ways a program 
an be written. C has several forms ofsome 
onstru
ts. Professional 
ode has many extra details as well.C 
an be very hard to read and there even was the �International Obfus
ated C Code Contest�.See http://en.wikipedia.org/wiki/IOCCC for unreadable and amusing programs.2 Hello World!We start with the 
ompulsory Hello World!-program. I wrote the program using an editor and saved it in the�le hello.
. If you do not have a favourite editor like vim, gvim, ema
s et
, I re
ommend using nedit, theNirvana editor. It is quite 
apable and easy to use, although it does not have support for the utf-8 
hara
terset (used on the lab 
omputers). This is mostly a problem if you write in Swedish (using å-ö). In the printoutbelow, I listed the program in a terminal window using the 
at-
ommand (you do not have to do this everytime, of 
ourse :-)
HPC



Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2012 5% 
at hello.
#in
lude <stdio.h>int main(){ printf("Hello World!\n");return 0;}% g

 hello.
% a.outHello World!% ./a.outHello World!% is the prompt. I 
ompiled the program using, g

, the GNU C-
ompiler. The exe
utable (�ma
hine 
ode�)was stored in the �le named a.out (you 
an store it in another �le if you like). Finally I exe
uted the programby typing the name of the exe
utable. If you do not have . in your Unix-path you would type ./a.out instead.The dot means the 
urrent working dire
tory, so ./a.out means the a.out in the dire
tory where I am at themoment.Let us look at the 
ode. The �rst line, the one starting with a # is read by the C prepro
essor, 
pp. Itwill read the �le, /usr/in
lude/stdio.h, and pla
e it in the program. This �le, a so-
alled in
lude �le orheader �le, typi
ally 
ontains named 
onstants, ma
ros (somewhat like fun
tions) and fun
tion prototypes.Named 
onstants are used so we do not have to write numbers to 
hoose a parti
ular option, instead we 
anwrite a name.The main program, must be 
alled main, is an integer (int) fun
tion. It 
an take parameters, but we ig-nore them in this example (the ( )) and it returns status information to the Unix-system (to the shell, bash ott
sh), using the return-statement, zero usually means OK. We 
an print the status in the shell (e
ho $statusin t
sh, e
ho $? in bash). One 
ould also use the status in if-statements in the shell. If you like, you 
anreturn EXIT_SUCCESS (or EXIT_FAILURE) instead of zero and one, provided you in
lude the header �le stdlib.h.The input parameters are used to pass arguments from the shell to the program. When giving the ls 
ommandwith the long �ag, ls -l, the ls-
ommand (a 
ompiled C-program) 
an a

ess the �ag -l.printf is a print statement, and \n means newline. Semi
olon, ;, ends a statement, so it is not like in Matlabwhere an end of line su�
es. If we forget the semi
olon after the printf statements, we get a syntax error andthe 
ompiler 
omplains:% g

 hello.
hello.
: In fun
tion `main':hello.
:5: error: syntax error before "return"The bra
es, { }, are used to delimit the body of the fun
tion.To �nd out more about what �ags (options) g

 
an take, we type man g

 in a terminal window. Thefollowing 
ommand% g

 -o hello -O hello.
optimizes the 
ode for speed (overkill for this tiny example) and pla
es the exe
utable in hello instead of ina.out. To exe
ute the program we type hello or ./hello .HPC



6 Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU20123 Fun
tions, a �rst exampleNow to a more 
ompli
ated example, where we use a very primitive method (the trapezoidal method) toapproximate
∫

b

a

e−x
2

dx, a < bThe interval, (a, b), is divided into n intervals and on ea
h interval the integral is approximated by the area ofa trapezoid, and the formula is:
∫ b

a

f(x) dx ≈ h

[

f(a)

2
+ f(a + h) + f(a + 2h) + · · ·+ f(b− h) +

f(b)

2

]

, where h =
b− a

nThere are mu
h better methods and one 
ould write a 
ode that a

epts more general integrands, but this is,after all, not a 
ourse in numeri
al analysis.Sin
e the program would be
ome too messy if I added all the 
omments to the 
ode, I have numbered thelines and added 
omments afterwards. Note that the line numbers are not part of the 
ode.1 #in
lude <stdio.h>2 #in
lude <math.h>34 double trapeze(double, double, int);56 int main()7 {8 printf("The integral is approximately = %e\n", trapeze(0, 1, 100));910 return 0;11 }1213 double trapeze(double a, double b, int n)14 {15 /* A primitive quadrature method for approximating16 the integral of exp(-x^2) from a to b.17 n is the number of sub intervals.18 */1920 int k;21 double x, h, sum = 0.0;2223 if (n <= 0) {24 printf("*** n must be at least 1.\n");25 return -1;26 }2728 h = (b - a) / n;29 x = a;30 sum = 0.5 * exp(-x * x);31 for (k = 1; k < n; k = k + 1) {32 x = x + h;33 sum = sum + exp(-x * x);34 }35 sum = sum + 0.5 * exp(-b * b);HPC



Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2012 736 sum = sum * h;3738 return sum;39 }The example 
ode 
ontains a main-program and a fun
tion. On line 2, we in
lude math.h sin
e the programuses the exponential fun
tion, exp, and we need the prototype for the fun
tion. A prototype gives the name ofthe fun
tion and the types of input and output parameters. Sin
e exp takes a double pre
ision argument andreturns a double pre
ision value the prototype is:double exp(double);double is the name of the double pre
ision (8 bytes) �oating point type. The reason we use prototypes is tosupply the 
ompiler with more information, so it 
an warn us if we 
all a fun
tion with the wrong number ortypes of the parameters. The 
ompiler would also use the information to make type 
onversions of parameters(more below).Our own fun
tion, trapeze, takes three input arguments, the interval endpoints a and b, and a number,n, of intervals, and returns the approximation of the integral. On line 4 I have supplied a prototype for thefun
tion. One 
an, but does not have to, supply the variable names as well.On line 8 I print some text and 
all the fun
tion. printf is a fun
tion that 
an take a di�erent numberof arguments. In this 
ase the �rst is a string, and the se
ond the value returned from trapeze. %e is a format
ode, whi
h tells printf that the integral value should be written using an engineering format (de
imals andexponential part). To see the other format 
odes, we use the manual 
ommand in Unix.Type man -s3 printf in a terminal window (note that man printf gives you another manual page).Lines 13-39 show the trapeze fun
tion. Note that the �rst line looks like the prototype, but now with variablenames. Comments are written between /* */, but many 
ompilers allow for C++-
omments as well (linesstarting with //), this 
ame with the C99-standard.Lines 20, 21 are type de
larations of so-
alled automati
 variables. These variables are lo
al to the fun
tion.Spa
e is allo
ated when the fun
tion is entered and the memory is deallo
ated when we return from the fun
tion.The sum-variable is initialized as well, this 
ould be done in the exe
utable 
ode instead (similar to line 29).Lines 23-26 show an if-statement. The rules are roughly as in Matlab, although negation is written using ! andnot ~.The then-part is made up by two statements and they must be grouped together using bra
es. The bra
esare not ne
essary for one statement, but some programmers add them anyhow. The trapeze fun
tion shouldalways return a value, even when n has an illegal value, so the program returns the impossible value, -1 in that
ase. The statement, return value;, is similar to assigning value to the output parameter in Matlab, butreturn also means that we jump ba
k to the main program.In line 30 we 
all the exponential fun
tion. Note that x^2 does not work in C (or rather, it means bitwiseex
lusive OR). Lines 31-34 form a loop, the two statements, 32-33, are grouped together using bra
es. If weforget the bra
es, only line 32 will be repeated in the loop, and line 33 will be exe
uted on
e after the loop.The general format of the for-statement is:
HPC



8 Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2012for(init; test; update)loop bodyWritten with a while loop we understand the meaning:init:while ( test ) {loop bodyupdate;}So k = 1 
orresponds to init, the test is k < n and update is k = k + 1. In words, set k to one, then theloop is entered. Repeat the loop body as long as k < n. At the end of ea
h loop iteration, the loop variable, kis updated by one.C has many abbreviations, k = k+1 
an be written k++ and a = a + b 
an be abbreviated as a += b. Usingthese shorter forms, the loop 
an be written:for (k = 1; k < n; k++) {x += h;sum += exp(-x * x);}Sometimes one 
an see strange looking loops (at least to a C-novi
e). The following two loops both 
omputean approximation to 1 + 1/2 + 1/3 + · · ·+ 1/1000.sum = 0;k = 1;for(; k <= 1000;) {sum += 1.0 / k;k++;}sum = 0;k = 1;for(;;) {sum += 1.0 / k;if ( k == 1000 )break; // Jump out of the loopk++;}On line 38 the fun
tion returns the value to main.Let us now 
ompile and exe
ute the 
ode:% g

 trap.
 -lm% a.outThe integral is approximately = 7.468180e-01The exa
t value is approximately 0.74682413. -lm informs the 
ompiler that we need to use a library, themathemati
s library, sin
e the 
ode 
alls the exponential fun
tion. We say that we link with the math library.A spe
ial program, the linker, takes 
are about this part (more about this in the le
tures). The math libraryresides in a �le, /usr/lib64/libm.so (for our 64-bit system). The m-part of libm is what is used in -lm. Some
ompilers do not require that we write -lm, but they will link with library automati
ally. If we forget it on oursystem we get a link error: HPC



Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2012 9% g

 trap.
/tmp/

gqMVKZ.o(.text+0xd2): In fun
tion `trapeze':: undefined referen
e to `exp'et
.4 Separate 
ompilation and ldIn the example I have stored both main and trapeze in the same �le trap.
. This would be unrealisti
 in largeappli
ations, however, so it is possible to split the �le into separate �les. So, suppose that we have two �les,trap_main.
 
ontaining lines 1, 4-11 (i.e. not line 2, sin
e main does not use exp), and trapeze.
 
ontaininglines 2, 13-39. Here are two ways to 
ompile the 
ode.% g

 trap_main.
 trapeze.
 -lm% a.outThe integral is approximately = 7.468180e-01If a large part of a program does not 
hange, we 
an 
ompile that part on
e and for all. In the �rst g

-
ommandI 
ompile trapeze.
, using the -
 �ag (option). This tells the 
ompiler to produ
e an obje
t �le, trapeze.o,but not to try to produ
e an exe
utable. The obje
t �le is later used when 
ompiling trap_main.
. We savetime by not having to re
ompile trapeze.
 (think of a �le 
ontaining thousands of lines).% g

 -
 trapeze.
 an obje
t file is produ
ed% ls -l trapeze.o-rw------- 1 thomas _math 1232 Nov 18 15:49 trapeze.o% g

 trap_main.
 trapeze.o -lm use it here% a.outThe integral is approximately = 7.468180e-01If we forget trapeze.o we get a link error.% g

 trap_main.
/tmp/

gkJmlR.o(.text+0x3d): In fun
tion `main': undefined referen
e to `trapeze'
olle
t2: ld returned 1 exit statusWe will get the same e�e
t if we make a spelling error when 
alling trapeze. Say we type Trapeze instead oftrapeze in the printf statement in main. We get:% g

 trap_main.
 trapeze.o -lm/tmp/

4JCXzK.o(.text+0x29): In fun
tion `main': undefined referen
e to `Trapeze'
olle
t2: ld returned 1 exit statuseven though trapeze.o is in
luded. The reason is that C is 
ase sensitive, trapeze and Trapeze refer todi�erent fun
tions. ld, whi
h is mentioned, is the so-
alled linker, whi
h 
ombines obje
t �les, libraries (e.g.the math library) to an exe
utable. This is not the whole truth (there is a dynami
 linker as well), but it isa

urate enough for this 
ourse. So, the g

-
ommand does not only 
ompile, but it runs 
pp and ld as well.5 More on prototypes and type 
onversionIt is easier to appre
iate the prototypes when we use separate 
ompilation (di�erent �les). Suppose we havewritten trapeze(0, 100) in main. The 
ompiler 
omplains:HPC



10 Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2012% g

 trap_main.
 trapeze.o -lmtrap_main.
: In fun
tion `main':trap_main.
:8: error: too few arguments to fun
tion `trapeze'If we remove the prototype, the following happens:% g

 trap_main.
 trapeze.o -lm% a.outThe integral is approximately = 7.234109e-320So, no 
omplaints and the wrong answer. This is di�erent from Java, whi
h would 
omplain. A C-programmermust be more 
areful. Be very 
areful when you 
all a fun
tion. Che
k the number and types of parameters.I have been slightly 
areless when 
alling trapeze. 0 and 1 are integer 
onstants, but sin
e I have provided aprototype, the 
ompiler will automati
ally 
onvert the numbers to the 
orresponding double pre
ision 
onstants,0.0 and 1.0. To avoid the type 
onversion I 
ould have written trapeze(0.0, 1.0, 100). The reverse 
anhappen, a double value 
an be trun
ated to an integer value (the de
imals will deleted).Study the following example (%d is a format for printing integers):% 
at trun
_ex.
#in
lude <stdio.h>int trun
_ex(int, double);int main(){ double result;result = trun
_ex(1.99, 23);printf("trun
_ex = %e\n", result);return 0;}int trun
_ex(int k, double d){ printf("k = %d, d = %e\n", k, d);return 3.1415926535897932;}% g

 trun
_ex.
% a.outk = 1, d = 2.300000e+01trun
_ex = 3.000000e+00If we remove the prototype, the 
ompiler will not make the 
onversions for us. Instead we end up with garbage:% g

 trun
_ex.
% a.outk = 1030792151, d = 4.933640e-313trun
_ex = 3.000000e+00In main, 1.99 is stored as an 8 byte double pre
ision number and 23 as a four byte integer. When trun
_exis 
alled it will pi
k up the �rst four bytes of the stored double, and interpret those bytes as an integer. ToHPC



Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2012 11a

ess d the fun
tion will take the four bytes from 23 and the next four bytes, whatever they 
ontain, and makea double pre
ision number of the eight bytes. Note that no 
onversion is made for either number, trun
_exwill just read the bits and make numbers from them. Finally, the reason we get the 
orre
t 
onversion of3.1415926535897932 is that a fun
tion is of type int, by default.Division with integers behaves in a spe
ial way (but the same rule applies to C++, Fortran, Java et
).Integer division produ
es integer quotients, de
imals are trun
ated. 5 / 2 will be 2, -2 / 5 be
omes 0 et
.5.0 / 2 or 5 / 2.0 or 5.0 / 2.0 will all give you 2.5 sin
e the integer will be 
onverted to the �dominatingtype� double before the division. Note that 10.0 * (1 / 10) is 0.0, sin
e 1 / 10 is 
omputed �rst, giving 0.The integer zero is then 
onverted to 0.0 and the produ
t is 0.0.6 void fun
tions, passing parametersThe fun
tions we have seen so far return values. There are fun
tions that do not return values this way, aso-
alled void fun
tion. A void fun
tion 
orresponds to a Matlab fun
tion, looking something likefun
tion fun
tion_name(list of parameters) (so no return variable).The di�eren
e is that one 
an write a C-fun
tion so that it 
an 
hange its input parameters (this is not possiblein Matlab). This makes it ne
essary to dis
uss how parameters (arguments) are passed when a fun
tion is
alled. Let us look at trapeze again.double trapeze(double a, double b, int n){ ... }The fun
tion works with 
opies of a, b and n, so if the fun
tion 
hanges one of the variables, the originalvariables (or 
onstants) in main will not 
hange. This way of passing parameters is 
alled 
all-by-value.In order to be able to 
hange a variable, we use 
all-by-referen
e, i.e. we will pass the memory-address ofthe variable rather than the variable's value. Sin
e the fun
tion has a

ess to the address, it 
an 
hange thevalue of the variable. If var is the name of an integer or double variable, &var is its address, and & is 
alledthe address operator. We also say that &var is a pointer to var. If adr is an address to a lo
ation in memory,*adr is the 
orresponding value of what is stored there. Using * is 
alled dereferen
ing or indire
tion, * is theindire
tion or redire
tion operator. An address to a variable is often 
alled a referen
e (like in Java programming).Time for an example. This pie
e of 
ode 
omputes approximations to ∑n

k=1
1/k and

∑n

k=1
1/k2.1 #in
lude <stdio.h>23 void sums(double *, double *, int);45 int main()6 {7 double sum1 , sum2;89 sums(&sum1, &sum2, 1000);10 printf("The sums are: %e and %e\n", sum1 , sum2);1112 return 0;13 }1415 void sums(double *a_sum1, double *a_sum2, int n)16 {17 int k;18 HPC



12 Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU201219 *a_sum1 = 0.0;20 *a_sum2 = 0.0;2122 for (k = 1; k <= n; k++) {23 *a_sum1 += 1.0 / k; /* 1.0 to avoid integer divsion */24 *a_sum2 += 1.0 / (k * k);25 }26 }% g

 sums.
% a.outThe sums are: 7.485471e+00 and 1.643935e+00Let us start with the sums fun
tion, lines 15-26. We have a void fun
tion whi
h takes three parameters, thethird is the number of terms. double *a_sum1 should be read in the following way. *a_sum1 is a double, and* is the indire
tion operator, so a_sum1 must be an address to a double. I have tried to indi
ate this fa
tby naming the variable a_sum1, a for address. This is for pedagogi
al reasons, one would usually name thevariable sum1 and write double *sum1. We 
an now understand the prototype on line 3. The �rst (and se
ond)argument is of type double *, a pointer to double.On lines 19, 20 I set the values to zero. We should not try to set the addresses to zero. Note that weuse the same syntax on lines 23 and 24. Note that we use 1.0 / k rather than 1 / k (in whi
h 
ase the sumwould be one, sin
e 1 / k = 0 when k > 1).Let us now look at the main program. On line 7 we de�ne sum1 and sum2 as ordinary double variables.On line 9 we 
all the fun
tion. Note that sin
e we have a void fun
tion, it is illegal to try and write somethinglike variable = sums(...), sin
e sums does not return a value in its name. Note that we pass the addressesof sum1 and sum2, it would be wrong to write sums(sum1, sum2, 1000);.If you think these things are hard to follow, you should know that you are not alone, most beginners to C�nd this a bit hard.Let us de
lare two pointer variables by adding the following line to the 
ode (after line 7):double *p1, *p2;So, p1 
an point at a double variable, it 
an 
ontain the address of a double pre
ision variable. We 
an set p1to point at sum1 and p2 to point at sum2, like in the pie
e of 
ode:p1 = &sum1;p2 = &sum2;sums(p1, p2, 1000);printf("The sums are: %e and %e\n", *p1, *p2);but evenprintf("The sums are: %e and %e\n", sum1, sum2);How, you may ask, 
an we print sum1 and sum2, even though these variables have not been passed as argumentsto sums? The explanation, is that we passed the pointers, and sums 
an a

ess the memory where sum1 andsum2 are stored, through the pointers.Note that the following programming will end in tears (the remaining 
ode remains un
hanged):HPC



Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2012 13int main(){ double *p1, *p2;sums(p1, p2, 1000);printf("The sums are: %e and %e\n", *p1, *p2);return 0;}When we try to run it we get the feared error message:% g

 sums3.
% a.outSegmentation faultA Segmentation fault (or abbreviated segfault) 
an be a nasty error, at least if we have a large 
ompli
atedprogram, sin
e the bug 
an be very hard to �nd. It is 
aused by the program trying to a

ess a memory lo
ationwhi
h it is not allowed to a

ess, or it may try to write to a read-only part of the memory. Another message ofthe same type is Bus error, where the program may try to a

ess a non-existent address, for example. In thesums-example it is very easy to �nd the bug. We have allo
ated memory for the pointer variables, but have notallo
ated memory for the summation variables. So p1 and p2 do not point to any variables, the pointers havenot been assigned any values, they point to random addresses in memory. The program 
rashes in sums when*a_sum1 = 0.0; is exe
uted.Here 
omes another example where we must use addresses. We must use 
all-by-referen
e when readingdata, here are a few lines of 
ode:1 #in
lude <stdio.h>23 int main()4 {5 int i;6 double d;78 printf("type a value for i: ");9 s
anf("%d", &i);1011 printf("type a value for d: ");12 s
anf("%le", &d);1314 printf("i = %d, d = %e\n", i, d);1516 return 0;17 }% a.outtype a value for i: -123type a value for d: -1.23e-45i = -123, d = -1.230000e-45On order for s
anf to be able to return a value we must supply a pointer to the variable. On lines 8 and 11 wedo not supply a newline, that is why we 
an type the input on the same line as the prompt text. Note on line12 that is says le (the letter ℓ) for long. If we omit the letter, s
anf will try to read a single pre
ision numberinstead of a double. This will lead to a 
onversion error:HPC



14 Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2012type a value for i: 12type a value for d: -1.23e3i = 12, d = 3.713054e-307Suppose we have a non-void fun
tion. In that 
ase it is bad programming pra
ti
e to return values in the inputparameters as well (even though it is possible). We say that the fun
tion has side-e�e
ts.7 ArraysIn this program we 
reate a one-dimensional array (ve
tor) 
ontaining ten elements. We 
all the fun
tion init toinitialize the elements to 1, 2, . . . , 10. Finally we 
ompute the sum of the element using the fun
tion array_sum.1 #in
lude <stdio.h>23 void init(double [℄, int);4 double array_sum(double [℄, int);56 int main()7 {8 double ve
[10℄;910 init(ve
 , 10);11 printf("The sum is: %e\n", array_sum(ve
 , 10));1213 return 0;14 }1516 void init(double v[10℄, int n)17 {18 int k;1920 for(k = 0; k < 10; k++)21 v[k℄ = k + 1;22 }2324 double array_sum(double v[10℄, int n)25 {26 int k;27 double sum;2829 sum = 0.0;30 for(k = 0; k < 10; k++)31 sum += v[k℄;3233 return sum;34 }% a.outThe sum is: 5.500000e+01On line 8 we reserve storage for an array having ten double elements. Indi
es start at zero and end at nine,unlike Matlab. Note that we use [ ℄ for the index. So, the loop variables in the loops, e.g. on line 20, go fromHPC



Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2012 15zero to nine. It would be ine�
ient to 
opy the array when the fun
tions are 
alled. Instead 
all-by-referen
e isused. So, if the fun
tion 
hanges an element in the array, it 
hanges the original. We do this in the init-routine.Note that we should not use the address or indire
tion operators for the array.Compare the prototypes, lines 3, 4, with the fun
tion de
larations, lines 16, 24. It is allowed to leave out thedimension of the array. So line 16 
an be writtenvoid init(double v[℄, int n)and analogously for line 24. The reason is that the 
ompiler does not need to know the number of elements inthe array, the �nd the address of a spe
i�
 element. Note also that an array in C is not some kind of obje
t,like in Java. A fun
tion does not know the number of elements in the array unless we pass that information inan extra argument (the variable n in the example). In fa
t, when we 
all the fun
tion, only the address of v[0℄is sent to the fun
tion. We 
ould a
tually 
all init this way:init(&ve
[0℄, 10);There is a 
lose relationship between pointers and arrays but I leave that out in this introdu
tion.One should know that there is no index 
ontrol in C. Changing the loop in init tofor(k = -3; k < 11; k++)v[k℄ = k + 1;
auses no 
omplaints, but nasty things may happen as in the following example.1 void fun
(double a[℄);23 #in
lude <stdio.h>4 main()5 {6 double b, a[10℄;78 b = 1;9 fun
(a);1011 printf("%f\n", b);1213 return 0;14 }1516 void fun
(double a[℄)17 {18 a[11℄ = 12345.0;19 }% g

 nasty.
% a.out12345.000000On line 8 we set b to one, and then, on line 9, we 
all fun
 with the array, a. When we print b on line 10,the value has 
hanged, even though b is not an argument to the fun
tion. This is very nasty, and 
an bevery hard to �nd in a large program. What is going on? The elements of a one-dimensional array is stored
onse
utively, with no gaps, in memory. One 
an �nd out the addresses of the elements in the array and ofthe variable b, and it turns out that b is stored in a position that would 
orrespond to a[11℄, provided a hadtwelve elements. Changing a[11℄ to a[1000000℄, for example, gives Segmentation fault.HPC



16 Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU20127.1 Two-dimensional arraysYou 
an �nd more about arrays at the end of this tutorial. Here is one small example where we multiply two
4× 4-matri
es together.1 #in
lude <stdio.h>23 void mat_mul(double [4℄[4℄ , double [4℄[4℄ , double [4℄[4℄);4 void mat_print(double [4℄[4℄);56 main()7 {8 int row , 
ol;9 double A[4℄[4℄ , B[4℄[4℄ , C[4℄[4℄;1011 for (row = 0; row < 4; row++)12 for (
ol = 0; 
ol < 4; 
ol++) {13 A[row℄[
ol℄ = row + 
ol;14 B[row℄[
ol℄ = row - 
ol;15 }1617 mat_mul(A, B, C);18 mat_print(C);1920 return 0;21 }2223 void mat_mul(double A[4℄[4℄ , double B[4℄[4℄ , double C[4℄[4℄)24 {25 int row , 
ol , k;26 double sum;2728 for (row = 0; row < 4; row++)29 for (
ol = 0; 
ol < 4; 
ol++) {30 sum = 0.0;31 for (k = 0; k < 4; k++)32 sum += A[row℄[k℄ * B[k℄[
ol℄;33 C[row℄[
ol℄ = sum;34 }35 }3637 void mat_print(double C[4℄[4℄)38 {39 int row , 
ol;4041 for (row = 0; row < 4; row++) {42 for (
ol = 0; 
ol < 4; 
ol++)43 printf("%8.2f ", C[row℄[
ol℄);44 printf("\n");45 }46 }One 
ould write a more general 
ode, but this is all we need. Line 37 
an be written:HPC



Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2012 17void mat_print(double C[℄[4℄)but notvoid mat_print(double C[℄[℄)for example. The reason is that C stores matri
es row-major order (row after row), in memory. So the memorylayout, of the matrix C, for example, would be:addressbase C[0℄[0℄ (see the note about byte addressablebase + 1 C[0℄[1℄ memory below)base + 2 C[0℄[2℄base + 3 C[0℄[3℄base + 4 C[1℄[0℄base + 5 C[1℄[1℄base + 6 C[1℄[2℄base + 7 C[1℄[3℄base + 8 C[2℄[0℄et
.The 
ompiler knows the baseaddress, base = &C[0℄[0℄, and to 
ompute &C[row℄[
ol℄ it needs to know thenumber of elements in a row, row_len, say (four in the example).&C[row℄[
ol℄ = base + row_len * row + 
olIf one should be pi
ky, the memory on one of our ma
hines is byte addressable, and sin
e a double pre
isionvariable is stored using eight bytes, the 
orre
t formula is:&C[row℄[
ol℄ = base + 8 * (row_len * row + 
ol)So this is the reason why void mat_print(double C[℄[4℄) is su�
ient, but void mat_print(double C[4℄[℄)or void mat_print(double C[℄[℄) are not.8 A matter of styleThe pla
ement of bra
es on other details of programming style, has been the fo
us of many heated and lengthydebates. In all my examples I have pla
ed the bra
es using a spe
ial style, e.g:for (k = 1; k < n; k++) {x += dx;sum += exp(-x * x);}This style is known as the �Kernighan & Rit
hie 
oding style� and 
omes from the 
lassi
 book I mentioned onpage one. One 
an write this pie
e of 
ode in other ways, e.g.for (k = 1; k < n; k++){ x += dx;sum += exp (-x * x);}whi
h is the GNU-style, used to write GNU software. I will not start a debate about it in this introdu
tion;�nd your own style and sti
k to it. One style I do not re
ommend is:for(k=1;k<n;k=k++){x+=+dx;sum+=exp(-x*x);}HPC



18 Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2012indent is a very useful 
ommand for pretty printing, formatting, C-programs. There are many options, I usethe following:indent -kr -i2 -nut my_program.
-kr is the Kernighan & Rit
hie style, -i2 means two spa
es for indentation in loops and if-statements et
, -nutmeans that spa
es and not tabs are used for indentation.indent -gnu -i2 -nut my_program.
gives you the GNU style instead.The 
hoi
e of style a�e
ts other parts of the program as well, e.g. the position of bra
es in if-statements,and the layout of 
omments and de
larations.To read about the di�erent styles, type man indent, and read under COMMON STYLES. If you use indent on aprogram with syntax errors, indent may produ
e an in
orre
tly indented program (if a bra
e is missing, forexample). For that reason, indent, makes a ba
kup 
opy of your original �le. In my example the 
opy is storedin my_program.
~.9 If-statements and logi
al expressionsHere are a few examples. Log
al and is written &&, or is || and negation ! . Note single & and | are bitwiseoperations.double a, b, 
, d, q;if ( a < b && 
 == d || !q ) { // && logi
al and, || or, ! negation... zero or more statements} else {... zero or more statements}The relational operators, <, <=, ==, >=,> are written the same way as in Matlab, with the ex
eption of �notequal� whi
h is written !=.Note: if ( ! q == 1.25 ) ⇔ if ( (!q) == 1.25 ), not if( ! ( q == 1.25) ).Now a word about the so-
alled dangling else. When we have nested if-statements, the else belongs to theinnermost if-statements, so with 
orre
t indentation this is how it works:if ( 
ondition )if ( other 
ondition ) {statements} else {statements}If you want the else to belong the outer if, use bra
es:if ( 
ondition ) {if ( other 
ondition ) {statements}} else {statements} HPC



Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2012 1910 Some useful C-toolsConsider the following lines (part of warn.
):if ( variable = 24 )printf("var equals 24\n");This is probably not what we meant (an assignment), we probably meant �if ( variable == 24 )�. The
ompiler warns us, provided we swit
h on the -Wall �ag, thus:% g

 warn.
 No warning% g

 -Wall warn.
warn.
: In fun
tion 'main':warn.
:8: warning: suggest parentheses around assignment used as truth valueg

 a
tually warns us against something slightly di�erent. Assignments in if-statements are typi
ally used inthe following situationif ( (variable = fun
()) == test_value )where the parentheses are ne
essary, sin
e == has higher priority than =.Another useful tool is splint, �se
ure programming lint� whi
h 
he
ks C-programs for se
urity vulnerabili-ties and 
oding mistakes. splint analyzes the 
ode without exe
uting it, so runtime errors are not 
aught.splint on the example above gives:% splint -weak warn.
Splint 3.1.1 --- 19 Jul 2006warn.
: (in fun
tion main)warn.
:8:8: Test expression for if is assignment expression: variable = 24The 
ondition test is an assignment expression. Probably, you mean to use ==instead of =. If an assignment is intended, add an extra parentheses nesting(e.g., if ((a = b)) ...) to suppress this message. (Use -predassign toinhibit warning)Finished 
he
king --- 1 
ode warningsplint without -weak gives an additional warning:warn.
:8:8: Test expression for if not boolean, type int: variable = 24Test expression type is not boolean or int. (Use -predboolint to inhibitwarning)If you want a very stri
t 
he
k try splint -stri
t.11 A few words about the C99 standardNote that it is not supported by all 
ompilers.C99 extends the previous C-version, C89, and adds support for (among other things):
• a boolean data type, 
omplex numbers
• intermingled de
larations and 
ode HPC



20 Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2012
• //-
omments
• inline fun
tions
• variable-length arrays
• restri
t quali�er to allow more aggressive 
ode optimization (more later on)Here a few lines showing how to use the boolean data type:#in
lude <stdbool.h>...bool b;b = a > b;b = true;b = false;...Here 
omplex numbers:#in
lude <
omplex.h>...double 
omplex z, w, wz;z = 1 + 2 * I;w = 3 + 4 * I;wz = 3 * w * z;printf("%e %e\n", 
real(wz), 
imag(wz));...Intermingled de
larations and 
ode:#in
lude <stdio.h>int main(){ int k = 22;for(int k = 0; k <= 2; k++) // C++ de
laration styleprintf("%d\n", k);printf("%d\n", k);return 0;}% g

 -std=
99 
99_mixed.
 NOTE% a.out01222Inline fun
tions. From the C-standard: HPC



Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2012 21inline double fun
(double x)...Making a fun
tion an inline fun
tion suggests that 
alls to the fun
tion be as fast as possible. Theextent to whi
h su
h suggestions are e�e
tive is implementation-de�ned.Variable-length arrays:double fun
1(int, int);double fun
2(int m, int n, double A[m℄[n℄);double fun
3(double A[m℄[n℄, int m, int n); // WRONGint main(){ int m = 50, n = 100;double ve
[n℄, A[m℄[n℄; // m, n OK here...}double fun
1(int m, int n){ double A[m℄[n℄, tmp[n℄; // allo
ated when entering fun
1fun
2(m, n, A);...}double fun
2(int m, int n, double A[m℄[n℄) // OK, m, n first then A{ ...}double fun
3(double A[m℄[n℄, int m, int n) // WRONG, A first, m, n last{ ...}12 More on 
ppThe g

-
ommand �rst runs the C prepro
essor, 
pp. 
pp looks for lines starting with # followed by a dire
tive(there are several). From the man-page for 
pp:#in
lude "filename"#in
lude <filename>Read in the 
ontents of �lename at this lo
ation. This data is pro
essed by 
pp as if it were part of the 
urrent�le. When the <filename> notation is used, �lename is only sear
hed for in the standard �in
lude� dire
tories.It is possible to tell 
pp where to look for �les by using the -I-option.A typi
al header �le 
ontains named 
onstants, ma
ros (somewhat like fun
tions) and fun
tion prototypes,e.g: HPC



22 Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2012#define M_PI 3.14159265358979323846 /* pi */#define __ARGS(a) aextern int MPI_Send __ARGS((void *, int, MPI_Datatype, int, int, MPI_Comm));It is 
ommon to store several versions of a program in one �le and to use 
pp to extra
t a spe
ial version forone system.In _omp
_init from Omni, a Japanese implementation of OpenMP:...#ifdef OMNI_OS_SOLARISlnp = sys
onf(_SC_NPROCESSORS_ONLN);#else#ifdef OMNI_OS_IRIXlnp = sys
onf(_SC_NPROC_ONLN);#else#ifdef OMNI_OS_LINUX... deleted 
odeUnder Linux we would 
ompile by:

 -DOMNI_OS_LINUX ...13 Using the man-
ommandOne way of �nding out what header-�les are ne
essary, is to use the manual-
ommand, e.g:% man sinSIN(3) Linux Programmer's Manual SIN(3)NAMEsin, sinf, sinl - sine fun
tionSYNOPSIS#in
lude <math.h>double sin(double x);float sinf(float x);long double sinl(long double x);DESCRIPTIONThe sin() fun
tion returns the sine of x,where x is given in radians.RETURN VALUEThe sin() fun
tion returns a value between -1 and 1.CONFORMING TOSVID 3, POSIX, BSD 4.3, ISO 9899. The float andthe long double variants are C99 requirements.HPC



Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2012 23SEE ALSOa
os(3), asin(3), atan(3), atan2(3), 
os(3), tan(3)You will not �nd man-pages for everything. One 
an try to make a keyword sear
h: man -k keyword.14 More on matri
esIn Fortran (dense) matri
es are stored in the same way in (almost) all programs. This is be
ause the matrix isa builtin type in Fortran and the language has a lot of support for matrix 
omputations. This is not the 
asein C, and so there are several possible data stru
tures for storing matri
es. It is important to pi
k the properdata stru
ture if the matrix should be passed as an argument to a Fortran routine or used together with aperforman
e library. Another issue is how we would like to a

ess the elements in the matrix. Is it importantto be able to write A[row℄[
ol℄ or will *(A + row * n + 
ol) do?Here 
omes a short des
ription of some alternative data stru
tures. Suppose we would like to store the matrix:
A =

[

1 2 3
4 5 6

]The most obvious way is illustrated by the following short program.#in
lude <stdio.h>int main(){ double A[2℄[3℄, elem = 0;int row, 
ol;for(row = 0; row < 2; row++)for(
ol = 0; 
ol < 3; 
ol++)A[row℄[
ol℄ = ++elem;return 0;}This way to 
reate matri
es is rather limited. We would like to have a more dynami
 
hoi
e of dimensions. The�rst step would be something like:#in
lude <stdio.h>int main(){ 
onst int m = 2, n = 3;double A[m℄[n℄;...Some 
ompilers a

ept su
h 
onstru
tions, but not all (see page 21). The following is allowed, but a bit 
lumsy:#in
lude <stdio.h>#define _M 2#define _N 3int main(){ 
onst int m = _M, n = _N;double A[_M℄[_N℄;...Su
h a matrix 
an be passed as a parameter to a Fortran program.
HPC



24 Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU201214.1 Dynami
 memory allo
ationSome assignments in the 
ourse require that tests should be performed for a sequen
e of matri
es of in
reasingsizes. It is in
onvenient having to edit the program, 
hanging the dimensions, re
ompiling et
. This leads us todynami
 memory allo
ation. So �rst a few words about that.The C-library routines mallo
 and free are used to allo
ate memory and to return it. stdlib.h 
ontainsthe prototypes. In C++ we have new and delete. Java has garbage 
olle
tion, so only new is ne
essary.Fortran90 has allo
ate and deallo
ate.We will 
on
entrate on C from now on. ptr = mallo
(size) returns a pointer, ptr, to a blo
k of data at leastsize bytes suitably aligned for any use. If there is not enough available memory ptr will be a null pointer.free(ptr) will return the memory to the appli
ation, though not to the system. Memory is returned to thesystem only upon termination of the appli
ation. If ptr is a null pointer, no a
tion o

urs. It is illegal to free thesame memory more than on
e, to try to use freed memory and to free using a pointer not obtained from mallo
.Here is a typi
al pie
e of 
ode where we allo
ate 100 double pre
ision numbers. Note the use of sizeofand the 
he
k on the pointer value. We then store some values in the memory. The �rst loops uses pointerarithmeti
 and the se
ond uses ve
tor notation. Note that ve
 is a pointer and not a ve
tor but it is allowed tomix the notation.There are di�eren
es between ve
tors and pointers though. If we have the de
laration:double *ve
, ve
tor[100℄;ve
 
an point to something else but ve
tor 
annot. We need spa
e for the pointer variable, ve
, but ve
toritself takes no spa
e,#in
lude <stdio.h>#in
lude <stdlib.h>int main(){ double *ve
; // ve
 is a pointer to doubleint n = 100, k;if( (ve
 = mallo
(n * sizeof(double))) == NULL ) { // sizeof(double) = 8printf("mallo
 of ve
 failed.\n");exit(EXIT_FAILURE); // EXIT_FAILURE a named 
onstant defined in stdlib.h}for(k = 0; k < n; k++)*(ve
 + k) = k; // pointer notationfor(k = 0; k < n; k++)ve
[k℄ = k; // ve
tor notationfree(ve
); // release the memoryreturn 0;}What I would like to do is to allo
ate memory for an m × n-matrix A, using mallo
, and then pass A as anargument to a fun
tion, re
eiving A as an m× n-matrix so that I 
an use matrix-indexing A[row℄[
ol℄ insidethe fun
tion. This 
an be done with some tri
kery (and with some 
ompilers), but I do not know how to do it ina 
ompletely legal way (following the C-standard) unless I use variable-length arrays de�ned in C99, see page 21.HPC



Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2012 25The following pages show some 
ommon ways of storing matri
es in C. Some ways 
an work together withFortran and some 
annot. We know that a matrix is stored by rows in C. So if A is the address of the [0℄[0℄-element, A[row℄[
ol℄ has address A + n * row + 
ol where n is the number of elements in a row. We 
anuse ve
tor indexing instead of using pointer arithmeti
. Here is an example (to make the 
ode shorter I will not
he
k that mallo
 su

eeded, a bad programming pra
ti
e). I have added a fun
tion to show how the parameter
ould be passed.#in
lude <stdio.h>#in
lude <stdlib.h>double sum_elements(double *A, int m, int n);int main(){ double *A;int m = 2, n = 3, k;A = mallo
(m * n * sizeof(double)); // Allo
ate memory for the m x n-matrixfor(k = 0; k < m * n; k++)A[k℄ = k + 1; // This is ONE way to a

ess the elementsprintf("result = %e\n", sum_elements(A, m, n));free(A);return 0;}double sum_elements(double *A, int m, int n){ double sum = 0;int row, 
ol;for(row = 0; row < m; row++)for(
ol = 0; 
ol < n; 
ol++)sum += A[n * row + 
ol℄; // This simulates A[row℄[
ol℄-a

ess.// We 
ould use pointer notation.return sum;}One advantage of this approa
h is that it easy to pass the array as an argument to a Fortran routine (and it iseasy to store the matrix by 
olumns instead). Note that Fortran uses 
olumn-major order and not row-majororder as C.

HPC



26 Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU201214.2 This will not work with FortranHere 
ome two other ways to store a matrix. The �rst method does not work together with Fortran though,but the other does. Both methods support A[row℄[
ol℄-indexing.Here 
omes the �rst example:#in
lude <stdio.h>#in
lude <stdlib.h>double sum_elements(double **A, int m, int n);int main(){ double **A, elem = 0; // Note **int m = 2, n = 3, row, 
ol;A = mallo
(m * sizeof(double *)); // Allo
ate spa
e for row pointers.// Note double * . sizeof(double *) = 8.for(row = 0; row < m; row++)A[row℄ = mallo
(n * sizeof(double)); // Allo
ate spa
e for elements in a row.// Note double.for(row = 0; row < m; row++)for(
ol = 0; 
ol < n; 
ol++)A[row℄[
ol℄ = ++elem; // Note A[row℄[
ol℄printf("result = %e\n", sum_elements(A, m, n));for(row = 0; row < m; row++) // freefree(A[row℄);free(A); // free again,// Note the order of the 
alls to free.return 0;}double sum_elements(double **A, int m, int n){ double sum = 0;int row, 
ol;for(row = 0; row < m; row++)for(
ol = 0; 
ol < n; 
ol++)sum += A[row℄[
ol℄;return sum;}
HPC



Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2012 27The memory layout may look something like this after we have initialised the matrix. The arrows show howthe addresses point.variable 
ontent address+----> A[0℄ 135200 134168 --+| A[1℄ 135232 134176 --|--+| | || A[0℄[0℄ 1 135200 <--+ | start of first row| A[0℄[1℄ 2 135208 || A[0℄[2℄ 3 135216 || 135224 | Note, a gap| A[1℄[0℄ 4 135232 <-----+ start of se
ond row| A[1℄[1℄ 5 135240| A[1℄[2℄ 6 135248|+---- A 134168 429080A points to A[0℄ whi
h in turn points to A[0℄[0℄, the �rst element in the �rst row. A[1℄ points to the beginningof the se
ond row, i.e. A[1℄[0℄. The �rst mallo
 allo
ates spa
e for A[0℄ and A[1℄ (m row pointers). Then
omes a loop with m 
alls to mallo
 where ea
h one allo
ates memory for storing the n elements in row.We note that sizeof(double *) is eight sin
e A[0℄ and A[1℄ are eight bytes apart (134176-134168=8). Thedouble pre
ision numbers are eight bytes apart, ex
ept between A[0℄[2℄ and A[1℄[0℄ where the gap happensto be 16 bytes. This is the reason this data stru
ture 
annot be used when 
alling Fortran routines, the elementsare not 
ontiguous in memory.One advantage with this data stru
ture is that all the rows need not have the same length.Note also that this storage requires more memory than the usual matrix data stru
ture (we need extra spa
efor the row pointers). That is true with the next method as well, but it has the advantage of giving 
ontiguouselements, making it possible to pass the array to a Fortran routine.14.3 This will work with Fortran...double **A;A = mallo
(m * sizeof(double *)); // Allo
ate spa
e for row pointers.// Note double * .A[0℄ = mallo
(m * n * sizeof(double)); // Allo
ate spa
e for the elements in the matrix.// Note that we get 
ontiguous elements.for(row = 1; row < m; row++)A[row℄ = A[0℄ + row * n; // Give the row pointers their values, i.e.// find out where ea
h row starts.// There are n elements in ea
h row.for(row = 0; row < m; row++)for(
ol = 0; 
ol < n; 
ol++)A[row℄[
ol℄ = ++elem;...The memory layout may look something like this after we have initialised the matrix. The arrows show howthe addresses point. HPC



28 Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2012variable 
ontent address+----> A[0℄ 135768 134744 --+| A[1℄ 135792 134752 --|--+| | || A[0℄[0℄ 1 135768 <--+ | start of first row| A[0℄[1℄ 2 135776 || A[0℄[2℄ 3 135784 || A[1℄[0℄ 4 135792 <-----+ start of se
ond row| A[1℄[1℄ 5 135800| A[1℄[2℄ 6 135808|+---- A 134744 429080To pass the array to Fortran we use the parameter &A[0℄[0℄, A[0℄ or *A.For more details about this and other topi
s, see the C-FAQ:http://www.faqs.org/faqs/by-newsgroup/
omp/
omp.lang.
.html14.4 C and large arraysSome of the assignments require that you use large arrays. This may be a problem in C. Consider the followingprogram:#in
lude <stdio.h>main(){ int k, n = 2000000;double large_array[n℄;for(k = 0; k < n; k++)large_array[k℄ = 1;printf("Last %f\n", large_array[n - 1℄);return 0;}When we try to run it we get:% g

 sta
k_problems_1.
% a.outSegmentation faultThe reason is that large_array is allo
ated on the sta
k, whi
h has a limited size. We 
an �nd out the size byusing the 
ommand limit. Thus:% limit (works provided you use t
sh, type ulimit -a if you are using bash)
putime unlimitedfilesize unlimiteddatasize unlimited HPC



Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2012 29sta
ksize 10240 kbytes
oredumpsize 0 kbytesmemoryuse unlimitedvmemoryuse unlimiteddes
riptors 1024memorylo
ked 32 kbytesmaxpro
 500So, the sta
k is limited to 10240 kbyte, but we need 2000000 * 8 / 1024 kbyte, i.e. 15625 kbyte (the sta
k isused for some other purposes as well so it must be a bit larger). So, let us in
rease the sta
k size and try again:% limit sta
ksize 15700 (in bash ulimit -s 15700)% a.outLast 1.000000Another way is to store the array in a segment in a.out. If we make large_array stati
, i.e. we have the typede
laration: stati
 double large_array[2000000℄; our program will work with the default sta
k size. Thearray is now stored in the bss-segment.% g

 sta
k_problems_2.
% limit sta
ksizesta
ksize 8192 kbytes% a.outLast 1.000000% size a.outtext data bss de
 hex filename925 252 16000032 16001209 f428b9 a.outOne drawba
k with stati
 variables is that they exist for the lifetime of the program (even if we do not use thearray). So, yet another way (
ommon) is to use dynami
 memory allo
ation (i.e. we use mallo
/free) pla
ingthe array on the heap:#in
lude <stdio.h>#in
lude <stdlib.h>int main(){ int k, n = 2000000;double *large_array;if ( (large_array = mallo
(n * sizeof(double))) == NULL) {printf("Could not mallo
 large_array.\n");exit(EXIT_FAILURE);}for(k = 0; k < n; k++)large_array[k℄ = 1;printf("Last %f\n", large_array[n - 1℄);free(large_array);return 0;} HPC



30 Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU201215 A note on stru
ts and 
onstIn one le
ture and the 
orresponding lab we will use stru
ts (re
ords in Pas
al, post in Swedish). We will alsowrite the fun
tion:void mexFun
tion(int nlhs, mxArray *plhs[℄, int nrhs, 
onst mxArray *prhs[℄)where mxArray is a stru
t. This se
tion will also explain what 
onst, in 
onst mxArray *prhs[℄ means.
onst is used to prote
t variables against a

idental 
hange. It also serves as do
umentation for anyone readingthe 
ode (this variable is not supposed to be 
hanged). We start with some simpler examples, prote
ting s
alarvariables.15.1 Stru
turesHere is a toy-example of a stru
t, my_mxArray, where we store a pointer to double (will point to allo
ateddoubles) and an integer storing the number of allo
ated.#in
lude <stdio.h>#in
lude <stdlib.h>typedef stru
t {double *ve
;int n;} my_mxArray;int main(){ // mx is a pointer to my_mxArray and pmx is a ve
tor of pointers to my_mxArraymy_mxArray mx, *pmx[2℄;// Store values in mxmx.n = 20;mx.ve
 = mallo
(mx.n * sizeof(double));for(int k = 0; k < mx.n; k++)*(mx.ve
 + k) = k;printf("%f, %f\n", *(mx.ve
), *(mx.ve
 + mx.n - 1));// Allo
ate spa
e for the my_mxArray:spmx[0℄ = mallo
(sizeof(my_mxArray));pmx[1℄ = mallo
(sizeof(my_mxArray));// and store values in the two stru
ts(*pmx[0℄).n = 30; // *pmx[0℄.n is wrongpmx[1℄ -> n = 40; // a 
orre
t alternative (see the pre
eden
e table)pmx[0℄ -> ve
 = mallo
(pmx[0℄ -> n * sizeof(double));pmx[1℄ -> ve
 = mallo
(pmx[1℄ -> n * sizeof(double));for(int k = 0; k < pmx[0℄ -> n; k++)*(pmx[0℄ -> ve
 + k) = k;printf("%f, %f\n", *(pmx[0℄ -> ve
), *(pmx[0℄ -> ve
 + pmx[0℄ -> n - 1));
HPC



Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2012 31free(mx.ve
);free(pmx[0℄);free(pmx[1℄);return 0;}15.2 
onst
onst_ex1(
onst double a, 
onst double *b, double * 
onst 
, 
onst double * 
onst d){a++; // error: prote
ts ab++; // OK: 
an 
hange the pointer itself(*b)++; // error: but not what it points to
++; // error: prote
ts the pointer(*
)++; // OK: but not what it points tod++; // error: prote
ts the pointer(*d)++; // error: and what it points to}% g

 -
 
onst_ex1.

onst_ex1.
: In fun
tion '
onst_ex1':
onst_ex1.
:4: error: in
rement of read-only lo
ation
onst_ex1.
:6: error: in
rement of read-only lo
ation
onst_ex1.
:7: error: in
rement of read-only lo
ation
onst_ex1.
:9: error: in
rement of read-only lo
ation
onst_ex1.
:10: error: in
rement of read-only lo
ation
onst double a and double 
onst a are equivalent, so those forms have not been in
luded above.15.3 
onst and stru
turesNow for a mix of 
onst and stru
tures. �illegal� means that the 
ompiler will 
omplain, OK means that it willnot 
omplain (though it may not be useful programming). To simplify the example we red�ned stru
t.typedef stru
t {double v[10℄;int n;} my_mxArray;void ex1(
onst my_mxArray * s[℄) // or void ex1(my_mxArray 
onst * s[℄){ (*s[0℄).v[5℄ = 7; // illegals[0℄ -> v[5℄ = 7; // illegals[1℄ = s[0℄; // OK}void ex2(my_mxArray * 
onst s[℄){ s[0℄ -> v[5℄ = 7; // OKs[1℄ = s[0℄; // illegal}
HPC



32 Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2012void ex3(
onst my_mxArray * 
onst s[℄){ s[0℄ -> v[5℄ = 7; // illegals[1℄ = s[0℄; // illegal}void ex4(
onst my_mxArray * 
onst s[℄){ double *pv;pv = (double *) s[0℄ -> v;pv[5℄ = 7; // OK, the 
ompiler 
annot prote
t us against everything}In the last example we �fool� the 
ompiler, 
hanging the prote
ted v-array using the pointer pv.

HPC



Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2012 3316 Pre
eden
e and asso
iativity of C-operatorsOperators have been grouped in order of de
reasing pre
eden
e, whereoperators between horizontal lines have the same pre
eden
e.Operator Meaning Asso
iativity( ) fun
tion 
all →[ ℄ ve
tor index-> stru
ture pointer. stru
ture member++ post�x in
rement� post�x de
rement! logi
al negation ←~ bitwise negation++ pre�x in
rement-- pre�x de
rement+ unary addition- unary subtra
tion* indire
tion& address(type) type 
astsizeof number of bytes* multipli
ation →/ division% modulus+ binary addition →- binary subtra
tion� left shift →� right shift< less than →<= less or equal> greater than>= greater or equal== equality →!= inequality& bitwise and →^ bitwise xor →| bitwise or →&& logi
al and →|| logi
al or →?: 
onditional expression ←= assignment ←+= 
ombined assignment and addition-= 
ombined assignment and subtra
tion*= 
ombined assignment and multipli
ation/= 
ombined assignment and division%= 
ombined assignment and modulus&= 
ombined assignment and bitwise and^= 
ombined assignment and bitwise xor|= 
ombined assignment and bitwise or�= 
ombined assignment and left shift�= 
ombined assignment and right shift, 
omma →HPC



34 Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2012Here are a few 
omments, see a textbook or my links for a 
omplete des
ription.
• Left to right asso
iativity (→) means that a-b-
 is evaluated as (a-b)-
 and not a-(b-
). a = b =
, on the other hand, is evaluated as a = (b = 
). Note that the assignment b = 
 returns the value of 
.if ( a < b < 
 ) ...; means if ( (a < b) < 
 ) ...; where a < b is 1 (true) if a < b and 0 (false)otherwise. This number is then 
ompared to 
. The statement does not determine �if b is between a and
�.
• a++; is short for a = a + 1;, so is ++a;. Both a++ and ++a 
an be used in expressions, e.g. b = a++;,
 = ++a;. The value of a++; is a's value before it has been in
remented and the value of ++a; is the newvalue.
• a += 3; is short for a = a + 3;.
• As in many languages, integer division is exa
t (through trun
ation), so 4 / 3 be
omes 1.Similarly, i = 1.25;, will drop the de
imals if i is an integer variable.
• expr1 ? expr2 : expr3 equals expr2 if expr1 is true, and equals expr3, otherwise.
• (type) is used for type 
onversions, e.g. (double) 3be
omes 3.0 and (int) 3.25 is trun
ated to 3.
• sizeof(type_name) or sizeof expression gives the size in bytes ne
essary to store the quantity. So,sizeof(double) is 8 on our system and sizeof (1 + 2) is 4 (four bytes for an integer).
• When two or more expressions are separated by the 
omma operator, they evaluate from left to right.The result has the type and value of the rightmost expression. In the following example, the value 1 isassigned to a, and the value 2 is assigned to b. a = b = 1, b += 2, b -= 1;
• Do not write too tri
ky expressions. It is easy to make mistakes, it is hard to read and one may endup with unde�ned statements. a[i++℄ = i; and i = ++i + 1; are both unde�ned. See the standard,se
tion 6.5, if you are interested in why.

HPC



Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2012 3517 A short introdu
tion to FortranThe next few pages 
ontain the rudiments of Fortran 90 and a glan
e at Fortran 77. This text is su�
ientfor the assignments, but you need more for real programming. I have not tried to show all the di�erent ways aprogram 
an be written.Fortran was designed by a group, lead by John W. Ba
kus at IBM. The language was proposed as alter-native to 
oding in assembly language and the �rst 
ompiler appeared in 1957. The language evolved throughthe years but you will still �nd huge amounts of 
ode written in Fortran 66 (
ame in 1966) and Fortran 77.So you must be able to read su
h 
ode but you probably do not have to write any (if you are lu
ky :-). You willuse some Fortran 77-
ode in one of the labs.Fortran 90 (no 
apitalization) is essentially a new language. It has array operations (somewhat like Matlab),pointers, re
ursion, prototypes, modules, overloading of operators (and more). Fortran 77 has none of these.Fortran 90 is mu
h ni
er than Fortran 77, whi
h is quite primitive. Fortran 95 was a minor revision of Fortran90, but Fortran 2003 is a major update 
ontaining support for obje
t-oriented programming. The most re
entversion is Fortran 2008, whi
h is a minor upgrade of the 2003-version. This text does not 
ontain any 
ode-examples in Fortran 2003 or Fortran 2008 and not many 
ompilers have full support for these latest versions.Fortran is used primarily for s
ienti�
 
omputing, and in this author's view the language is mu
h better suitedfor su
h tasks than C. The main reason is that Fortran has better support for ve
tors and matri
es.We start with a Fortran 90-example, but �rst some basi
 rules. Fortran 90 (and later) supports a free for-mat, you 
an write the statements wherever you like on the line (not so in Fortran 77 and earlier). Case orblanks (spa
e) are not signi�
ant (unless they are in strings or serve as a separator between keywords). Theexamples 
ontain extra blanks to in
rease readability. Comments are written using !. A statement ends whenthe line ends. Long statements 
an be 
ontinued by adding & at the end of the line that should be 
ontinued(like adding ... in Matlab).There should be one main program, program program_name where you 
an 
hoose program_name (the samerules as for variable names in Matlab). You end the main program with end or end program_name . Thereare (essentially) two types of pro
edures, fun
tions and subroutines (
orrespond to void fun
tions in C).Fortran has an impli
it type rule. Unless you spe
i�
ally give a type of a variable, all variables are singlepre
ision real unless the variable name starts with one of i, j, k, l, m, n in whi
h 
ase the variable is aninteger. Using the impli
it rule is asking for problems, like in the following example: (using % as the prompt inthe 
ommand window):% 
at spell.f90 list the programprogram spellsum = 0.0 ! set summation variable to zerodo k = 1, 1000 ! when k = 1, 2, ..., 1000sum = sum + 1.0 / k ! update sumend doprint*, 'the sum is ', smu ! print the valueend program spell% gfortran spell.f90 
ompile% a.out exe
utethe sum is 8.6880505E-44 garbageNote that the 
ompiler, gfortran, does not warn us (
ompilers usually do not). If we want a warning we addthe statement impli
it none, after the �rst line, making it ne
essary to supply type de
larations, soprogram spell HPC



36 Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2012impli
it none ! no impli
it type rulereal :: sum ! a single pre
ision variableinteger :: k ! an integer variable...% gfortran spell.f90In file spell.f90:10print*, 'the sum is ', smu ! print the value1Error: Symbol 'smu' at (1) has no IMPLICIT typeCorre
ting the error and running again we get the printoutthe sum is 7.485478In Fortran 
all by referen
e is used for both arrays and s
alars (it is possible to say mu
h more about thistopi
, but this is su�
ient for the HPC-
ourse). This means that a pro
edure 
an 
hange the value of a s
alarargument, whi
h is not the 
ase in C unless you pass the address of the variable to the fun
tion.18 A simple exampleThe 
ode 
ontains one main-program one fun
tion and a subroutine. The fun
tion 
omputes the inner produ
tof two ve
tors and the subroutine sums the elements in an array and returns the sum in a parameter. Theline-numbers have been added to make it easier to 
omment the 
ode, they are not part of the program.1 program main2 impli
it none ! Highly re
ommended!3 integer :: k, n, in4 double pre
ision :: s5 double pre
ision :: ddot ! the type of the ddot -fun
tion67 ! Array indi
es start at one by default.8 double pre
ision , dimension(100) :: a, b910 n = 10011 print*, "Type a value for in:"12 read*, in13 print*, "This is how you write: in = ", in1415 do k = 1, n ! do when k = 1, 2, ..., n16 a(k) = k17 b(k) = -sin(dble(k)) ! using sin18 end do1920 print*, "The inner produ
t is ", ddot(a, b, n)2122 
all sum_array(a, s, n) ! NOTE , 
all23 print*, "The sum of the array is ", s2425 end program mainAdditional 
omments:line 5, tells the 
alling program the type of the fun
tion. It is possible, and sometimes ne
essary, to providemore elaborate prototypes, but this is not 
overed in this 
ourse. Single pre
ision is written real in Fortran.HPC



Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2012 37line 8: You 
an write the index-range dimension(begin:end), e,g, dimension(-20:35) or dimension(0:20)if you are a C-programmer (in whi
h 
ase 20 is the last and legal index).line 11-13: simple I/O-statements with a standard layout (there are more fan
y versions).line 15, 18: the standard loop. More generally, do variable = start, end, step, where step = 1 is thedefault.line 16: note ( ) for the index.line 17: the type 
ast (type 
onversion) from integer k to double pre
ision dble(k) is ne
essary, or the 
ompilerwill 
omplain. No automati
 
onversion like in C.line 20: 
alling the fun
tion ddot.line 22: 
alling the subroutine, note that the result is returned in the s
alar s.1 fun
tion ddot(x, y, n) result(s)2 impli
it none3 integer :: n4 double pre
ision , dimension(n) :: x, y5 double pre
ision :: s ! The type of the fun
tion67 integer :: k89 s = 0.010 do k = 1, n11 s = s + x(k) * y(k)12 end do1314 end fun
tion ddotline 1, result de�nes a result-variable. You give the fun
tion a value by assigning a value to the result-variable,mu
h like in Matlab.line 5, you give the fun
tion its type using a type de
laration for the result-variable.line 7, k is lo
al to the fun
tion (as usual).line 9, 0.0 is a
tually a single pre
ision zero, whi
h is 
onverted to a double pre
ision zero (the type of s). Moreabout 
onstants later on.1 subroutine sum_array(a, s, n)2 impli
it none3 integer :: n4 double pre
ision :: s5 double pre
ision , dimension(n) :: a67 integer :: k89 s = 0.010 do k = 1, n11 s = s + a(k)12 end do1314 end subroutine sum_arrayline 1, 9, 11: sin
e 
all by referen
e is used, the subroutine 
hanges the original value of s.Some additional 
omments.Sin
e Fortran 90 has support for array operations the main program 
ould have been shortened:print*, "The inner produ
t is ", dot_produ
t(a, b)HPC



38 Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2012print*, "The sum of the array is ", sum(a)dot_produ
t and sum are built-in fun
tions.19 Numeri
al 
onstants1 is an integer 
onstant. Fortran (like C) performs integer division using trun
ation. 4/3 be
omes 1 and -4/3be
omes -1.1.0 is a real 
onstant (single pre
ision) and 1.0d0 is a double pre
ision 
onstant in Fortran77. The d0 standsfor zero exponent and d for double pre
ision, so 1.0 · 100.-1.23e-14 is the single pre
ision value −1.23 · 10−14 and -1.23d-14 the double pre
ision value.Fortran has built-in support for 
omplex arithmeti
. See a Fortran-book or tutorial for details.In Fortran90 it is possible to parameterize the real- and integer types and 
reate more portable 
ode using amodule (similar to a simple 
lass) e.g.:module floating_point! sp = at least 5 signifi
ant de
imals and! |exponent range| <= 30 whi
h implies! IEEE single pre
ision.integer, parameter :: sp = sele
ted_real_kind(5, 30)integer, parameter :: dp = sele
ted_real_kind(10, 300)integer, parameter :: pre
 = dp ! pi
k oneend module floating_pointprogram mainuse floating_point ! gives a

ess to the modulereal (kind = pre
) :: x, yreal (kind = pre
), dimension(100) :: a, bx = 1.24_pre
 ! 
onstant of kind (type) pre
y = 1.24e-4_pre
 !...19.1 Warning: do not mix single and double pre
isionYou 
an mix single and double pre
ision, but the out
ome may be unexpe
ted. Here are a few examples.1 program warning2 impli
it none3 real :: sp ! a 32-bit floating point variable4 double pre
ision :: dp ! a 64-bit floating point variable56 sp = sqrt(2.0d0) ! you lose digits7 dp = sqrt(2.0) ! you lose digits89 ! the abs -values are the errors10 print*, sp, dp, abs(sp - sqrt(2.0d0)), abs(dp - sqrt(2.0d0))1112 print*, sqrt(2.0d0) * dp ! dp is already ruined13 HPC



Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2012 3914 ! (2.0 / 3.0) is 
omputed in single, you lose digits15 print*, (2.0 / 3.0) * 3.0d0, 2.0 / 3.0 * 3.0d01617 ! 3.0 is first 
onverted to 3.0d0, then 2.0d0 / 3.0d0 is 
omputed18 print*, 2.0d0 / 3.0 * 3.0d01920 ! integer division21 print*, 4 / 3 * 3.0d02223 end program warningHere is the output:1.414214 1.41421353816986 2.420323430563087E-008 2.420323430563087E-0081.999999965771462.00000005960464 2.000000059604642.000000000000003.00000000000000SP = single pre
ision and DP = double pre
ision in these 
omments.line 3, 4, sp is 32-bit SP-variable and dp 64-bit DP-variable.line 6, sqrt(2.0d0) is 
omputed in DP but then assigned to single.line 7, sqrt(2.0) is 
omputed in SP but then assigned to a DP-variable.line 10, writing the values and errors (regarding sqrt(2.0d0) as exa
t).line 12, using the a

urate sqrt(2.0d0) but the SP-value stored in dp. The produ
t is not 2.0.line 15, due to the ( ), (2.0 / 3.0) is 
omputed in single, this SP-quotient is then 
onverted to DP (butnot re-
omputed) and the multiplied by the DP 3.0d0. The same happens with se
ond expression, sin
e it is
omputed left to right (/ and * have the same priority).line 18, the �weaker� (smaller) 3.0 is �rst 
onverted to the �stronger� 3.0d0, giving 2.0d0 / 3.0d0, giving ana

urate answer.line 21, 4 / 3 be
omes 1 whi
h is promoted to 1.0d0 whi
h is multiplied by 3.0d0, so the answer is not 4.0.If you want to be on the safe side never mix pre
isions.20 The simple example in Fortran 77Here 
omes the Fortran 77-version, but �rst some 
omments. Fortran 90 is almost a new language, but in mysimple example the di�eren
es are not that striking.
• Fortran 77 has a 
olumn oriented layout dating ba
k to the 80 
olumn pun
hed 
ard. The �rst �ve
olumns are used for labels (positive integers), 
olumn six is for 
ontinuation statements, 
olumns 7-72for the statement and 
olumns 73-80 are for 
omments (used to number the 
ards in 
ase you droppedthem :-)If you are young and have not heard about pun
hed 
ards, have a look here:http://en.wikipedia.org/wiki/Pun
h_
ards .
• There are no result-statements in fun
tions.
• The type de
larations are written in a di�erent way:double pre
ision a(n)instead of HPC



40 Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2012double pre
ision, dimension(n) :: aalthough Fortran 77-de
larations are allowed in Fortran 90 as well. A Fortran 77-program is (es-sentially) also a Fortran 90-program, so it is possible to mix the two styles. There are a few Fortran77-
onstru
tions whi
h have been depre
ated in Fortran 90, and some Fortran 90-
ompilers may 
omplainif you 
ompile old 
ode.The example program, 
oded in Fortran 77, is listed on the following two pages. It violates the ANSI-standard in several ways, the most important being the use of do/enddo. Here are proper ways of writingFortran 77-loops using labels (the numbers). 
ontinue is an empty statement often used to mark the end ofa loop. do 10 k = 1, ns = s + x(k) * y(k)10 
ontinue

 or shorter
 do 20 k = 1, n20 s = s + x(k) * y(k)Here 
omes the 
ode:program main** Comments: 
, C or * in 
olumn one* text in 
olumns > 72* ! Fortran 90-
omment* First five 
olumns: labels* Continuation line: non-blank in 
olumn 6* Statements: 
olumns 7 through 72* Case or blanks are not signifi
ant (unless they are in strings).** Arrays start at one by default.*234567890 to know where we areinteger k, n, indouble pre
ision a(100), b(100), sumdouble pre
ision ddotn = 100print*, "Type a value for in:"read*, inprint*, "This is how you write: in = ", indo k = 1, na(k) = kb(k) = -sin(dble(k))end doprint*, "The inner produ
t is ", ddot(a, b, n)
all sum_array(a, sum, n) ! NOTE, 
allprint*, "The sum of the array is ", sumend HPC



Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2012 41
 double pre
ision is the type of the fun
tiondouble pre
ision fun
tion ddot(x, y, n)impli
it noneinteger ndouble pre
ision x(n), y(n)integer kdouble pre
ision sumsum = 0.0 ! 
ould use ddot instead of sumdo k = 1, nsum = sum + x(k) * y(k)end doddot = sum ! give the fun
tion its valueendsubroutine sum_array(a, sum, n)impli
it noneinteger ndouble pre
ision a(n), suminteger ksum = 0.0do k = 1, nsum = sum + a(k)end doendSuppose you, by mistake, move the double pre
ision-statement in sum_array one step to the left. The letterd, in the sixth 
olumn, tells the 
ompiler that ther previous line (integer n) 
ontinues, essentially giving (spa
esare not signi�
ant in variables names in Fortran 77), the line:integer ndoublepre
isiona(n), sumresulting in 
omplaints, from the 
ompiler, about n and a la
king a type de
laration. Removing the impli
itnone silen
es the 
omplaints, the 
ompiler will assume that a(k) is a 
all of the fun
tion a.Removing one more spa
e will give another 
ompiler error, a non-digint in the label �eld.Writing a long line, like:
 
omments
23456789012345678901234567890123456789012345678901234567890123456789012s = s + long and 
ompli
ated expression + 2.1d72will add 2.1d7 and not the intended 2.1d72.Here is a �nal 
uriosity, whi
h a

ording to legend 
aused the 
rash of Mariner 1 spa
e
raft, but legend waswrong and Fortran was not to blame in this 
ase, see: http://en.wikipedia.org/wiki/Mariner_1and http://
atless.n
l.a
.uk/Risks/9.54.html#subj1.1But Fortran 66 
ould have 
aused a problem, as the Risks-arti
le says. Consider the following legal pie
e of
ode (legal in Fortran 66 and 77, that is, not legal in Fortran 90):HPC



42 Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2012do 5 k = 1. 125s = s + ve
(k)5 
ontinueThis is not a loop but an assignment, the variable do5k is assigned the value 1.125. The dot should have beena 
omma. There was no impli
it-statement in Fortran 66 (it 
ame in Fortran 77), but a good 
ompiler ofits day 
ould list variables o

urring on
e.Be very 
areful when programming in Fortran 77.21 How to 
ompileThe Fortran 
ompilers available on the student system are: g77 (Fortran 77), gfortran and g95 (both For-tran 90 and 77). It would be interesting to use the Intel ifort-
ompiler, but we do not have a li
ense. You 
anfet
h a free 
opy for Linux (provided you have the disk spa
e, a few hundred Mbyte). See the 
ourse homepagefor details.In these handouts I will use g95 and I will assume that a Fortran90-program has the su�x .f90. Someexamples:% the prompt in the shell% g95 prog.f90 if everything in one prog.f90, prog.f would be Fortran77Produ
es the exe
utable �le a.out% a.out exe
ute% ./a.out if you don't have . in your pathSuppose we have three �les main.f90, dot.f90 and sum.f90.% g95 main.f90 dot.f90 sum.f90Can 
ompile the �les one by one. -
 means �
ompile only�, do not link.% g95 -
 main.f90 produ
es the obje
t file main.o% g95 -
 dot.f90 produ
es the obje
t file dot.o% g95 -
 sum.f90 produ
es the obje
t file sum.o% g95 main.o dot.o sum.o link the obje
t files% g95 main.o dot.f90 sum.o works as well, note .f90The last version is useful if you are working with and re-
ompiling a few routines and linking with existingobje
t �les, 
ontaining a large part of the 
ode.One 
an give many options (or �ags) to the 
ompiler. Note that the names are not standardized between
ompilers.% g95 -O3 prog.f90 optimize the 
ode22 If-statements and logi
al expressionsdouble pre
ision :: a, b, 
, dlogi
al :: q ! Fortran has a logi
al typeif( a < b .and. 
 == d .or. .not. q ) then... zero or more statementselse... zero or more statementsend if HPC



Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2012 43You 
annot use 0 and 1 to denote false and true, as you 
an in C. Instead you have the logi
al 
onstants,.false. and .true. (yes, the dots should be there).Operation Fortran 77 Fortran 90
< .lt. <
≤ .le. <=
= .eq. ==
6= .ne. /=
≥ .ge. >=
> .gt. >and .and. .and.or .or. .or.not .not. .not.23 A small Fortran 90-exampleHere is a tiny example showing some of the array 
apabilities of Fortran 90.program array_exampleimpli
it none! works for other types as wellinteger :: kinteger, dimension(-4:3) :: a ! Note -4integer, dimension(8) :: b, 
 ! Default 1:8integer, dimension(-2:3, 3) :: Ma = 1 ! set all elements to 1b = (/ 1, 2, 3, 4, 5, 6, 7, 8 /) ! 
onstant arrayb = 10 * b ! like in Matlab
(1:3) = b(6:8) ! like in Matlabprint*, 'size(a), size(
) = ', size(a), size(
)print*, 'lbound(a), ubound(a) = ', lbound(a), ubound(a)print*, 'lbound(
), ubound(
) = ', lbound(
), ubound(
)
(4:8) = b(8:4:-1) ! almost like Matlab, step is -1print*, '
 = ', 
 ! 
an print a whole arrayprint*, 'minval(
) = ', minval(
) ! a built-in fun
tionsa = a + b * 
 ! elementwise *print*, 'a = ', aprint*, 'sum(a) = ', sum(a) ! another built-inM = 0M(1, :) = b(1:3) ! Row with index oneprint*, 'M(1, :) = ', M(1, :)M(:, 1) = 20 ! The first 
olumnwhere ( M == 0 ) ! instead of two loopsM = -1end where

HPC



44 Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2012print*, 'lbound(M) = ', lbound(M) ! an arraydo k = lbound(M, 1), ubound(M, 1) ! print Mprint '(a, i2, a, i2, 2i5)', ' M(', k, ', :) = ', &M(k, :)end doend% a.outsize(a), size(
) = 8 8lbound(a), ubound(a) = -4 3lbound(
), ubound(
) = 1 8
 = 60 70 80 80 70 60 50 40minval(
) = 40a = 601 1401 2401 3201 3501 3601 3501 3201sum(a) = 21408M(1, :) = 10 20 30lbound(M) = -2 1M(-2, :) = 20 -1 -1M(-1, :) = 20 -1 -1M( 0, :) = 20 -1 -1M( 1, :) = 20 20 30M( 2, :) = 20 -1 -1M( 3, :) = 20 -1 -124 A 
ommon Fortran 
onstru
tionEven if we program in Fortran 90 we typi
ally use huge amounts of Fortran 77-
ode. This makes it ne
essaryto understand something about the layout of matri
es in memory and how the 
ompiler 
omputes the addressof a spe
i�
 element, the address 
omputation. If you get this wrong disaster will follow.Fortran 77 does not have dynami
 memory allo
ation (like Fortran 90 and C). Say you want to solve asequen
e of linear least squares problems of di�erent sizes. In Fortran 77 you would typi
ally reserve spa
efor the largest matrix you need, even though the a
tual problem might be smaller. Say that the largest problemhas max_m rows and max_n 
olumns and that a
tual (
urrent) problem has m rows and n 
olumns (m ≤ max_mand n ≤ max_n).Say you pass the matrix as an argument to a pro
edure. The 
ompiler (when 
ompiling the pro
edure) mustbe told about the extent of the �rst dimension (the number of rows), of the matrix, in order to produ
e theaddress 
omputation 
ode.The reason for rows rather 
olumns, is that Fortran stores matri
es in 
olumn-major order (
olumn after
olumn). If adr( ) is the address of A(j, k) thenadr(A(j, k)) = 8 * (adr(A(1, 1)) + max_m * (k - 1) + j - 1)eight, sin
e we assume that memory is byte-addressable and that A is a double pre
ision matrix (eight bytes per�oating point number). In C a matrix is stored in row-major order (so the 
ompiler must know the number of
olumns in the matrix), but sin
e you 
an allo
ate the pre
ise number of elements in C this is less of an issue.In the following program we reserve spa
e for a 5× 4-matrix, line 4, and all the elements are set to 0 (so we 
anspot in
orre
t elements later on). parameter on line 3, de�nes named 
onstants, so max_m and max_n are notvariables but names for the numbers 5 and 4 respe
tively. We are only using a 3 × 3-sub matrix of A, and onlines 10-12 this matrix is set to [1, 2, 3; 4, 5, 6; 7, 8, 9℄ (using Matlab-syntax). On line 15 print_Ais 
alled, the subroutine prints the 3× 3-sub matrix. On line 19 print_A is 
alled again, but this time using minstead of the 
orre
t max_m. HPC



Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2012 45The 
ru
ial line in print_A is line 26, where it says max_m in dimension(max_m, max_n). max_n is of noimportan
e (at least not for the address 
omputation). Line 30 is a more elaborate print-statement using aformat.1 program wrong_max_m2 impli
it none3 integer, parameter :: max_m = 5, max_n = 44 integer, dimension(max_m , max_n) :: A = 05 integer :: m, n67 m = 3 ! using part of the max_m times max_n -matrix8 n = 3910 A(1, 1:n) = (/ 1, 2, 3 /)11 A(2, 1:n) = (/ 4, 5, 6 /)12 A(3, 1:n) = (/ 7, 8, 9 /)1314 print*, 'Calling print_A with the 
orre
t max_m '15 
all print_A(A, max_m , max_n , m, n)1617 print*, '-------------------------------------'18 print*, 'Calling print_A with an in
orre
t max_m '19 
all print_A(A, m, max_n , m, n) ! using m instead of max_m2021 end program wrong_max_m2223 subroutine print_A(A, max_m , max_n , m, n)24 impli
it none25 integer :: max_m , max_n , m, n26 integer, dimension(max_m , max_n) :: A27 integer :: row , 
ol2829 do row = 1, m30 write(*, '(a3, i2, a, 5i5)') 'row ', row , ':', A(row , 1:n)31 end do3233 end subroutine print_AHere is the run:Calling print_A with the 
orre
t max_mrow 1: 1 2 3row 2: 4 5 6row 3: 7 8 9-------------------------------------Calling print_A with an in
orre
t max_mrow 1: 1 0 5row 2: 4 0 8row 3: 7 2 0To see how the se
ond result is produ
ed we look at the memory layout (horizontally, to save spa
e). | denotesa 
olumn-break.In the main-program HPC



46 Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2012after line 40 0 0 0 0 | 0 0 0 0 0 | 0 0 0 0 0 | 0 0 0 0 0after line 121 4 7 0 0 | 2 5 8 0 0 | 3 6 9 0 0 | 0 0 0 0 0in print_A with the in
orre
t max_m = 31 4 7 | 0 0 2 | 5 8 0 | 0 3 6 | 9 0 0 | 0 0 0 | 0 0If we had not set all the elements in A to zero, the zeros in the se
ond printout 
ould have been random numbers(what happened to be stored in those memory lo
ations). Removing the initialization on line 4 and runningagain, one may get things like (where I had to 
hange the format to make room for the large negative number):Calling print_A with an in
orre
t max_mrow 1: 1 62 5row 2: 4 1 8row 3: 7 2 -1264574544It is not ne
essary for the 
ompiler to know max_n when 
ompiling print_A (unless A is a three dimensionalarray, of 
ourse), so it is legal to writedouble pre
ision, dimension(max_m, *) :: Aordouble pre
ision, dimension(max_m, 1) :: Ajust to tell the 
ompiler that A is two-dimensional (the * marks an index position). Better is:double pre
ision, dimension(max_m, max_n) :: Asin
e index 
he
ks 
an be performed by some 
ompilers.A more 
ommon name for max_m is LDA, Leading Dimension A. This 
an be seen in the manual page forthe Fortran 77 Lapa
k routine dgesv:NAMEdgesv - 
ompute the solution to a real system of linear equations A * X = B,SYNOPSISSUBROUTINE DGESV(N, NRHS, A, LDA, IPIVOT, B, LDB, INFO)INTEGER N, NRHS, LDA, LDB, INFOINTEGER IPIVOT(*)DOUBLE PRECISION A(LDA,*), B(LDB,*) <---------- NOTE LDA...ARGUMENTSN (input) The number of linear equations, i.e., the order of the matrix A. N >= 0.NRHS (input)The number of right hand sides, i.e., the number of 
olumns of the matrix B. NRHS >= 0.A (input/output)On entry, the N-by-N 
oeffi
ient matrix A. On exit, the fa
tors L and U from thefa
torization A = P*L*U; the unit diagonal elements of L are not stored.LDA (input)The leading dimension of the array A. <---------- NOTE LDAHPC



Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2012 47LDA >= max(1,N)....There is are ni
er interfa
e in Fortran90 (C++). Essentially, subroutine gesv( A, B, ipiv, info ) wheregesv is polymorphi
, (for the four types S, D, C, Z for single, double, 
omplex and double 
omplex) and wherethe size information is in
luded in the matri
es. Most people seem to use the Fortran 77-interfa
e, however,and it is easier to use from C.25 Dynami
 memory allo
ation in Fortran 90Here are two ways, �rst automati
 arrays:...
all dynami
(k + r * s, 100) ! for example...subroutine dynami
(m, n)integer :: m, ndouble pre
ision, dimension(m, n) :: Adouble pre
ision, dimension(-2:n) :: ve
 ! first index -2, just to show you 
an
ompute ...end subroutine dynami
The se
ond method is similar to C's mallo
/free.subroutine dynami
(m, n)integer :: m, ndouble pre
ision, allo
atable, dimension(:, :) :: Adouble pre
ision, allo
atable, dimension(:) :: ve
integer :: statusallo
ate(ve
(-2:n)) ! first index -2, just to show you 
anallo
ate(A(m, n), stat = status) ! if you are 
arefulif ( status /= 0 ) then! some problem, this is very primitive error handlingprint*, 'Cannot allo
ate A'stopend if
ompute ...deallo
ate(ve
)deallo
ate(A)end subroutine dynami
26 Some dangerous thingsWhen debugging 
ode it is very important to 
he
k a
tual and formal parameter lists. A
tual parameters arethe ones supplied when 
alling the routine, formal parameters are the ones inside the routine.HPC



48 Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2012Che
k position, number and type. It is possible to use so-
alled interfa
e blo
ks (�prototypes�) for in
reasedse
urity.program maindouble pre
ision :: a, ba = 0.0
all sub(a, 1.0, b) ! three parametersprint*, a, bendsubroutine sub(i, j) ! two parameters and different types in the 
allinteger :: i, ji = i + 1j = 10.0 ! trying the 
hange the value of the 
onstant 1.0end% a.outSegmentation fault the result depends on the 
ompilerRemove the line j = 10.0 and run again:% a.out the result depends on the 
ompiler4.940656458412465E-324 1.330526861551857E-312b is unde�ned and the 
ontents of a is treated as an integer inside the subroutine. Sin
e Fortran uses 
all byreferen
e, the interpretation of the data, 
orresponding to the formal parameter a, inside the subroutine is givenby the type de
laration, integer :: i.C- and Fortran 
ompilers do not usually 
he
k array bounds. Here is an example in C.#in
lude <stdio.h>void sub(double a[℄);int main(){ double b[10℄, a[10℄;b[0℄ = 1;sub(a);printf("%f\n", b[0℄);return 0;}void sub(double a[℄){ a[10℄ = 12345.0;}Running this program we get:% a.out12345.000000 HPC



Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2012 49So b[0℄ has 
hanged even though it is not a parameter to the fun
tion, sub. The reason is that a[10℄ =12345.0; is illegal, nine is the largest index and a[10℄ happens to have the same address as b[0℄. Changinga[10℄ to a[1000000℄, in the fun
tion, gives Segmentation fault.Some Fortran-
ompilers 
an 
he
k subs
ripts (provided you do not lie):program maindouble pre
ision, dimension(10) :: a
all lie(a)print*, 'a(1) = ', a(1)end program mainsubroutine lie(a)double pre
ision, dimension(10) :: ado j = 1, 100 !!! NOTEa(j) = jend doend subroutine lie% gfortran -fbounds-
he
k lie.f90% a.outFortran runtime error: Array referen
e out of bounds for array 'a', upper bound of dimension 1ex
eeded (in file 'lie.f90', at line 12)If we 
hange dimension(10) to dimension(100), in the subroutine, so lying, the 
ompiler will not dete
t theindex error.

HPC



50 Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU201227 Pre
eden
e of Fortran 90-operatorsOperators between horizontal lines have the same pre
eden
e.Operator Meaningunary user-de�ned operator** power* multipli
ation/ division+ unary addition- unary subtra
tion+ binary addition- binary subtra
tion// string 
on
atenation== .EQ. equality/= .NE. inequality< .LT. less than<= .LE. less or equal> .GT. greater than>= .GE. greater or equal.NOT. logi
al negation.AND. logi
al and.OR. logi
al or.EQV. logi
al equivalen
e.NEQV. logi
al non-equivalen
ebinary user-de�ned operatorComments:== is the Fortran90 form and .EQ. is the Fortran77 form, et
. In Fortran90 lower 
ase is permitted, .e.g .not. .About the user de�ned operators. In Fortran90 it is possible to de�ne ones own operators by overloadingexisting operators or by 
reating one with the name .name. where name 
onsists of at most 31 letters.

HPC



Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2012 5128 A few words about t
sh and bashThe shell is a 
ommand-line interpreter, usually running as a sub-pro
ess to a 
ommand window. When you,for example, give the 
ommand 
d a_path, the shell will 
hange your 
urrent dire
tory, and when you type ls,the shell will 
reate a new pro
ess, starting the 
ompiled C-program /bin/ls. There are a number of shells, twowellknown are the Bourne shell, /bin/sh, written by Stephen Bourne at Bell Labs and 
sh, /bin/
sh, writtenby Bill Joy while at the University of California, Berkeley. See http://en.wikipedia.org/wiki/Unix_shellfor more histori
al notes.On the math-system /bin/sh is a symboli
 link to /bin/bash the Bourne-Again shell and /bin/
sh is a symboli
link to /bin/t
sh, the TENEX C shell.You 
an 
hange shell if you like, I am using t
sh, and I will start with some aspe
ts of t
sh.28.1 The pathThe lo
ation of a �le or a dire
tory is given by its path. An absolute path starts at the root in the �le tree. Theroot is denoted / (slash). The path to my HPC-dire
tory is /
halmers/users/thomas/HPC . The �le ex.f90, inthis dire
tory, has the path /
halmers/users/thomas/HPC/ex.f90. There are also relative paths.Suppose the 
urrent dire
tory is /
halmers/users/thomas . A path to the ex.f90 is then HPC/ex.f90 .Suppose your 
urrent dire
tory is something else, then ~thomas/HPC/ex.f90 is a path to the �le. ~, by it-self, denotes your home dire
tory, ~user, is the path to the home dire
tory of user. So I 
ould have written,~/HPC/ex.f90 . .. is the level above, and . is the 
urrent dire
tory. That is why we sometimes write ./a.out,se below.The shell (
sh, t
sh, sh, ksh, bash, ...) keeps several variables. One important su
h variable is the path.I will 
on
entrate on [t℄
sh, a few words about bash 
ome at the end of this se
tion. The path 
ontains ablank-separated list of dire
tories. When you type a 
ommand (whi
h is not built-in, su
h as 
d) the shell willsear
h for a dire
tory 
ontaining the 
ommand (an exe
utable �le with the given name). If the shell �nds the
ommand it will exe
ute it, if not, it will 
omplain:% set path = ( ) no dire
tories% 
d HPC 
d is built-in% lsls: Command not found.% /bin/ls worksA.mat ... et
% set path = ( /bin )% ls now t
sh finds lsA.mat ... et
The set is lo
al to the parti
ular shell and lasts only the present login session.Sometimes there are several di�erent versions of a 
ommand. The shell will exe
ute the 
ommand it �nds�rst (from left to right).% whi
h ls/bin/ls% whi
h gfortran/usr/bin/gfortran 
omes with the system% whi
h gfortran used in the 
ourse 2006/
halmers/users/thomas/HPC/gfortran/bin/gfortranHPC



52 Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2012In the �rst whi
h, /usr/bin 
omes before the HPC-dire
tory, and in the se
ond /usr/bin 
omes after.If you do not have . in your path, the shell will not look for exe
utables in the 
urrent dire
tory.% pwd print 
urrent dire
tory/
halmers/users/thomas/HPC/Test% a.outa.out: Command not found. no . in the path% ./a.out works% set path = ( $path . ) add . to the path% a.out works$path is the value of path. Suppose the path 
ontains ~ .% 
p a.out ~/a.out1% whi
h a.out1a.out1: Command not found.% rehash rebuild the internal hash table% whi
h a.out1/
halmers/users/thomas/a.out1A 
ommand does not have to be a 
ompiled program.% ls -l /bin/ls-rwxr-xr-x 1 root root 82796 Jun 20 13:52 /bin/ls% file /bin/ls/bin/ls: ELF 64-bit LSB exe
utable, AMD x86-64, version 1 (SYSV), for GNU/Linux 2.6.9,dynami
ally linked (uses shared libs), for GNU/Linux 2.6.9, stripped% whi
h 
d
d: shell built-in 
ommand.% whi
h apropos/usr/bin/apropos% file /usr/bin/apropos/usr/bin/apropos: Bourne shell s
ript text exe
utable% head -3 /usr/bin/apropos#!/bin/sh## apropos -- sear
h the whatis database for keywords.A user would usually (perhaps not if one is a student; see below for more details) set the path-variable in thestartup �le .t
shr
 whi
h usually resides in the login dire
tory. The period in the name makes the �le invisible.Type ls -a to see the names of all the dot-�les.To see your path, type e
ho $path, or give the 
ommand set, whi
h prints all the shell variables. Shell-variables are not exported to sub-pro
esses so the shell 
reates an environment variable, PATH, as well. PATH isexported to sub-pro
esses and it 
ontains a :-separated list of dire
tories).% set var = hello% e
ho $var like printhello HPC



Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2012 53% t
sh start a sub-shell% e
ho $varvar: Undefined variable.% exit% setenv var hello an environment variable, no =% t
sh sub-shell% e
ho $varhelloTo see all your environment variables, type setenv. Another useful environment variable is the manual sear
hpath, MANPATH and the LD_LIBRARY_PATH (mu
h more details later on).28.2 Now something about bashMost of the above details about t
sh work in bash as well. Here are some di�eren
es. The shell startup �leis 
alled .bashr
. The path-variable is named PATH. You 
an set (a short path) the following way (you do notuse set as in t
sh):% PATH=/bin:/usr/binTo export a variable to a sub-pro
ess, use the export-
ommand, like in this example:bash-3.2$ A_VARIABLE=123 bash-3.2$ is the promptbash-3.2$ e
ho $A_VARIABLE123bash-3.2$ bash start a sub-shellbash-3.2$ e
ho $A_VARIABLE not definedbash-3.2$ export A_VARIABLE=123 use exportbash-3.2$ bash start a sub-shellbash-3.2$ e
ho $A_VARIABLE123 definedset prints all the variables, but there is no setenv-
ommand, use export instead.For mu
h more on t
sh and bash tryman t
shman bashorinfo t
shinfo bashfor a more stru
tured layout.28.3 A note on the student environmentTo make it easier for beginners (both tea
hers and students) Chalmers/GU has a standard environment whereyou do not have to 
reate your own startup �les. One does not have to use it (I do not). The following pagedes
ribes how to modify the standard environment:http://www.
halmers.se/its/EN/
omputer-workpla
e/linux/various-linux-questions
HPC


