Thomas Ericsson
Computational Mathematics, Chalmers/GU
2012

A short introduction to C, Fortran 90, FORTRAN 77, tcsh and bash
Thomas Ericsson
Computational Mathematics
Chalmers/GU
2012

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU

2 2012
Contents
1 A short introduction to C 4
2 Hello World! 4
3 Functions, a first example 6
4 Separate compilation and 14 9
5 More on prototypes and type conversion 9
6 void functions, passing parameters 11
7 Arrays 14
7.1 Two-dimensional arrayso e e e e e e e e e 16
8 A matter of style 17
9 If-statements and logical expressions 18
10 Some useful C-tools 19
11 A few words about the C99 standard 19
12 More on cpp 21
13 Using the man-command 22
14 More on matrices 23
14.1 Dynamic memory allocation Lo 24
14.2 This will not work with Fortran 26
14.3 This will work with Fortran L 27
14.4 C and large arrays L 28
15 A note on structs and const 30
15.1 Structures o o L e e e e e e e e e e e 30
15.2 comst . . . L e e e e e e e e e 31
15.3 comst and structures L e e e e e e e e 31
16 Precedence and associativity of C-operators 33
17 A short introduction to Fortran 35
18 A simple example 36
19 Numerical constants 38
19.1 Warning: do not mix single and double precision 0L 38
20 The simple example in FORTRAN 77 39
21 How to compile 42
22 If-statements and logical expressions 42
23 A small Fortran 90-example 43

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU

2012 3
24 A common Fortran construction 44
25 Dynamic memory allocation in Fortran 90 47
26 Some dangerous things 47
27 Precedence of Fortran 90-operators 50
28 A few words about tcsh and bash 51
28.1 The path o e 51
28.2 Now something about bash 53
28.3 A note on the student environmento Lo 53

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU
4 2012

1 A short introduction to C

C is a widely used programming language, especially in Unix applications. The language was developed in 1972
by Dennis Ritchie at Bell Labs for use with the Unix operating system. I learnt C reading the classic book “The
C Programming Language” by Brian Kernighan and Dennis Ritchie. The book was published 1978. C is a fairly
small language, the book is only 228 pages. I have several C++ books, all containing more than 1000 pages
each. Since C was used to develop the Unix system, it has support for low level operations, such as finding out
the address of a variable. It is also a very concise language, having abbreviations for common operations.

k =k + land s = s + term can be written k++ and s += term, for example.

This is convenient if you are an experienced C-programmer, but it may cause problems for the novice.

Here is another C-feature. In C an assignment such ask = 2 * j - m; has a value, which is the value of k, the
leftmost variable. Matlab follows C when it comes the logical values in if-statements, zero is false and non-zero
is true. This means that the following C-statement is correct

if (k=2x%j-m) {
do something

}

It computes the value of k and checks if it is non-zero. If we had intended to do something when k equals
2 * j - m we should have written

if (k==2%3j-m) {
do something

}

Another, more severe, problem is that there is no index control for array indices, like there is in Matlab. One
tends to use pointers (addresses) frequently as well and there is little control of these. So, in short, one should
be very careful when writing C-programs, or there is a large risk that one has to spend long hours debugging.

In 1989 C became an ANSI standard, often referred to C89, and the year after came the ISO-standard, C90
(although C89 and C90 describe the same language). In 1999 came a new standard, C99.

For more history and background see the Wikipedia article:
http://en.wikipedia.org/wiki/C_(programming_language) .

There is also a page about the book:
http://en.wikipedia.org/wiki/The_C_Programming_Language_(book) .

The following introduction is sufficient for the assignments, but you need more for real programming.
I have not tried to show all the different ways a program can be written. C has several forms of
some constructs. Professional code has many extra details as well.

C can be very hard to read and there even was the “International Obfuscated C Code Contest”.
See http://en.wikipedia.org/wiki/IOCCC for unreadable and amusing programs.

2 Hello World!

We start with the compulsory Hello World!-program. I wrote the program using an editor and saved it in the
file hello.c. If you do not have a favourite editor like vim, gvim, emacs etc, I recommend using nedit, the
Nirvana editor. It is quite capable and easy to use, although it does not have support for the utf-8 character
set (used on the lab computers). This is mostly a problem if you write in Swedish (using 8-6). In the printout
below, I listed the program in a terminal window using the cat-command (you do not have to do this every
time, of course :-)

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU
2012 5

% cat hello.c

#include <stdio.h>

int main()

{
printf ("Hello World!\n");
return 0;

}
% gcc hello.c

% a.out
Hello World!

% ./a.out
Hello World!

% is the prompt. I compiled the program using, gcc, the GNU C-compiler. The executable (“machine code”)
was stored in the file named a.out (you can store it in another file if you like). Finally I executed the program
by typing the name of the executable. If you do not have . in your Unix-path you would type ./a.out instead.
The dot means the current working directory, so ./a.out means the a.out in the directory where I am at the
moment.

Let us look at the code. The first line, the one starting with a # is read by the C preprocessor, cpp. It
will read the file, /usr/include/stdio.h, and place it in the program. This file, a so-called include file or
header file, typically contains named constants, macros (somewhat like functions) and function prototypes.
Named constants are used so we do not have to write numbers to choose a particular option, instead we can
write a name.

The main program, must be called main, is an integer (int) function. It can take parameters, but we ig-
nore them in this example (the ()) and it returns status information to the Unix-system (to the shell, bash ot
tcsh), using the return-statement, zero usually means OK. We can print the status in the shell (echo $status
in tcsh, echo $7 in bash). One could also use the status in if-statements in the shell. If you like, you can
return EXIT_SUCCESS (or EXIT_FAILURE) instead of zero and one, provided you include the header file std1lib.h.

The input parameters are used to pass arguments from the shell to the program. When giving the 1s command
with the long flag, 1s -1, the ls-command (a compiled C-program) can access the flag -1.

printf is a print statement, and \n means newline. Semicolon, ;, ends a statement, so it is not like in Matlab
where an end of line suffices. If we forget the semicolon after the printf statements, we get a syntax error and
the compiler complains:

% gcc hello.c
hello.c: In function ‘main’:
hello.c:5: error: syntax error before '"return"

The braces, { }, are used to delimit the body of the function.

To find out more about what flags (options) gcc can take, we type man gcc in a terminal window. The
following command

% gcc -o hello -0 hello.c

optimizes the code for speed (overkill for this tiny example) and places the executable in hello instead of in
a.out. To execute the program we type hello or ./hello .

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU
6 2012

3 Functions, a first example

Now to a more complicated example, where we use a very primitive method (the trapezoidal method) to

approximate
b
/ e dr, a<b
a

The interval, (a, b), is divided into n intervals and on each interval the integral is approximated by the area of
a trapezoid, and the formula is:

/b f(x)d:c:zh[M+f(a+h)+f(a+2h)+---+f(b—h)—|—& where h:b_a

2 2 |’ n

There are much better methods and one could write a code that accepts more general integrands, but this is,
after all, not a course in numerical analysis.

Since the program would become too messy if I added all the comments to the code, I have numbered the
lines and added comments afterwards. Note that the line numbers are not part of the code.

1 #include <stdio.h>

2 #include <math.h>

3

4 double trapeze(double, double, int);

5

6 int main()

7 A

8 printf ("The integral is approximately = %e\n", trapeze(0, 1, 100));
9

10 return O;

11}

12

13 double trapeze(double a, double b, int n)
14 A

15 /* 4 primitive quadrature method for approzimating
16 the integral of exp(-z-2) from a to b.
17 n 1s the number of sub interwvals.

18 */

19

20 int k;

21 double x, h, sum = 0.0;

22

23 if (n <= 0) {

24 printf ("*** n must be at least 1.\n");
25 return -1;

26 X

27

28 h = (b - a) / n;

29 X = aj;

30 sum = 0.5 * exp(-x * x);

31 for (k = 1; k < n; k =%k + 1) {

32 x = x + hj

33 sum = sum + exp(-x * x);

34 }

35 sum = sum + 0.5 * exp(-b * b);

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU

2012 7
36 sum = sum * h;
37
38 return sum;
39 }

The example code contains a main-program and a function. On line 2, we include math.h since the program
uses the exponential function, exp, and we need the prototype for the function. A prototype gives the name of
the function and the types of input and output parameters. Since exp takes a double precision argument and
returns a double precision value the prototype is:

double exp(double);

double is the name of the double precision (8 bytes) floating point type. The reason we use prototypes is to
supply the compiler with more information, so it can warn us if we call a function with the wrong number or
types of the parameters. The compiler would also use the information to make type conversions of parameters
(more below).

Our own function, trapeze, takes three input arguments, the interval endpoints a and b, and a number,
n, of intervals, and returns the approximation of the integral. On line 4 I have supplied a prototype for the
function. One can, but does not have to, supply the variable names as well.

On line 8 I print some text and call the function. printf is a function that can take a different number
of arguments. In this case the first is a string, and the second the value returned from trapeze. e is a format
code, which tells printf that the integral value should be written using an engineering format (decimals and
exponential part). To see the other format codes, we use the manual command in Unix.

Type man -s3 printf in a terminal window (note that man printf gives you another manual page).

Lines 13-39 show the trapeze function. Note that the first line looks like the prototype, but now with variable
names. Comments are written between /* */, but many compilers allow for C+-+-comments as well (lines
starting with //), this came with the C99-standard.

Lines 20, 21 are type declarations of so-called automatic variables. These variables are local to the function.
Space is allocated when the function is entered and the memory is deallocated when we return from the function.
The sum-variable is initialized as well, this could be done in the executable code instead (similar to line 29).
Lines 23-26 show an if-statement. The rules are roughly as in Matlab, although negation is written using ! and
not ~.

The then-part is made up by two statements and they must be grouped together using braces. The braces
are not necessary for one statement, but some programmers add them anyhow. The trapeze function should
always return a value, even when n has an illegal value, so the program returns the impossible value, -1 in that
case. The statement, return value;, is similar to assigning value to the output parameter in Matlab, but
return also means that we jump back to the main program.

In line 30 we call the exponential function. Note that x~2 does not work in C (or rather, it means bitwise
exclusive OR). Lines 31-34 form a loop, the two statements, 32-33, are grouped together using braces. If we

forget the braces, only line 32 will be repeated in the loop, and line 33 will be executed once after the loop.

The general format of the for-statement is:

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU
8 2012

for(init; test; update)
loop body

Written with a while loop we understand the meaning:
init:
while (test) {
loop body
update;
}

So k = 1 corresponds to init, the test is k < n and update is k = k + 1. In words, set k to one, then the
loop is entered. Repeat the loop body as long as k < n. At the end of each loop iteration, the loop variable, k
is updated by one.

C has many abbreviations, k = k+1 can be written k++ and a = a + b can be abbreviated as a += b. Using
these shorter forms, the loop can be written:

for (k = 1; k < n; k++) {
X += h;
sum += exp(-x * x);

3

Sometimes one can see strange looking loops (at least to a C-novice). The following two loops both compute
an approximation to 1 +1/2+1/3 +--- + 1/1000.

sum = 0;

k =1;

for(; k <= 1000;) {
sum += 1.0 / k;
k++;

2

sum = 0;
k=1,
for(;) {
sum += 1.0 / k;
if (k == 1000)
break; // Jump out of the loop
k++;

’

}

On line 38 the function returns the value to main.

Let us now compile and execute the code:

% gcc trap.c -1m
% a.out
The integral is approximately = 7.468180e-01

The exact value is approximately 0.74682413. -1m informs the compiler that we need to use a library, the
mathematics library, since the code calls the exponential function. We say that we link with the math library.
A special program, the linker, takes care about this part (more about this in the lectures). The math library
resides in a file, /usr/1ib64/1libm.so (for our 64-bit system). The m-part of 1ibm is what is used in -1m. Some
compilers do not require that we write -1m, but they will link with library automatically. If we forget it on our
system we get a link error:

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU
2012 9

% gcc trap.c
/tmp/ccggMVKZ .o (.text+0xd2) : In function ‘trapeze’:
: undefined reference to ‘exp’

etc.

4 Separate compilation and 1d

In the example I have stored both main and trapeze in the same file trap.c. This would be unrealistic in large
applications, however, so it is possible to split the file into separate files. So, suppose that we have two files,
trap_main.c containing lines 1, 4-11 (i.e. not line 2, since main does not use exp), and trapeze.c containing
lines 2, 13-39. Here are two ways to compile the code.

% gcc trap_main.c trapeze.c -1m
% a.out
The integral is approximately = 7.468180e-01

If a large part of a program does not change, we can compile that part once and for all. In the first gcc-command
I compile trapeze.c, using the -c flag (option). This tells the compiler to produce an object file, trapeze.o,
but not to try to produce an executable. The object file is later used when compiling trap_main.c. We save
time by not having to recompile trapeze.c (think of a file containing thousands of lines).

% gcc -c trapeze.c an object file is produced
% 1ls -1 trapeze.o
-IW-----—-- 1 thomas _math 1232 Nov 18 15:49 trapeze.o

% gcc trap_main.c trapeze.o -lm use it here
% a.out
The integral is approximately = 7.468180e-01

If we forget trapeze.o we get a link error.

% gcc trap_main.c
/tmp/ccgkJmlR.o(.text+0x3d): In function ‘main’: undefined reference to ‘trapeze’
collect2: 1d returned 1 exit status

We will get the same effect if we make a spelling error when calling trapeze. Say we type Trapeze instead of
trapeze in the printf statement in main. We get:

% gcc trap_main.c trapeze.o -1m
/tmp/cc4JCXzK.o(.text+0x29) : In function ‘main’: undefined reference to ‘Trapeze’
collect2: 1d returned 1 exit status

even though trapeze.o is included. The reason is that C is case sensitive, trapeze and Trapeze refer to
different functions. 1d, which is mentioned, is the so-called linker, which combines object files, libraries (e.g.
the math library) to an executable. This is not the whole truth (there is a dynamic linker as well), but it is
accurate enough for this course. So, the gcc-command does not only compile, but it runs cpp and 1d as well.

5 More on prototypes and type conversion

It is easier to appreciate the prototypes when we use separate compilation (different files). Suppose we have
written trapeze(0, 100) in main. The compiler complains:

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU
10 2012

% gcc trap_main.c trapeze.o -1lm
trap_main.c: In function ‘main’:
trap_main.c:8: error: too few arguments to function ‘trapeze’

If we remove the prototype, the following happens:

% gcc trap_main.c trapeze.o -1lm
% a.out
The integral is approximately = 7.234109e-320

So, no complaints and the wrong answer. This is different from Java, which would complain. A C-programmer
must be more careful. Be very careful when you call a function. Check the number and types of parameters.
I have been slightly careless when calling trapeze. 0 and 1 are integer constants, but since I have provided a
prototype, the compiler will automatically convert the numbers to the corresponding double precision constants,
0.0 and 1.0. To avoid the type conversion I could have written trapeze(0.0, 1.0, 100). The reverse can
happen, a double value can be truncated to an integer value (the decimals will deleted).

Study the following example (%d is a format for printing integers):

% cat trunc_ex.c
#include <stdio.h>

int trunc_ex(int, double);
int main()
{

double result;

result = trunc_ex(1.99, 23);
printf ("trunc_ex = %e\n", result);

return 0O;

}
int trunc_ex(int k, double d)
{
printf("k = %d, d = %e\n", k, d);

return 3.1415926535897932;

}

% gcc trunc_ex.c

% a.out

k=1, d = 2.300000e+01
trunc_ex = 3.000000e+00

If we remove the prototype, the compiler will not make the conversions for us. Instead we end up with garbage:

% gcc trunc_ex.c

% a.out

k = 1030792151, d = 4.933640e-313
trunc_ex = 3.000000e+00

In main, 1.99 is stored as an 8 byte double precision number and 23 as a four byte integer. When trunc_ex
is called it will pick up the first four bytes of the stored double, and interpret those bytes as an integer. To

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU
2012 11

access d the function will take the four bytes from 23 and the next four bytes, whatever they contain, and make
a double precision number of the eight bytes. Note that no conversion is made for either number, trunc_ex
will just read the bits and make numbers from them. Finally, the reason we get the correct conversion of
3.1415926535897932 is that a function is of type int, by default.

Division with integers behaves in a special way (but the same rule applies to C++, Fortran, Java etc).

Integer division produces integer quotients, decimals are truncated. 5 / 2 will be 2, -2 / 5 becomes 0 etc.
5.0/ 2o0orb5 / 2.00r5.0 / 2.0 will all give you 2.5 since the integer will be converted to the “dominating
type” double before the division. Note that 10.0 * (1 / 10) is 0.0, since 1 / 10 is computed first, giving 0.
The integer zero is then converted to 0.0 and the product is 0.0.

6 void functions, passing parameters

The functions we have seen so far return values. There are functions that do not return values this way, a
so-called void function. A void function corresponds to a Matlab function, looking something like

function function_name(list of parameters) (so no return variable).

The difference is that one can write a C-function so that it can change its input parameters (this is not possible
in Matlab). This makes it necessary to discuss how parameters (arguments) are passed when a function is
called. Let us look at trapeze again.

double trapeze(double a, double b, int n)
{... }

The function works with copies of a, b and n, so if the function changes one of the variables, the original
variables (or constants) in main will not change. This way of passing parameters is called call-by-value.

In order to be able to change a variable, we use call-by-reference, i.e. we will pass the memory-address of
the variable rather than the variable’s value. Since the function has access to the address, it can change the
value of the variable. If var is the name of an integer or double variable, &var is its address, and & is called
the address operator. We also say that &var is a pointer to var. If adr is an address to a location in memory,
*xadr is the corresponding value of what is stored there. Using * is called dereferencing or indirection, * is the
indirection or redirection operator. An address to a variable is often called a reference (like in Java programming).

Time for an example. This piece of code computes approximations to > ,_, 1/k and Y ,_, 1/ k2.

#include <stdio.h>

void sums(double *, double *, int);

1

2

3

4

5 int main()
6 {

7 double suml, sum2;

8

9 sums (&suml, &sum2, 1000);

10 printf ("The sums are: %e and %e\n", suml, sum2);
11

12 return O;

13}

14

15 void sums(double *a_suml, double *a_sum2, int n)
16 {

17 int k;

18

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU

12 2012
19 *a_suml 0.0;
20 *a_sum2 = 0.0;
21
22 for (k = 1; k <= n; k++) {
23 *a_suml += 1.0 / k; /¥ 1.0 to avoid integer divsion */
24 *a_sum2 += 1.0 / (k * k);
25 }
26}

% gcc sums.c
% a.out
The sums are: 7.485471e+00 and 1.643935e+00

Let us start with the sums function, lines 15-26. We have a void function which takes three parameters, the
third is the number of terms. double *a_suml should be read in the following way. *a_suml is a double, and
* is the indirection operator, so a_suml must be an address to a double. I have tried to indicate this fact
by naming the variable a_suml, a for address. This is for pedagogical reasons, one would usually name the
variable suml and write double *suml. We can now understand the prototype on line 3. The first (and second)
argument is of type double *, a pointer to double.

On lines 19, 20 I set the values to zero. We should not try to set the addresses to zero. Note that we
use the same syntax on lines 23 and 24. Note that we use 1.0 / k rather than 1 / k (in which case the sum
would be one, since 1 / k = 0 whenk > 1).

Let us now look at the main program. On line 7 we define suml and sum2 as ordinary double variables.
On line 9 we call the function. Note that since we have a void function, it is illegal to try and write something
like variable = sums(...), since sums does not return a value in its name. Note that we pass the addresses
of suml and sum2, it would be wrong to write sums (suml, sum2, 1000) ;.

If you think these things are hard to follow, you should know that you are not alone, most beginners to C
find this a bit hard.

Let us declare two pointer variables by adding the following line to the code (after line 7):
double *pl, *p2;

So, pl can point at a double variable, it can contain the address of a double precision variable. We can set p1
to point at suml and p2 to point at sum2, like in the piece of code:

pl = &suml;

p2 = &sum2;

sums (pl, p2, 1000);

printf ("The sums are: %e and %e\n", *pl, *p2);

but even
printf ("The sums are: %e and %e\n", suml, sum2);

How, you may ask, can we print suml and sum2, even though these variables have not been passed as arguments
to sums? The explanation, is that we passed the pointers, and sums can access the memory where suml and
sum?2 are stored, through the pointers.

Note that the following programming will end in tears (the remaining code remains unchanged):

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU
2012 13

int main()

{
double *pl, *p2;

sums (pl, p2, 1000);
printf ("The sums are: %e and %e\n", *pl, *p2);

return 0;

}
When we try to run it we get the feared error message:

% gcc sums3.c
% a.out
Segmentation fault

A Segmentation fault (or abbreviated segfault) can be a nasty error, at least if we have a large complicated
program, since the bug can be very hard to find. It is caused by the program trying to access a memory location
which it is not allowed to access, or it may try to write to a read-only part of the memory. Another message of
the same type is Bus error, where the program may try to access a non-existent address, for example. In the
sums-example it is very easy to find the bug. We have allocated memory for the pointer variables, but have not
allocated memory for the summation variables. So p1 and p2 do not point to any variables, the pointers have
not been assigned any values, they point to random addresses in memory. The program crashes in sums when
*a_suml = 0.0; is executed.

Here comes another example where we must use addresses. We must use call-by-reference when reading
data, here are a few lines of code:

1 #include <stdio.h>

2
3 int main()
4 {
5 int 1i;
6 double d;
7
8 printf ("type a value for i: ");
9 scanf ("%d4d", &i);
10
11 printf ("type a value for d: ");
12 scanf ("%le", &d);
13
14 printf ("i = %d, d = %e\n", i, d);
15
16 return O;
17}
% a.out

type a value for i: -123
type a value for d: -1.23e-45
i =-123, d = -1.230000e-45

On order for scanf to be able to return a value we must supply a pointer to the variable. On lines 8 and 11 we
do not supply a newline, that is why we can type the input on the same line as the prompt text. Note on line
12 that is says le (the letter ¢) for long. If we omit the letter, scanf will try to read a single precision number
instead of a double. This will lead to a conversion error:

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU
14 2012

type a value for i: 12
type a value for d: -1.23e3
i=12, d = 3.713054e-307

Suppose we have a non-void function. In that case it is bad programming practice to return values in the input
parameters as well (even though it is possible). We say that the function has side-effects.

7 Arrays
In this program we create a one-dimensional array (vector) containing ten elements. We call the function init to
initialize the elements to 1,2, ..., 10. Finally we compute the sum of the element using the function array_sum.
1 #include <stdio.h>
2
3 void init(double [], int);
4 double array_sum(double [], int);
5
6 int main ()
7 {
8 double vec[10];
9
10 init(vec, 10);
11 printf ("The sum is: %e\n", array_sum(vec, 10));
12
13 return O;
14 }
15
16 void init(double v[10], int n)
17 {
18 int k;
19
20 for(k = 0; k < 10; k++)
21 vlik] = k + 1;
22 }
23
24 double array_sum(double v[10], int n)
25 A
26 int k;
27 double sum;
28
29 sum = 0.0;
30 for(k = 0; k < 10; k++)
31 sum += v[k];
32
33 return sum;
34 }
% a.out

The sum is: 5.500000e+01

On line 8 we reserve storage for an array having ten double elements. Indices start at zero and end at nine,
unlike Matlab. Note that we use [] for the index. So, the loop variables in the loops, e.g. on line 20, go from

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU
2012 15

zero to nine. It would be inefficient to copy the array when the functions are called. Instead call-by-reference is
used. So, if the function changes an element in the array, it changes the original. We do this in the init-routine.
Note that we should not use the address or indirection operators for the array.

Compare the prototypes, lines 3, 4, with the function declarations, lines 16, 24. It is allowed to leave out the
dimension of the array. So line 16 can be written

void init(double v[], int n)

and analogously for line 24. The reason is that the compiler does not need to know the number of elements in
the array, the find the address of a specific element. Note also that an array in C is not some kind of object,
like in Java. A function does not know the number of elements in the array unless we pass that information in
an extra argument (the variable n in the example). In fact, when we call the function, only the address of v[0]
is sent to the function. We could actually call init this way:

init (&vec[0], 10);

There is a close relationship between pointers and arrays but I leave that out in this introduction.

One should know that there is no index control in C. Changing the loop in init to

for(k = -3; k < 11; k++)
vik] = k + 1;

causes no complaints, but nasty things may happen as in the following example.

1 void func(double all);
2

3 #include <stdio.h>

4 main()

5 {

6 double b, al10];
7

8 b = 1;

9 func(a);

10

11 printf ("%f\n", b);
12

13 return O;

14 }

15

16 void func(double al])
17 {

18 al[11] = 12345.0;
19 }

% gcc nasty.c
% a.out
12345.000000

On line 8 we set b to one, and then, on line 9, we call func with the array, a. When we print b on line 10,
the value has changed, even though b is not an argument to the function. This is very nasty, and can be
very hard to find in a large program. What is going on? The elements of a one-dimensional array is stored
consecutively, with no gaps, in memory. One can find out the addresses of the elements in the array and of
the variable b, and it turns out that b is stored in a position that would correspond to al[11], provided a had
twelve elements. Changing a[11] to a[1000000], for example, gives Segmentation fault.

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU
16 2012

7.1 Two-dimensional arrays

You can find more about arrays at the end of this tutorial. Here is one small example where we multiply two
4 x 4-matrices together.

1 #include <stdio.h>

2

3 void mat_mul(double[4]1[4], doublel[4]1[4], double[4]1[4]);
4 void mat_print(double[4][4]);

5

6 main()

7 {

8 int row, col;

9 double A[4][4], B[4]1[4], C[4][4];
10

11 for (row = 0; row < 4; row++)

12 for (col = 0; col < 4; col++) {
13 Alrow][col]l = row + col;

14 Blrow]l][col]l] = row - col;

15 }

16

17 mat_mul(A, B, C);

18 mat_print(C);

19

20 return O0;

21 }

22

23 void mat_mul(double A[4][4], double B[4][4], double C[4][4]1)
24 A

25 int row, col, k;

26 double sum;

27

28 for (row = 0; row < 4; row++)

29 for (col = 0; col < 4; col++) {
30 sum = 0.0;

31 for (k = 0; k < 4; k++)

32 sum += A[row][k] * B[k][col];
33 Clrow][col]l = sum;

34 }

35 }

36

37 void mat_print(double C[4][4])

38 {

39 int row, col;

40

41 for (row = 0; row < 4; row++) {
42 for (col = 0; col < 4; col++)
43 printf ("%8.2f ", Clrow]l[coll);
44 printf ("\n");

45 }

46 }

One could write a more general code, but this is all we need. Line 37 can be written:

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU
2012 17

void mat_print(double C[][4])
but not
void mat_print(double C[][])

for example. The reason is that C stores matrices row-major order (row after row), in memory. So the memory
layout, of the matrix C, for example, would be:

address
base C[0]1[0] (see the note about byte addressable
base + 1 C[0][1] memory below)
base + 2 crolrz]
base + 3 crolral
base + 4 crilrol
base + 5 Cr11[1]
base + 6 cri1r2]
base + 7 cri1t1s3]
base + 8 cr211o]
etc.

The compiler knows the baseaddress, base = &C[0] [0], and to compute &C[row] [col] it needs to know the
number of elements in a row, row_len, say (four in the example).

&C[row] [col] = base + row_len * row + col

If one should be picky, the memory on one of our machines is byte addressable, and since a double precision
variable is stored using eight bytes, the correct formula is:

&C[row] [col] = base + 8 * (row_len * row + col)

So this is the reason why void mat_print(double C[][4]) is sufficient, but void mat_print (double C[4][])
or void mat_print(double C[][]) are not.

8 A matter of style

The placement of braces on other details of programming style, has been the focus of many heated and lengthy
debates. In all my examples I have placed the braces using a special style, e.g:

for (k = 1; k < n; k++) {
X += dx;
sum += exp(-x * x);

}

This style is known as the “Kernighan & Ritchie coding style” and comes from the classic book I mentioned on
page one. One can write this piece of code in other ways, e.g.

for (k = 1; k < n; k++)
{
x += dx;
sum += exp (-x * x);

}

which is the GNU-style, used to write GNU software. I will not start a debate about it in this introduction;
find your own style and stick to it. One style I do not recommend is:

for (k=1;k<n;k=k++) {x+=+dx; sum+=exp (-x*x) ; }

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU
18 2012

indent is a very useful command for pretty printing, formatting, C-programs. There are many options, I use
the following:

indent -kr -i2 -nut my_program.c
-kr is the Kernighan & Ritchie style, -12 means two spaces for indentation in loops and if-statements etc, -nut
means that spaces and not tabs are used for indentation.

indent -gnu -i2 -nut my_program.c

gives you the GNU style instead.

The choice of style affects other parts of the program as well, e.g. the position of braces in if-statements,
and the layout of comments and declarations.

To read about the different styles, type man indent, and read under COMMON STYLES. If you use indent on a
program with syntax errors, indent may produce an incorrectly indented program (if a brace is missing, for
example). For that reason, indent, makes a backup copy of your original file. In my example the copy is stored
in my_program.c”.

9 If-statements and logical expressions

Here are a few examples. Logcal and is written &&, or is || and negation ! . Note single & and | are bitwise
operations.

double a, b, c, d, q;

if (a<b&& c==4d || 'q) { // & logical and, || or, ! negation
zZero or more statements
} else {
zZero or more statements
}
The relational operators, <, <=, ==, >=> are written the same way as in Matlab, with the exception of “not

equal” which is written !=.
Note: if (! q == 1.256) & if ((!q) == 1.25), not if(! (q == 1.25)).

Now a word about the so-called dangling else. When we have nested if-statements, the else belongs to the
innermost if-statements, so with correct indentation this is how it works:

if (condition)
if (other condition) {
statements
} else {
statements

}
If you want the else to belong the outer if, use braces:

if (condition) {
if (other conditiomn) {
statements
}
} else {
statements

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU
2012 19

10 Some useful C-tools

Counsider the following lines (part of warn.c):

if (variable = 24)
printf ("var equals 24\n");

This is probably not what we meant (an assignment), we probably meant “if (variable == 24)”. The
compiler warns us, provided we switch on the -Wall flag, thus:

% gcc warn.c No warning

% gcc -Wall warn.c
warn.c: In function ’main’:
warn.c:8: warning: suggest parentheses around assignment used as truth value

gcc actually warns us against something slightly different. Assignments in if-statements are typically used in
the following situation

if ((variable = func()) == test_value)

where the parentheses are necessary, since == has higher priority than =.

Another useful tool is splint, “secure programming lint” which checks C-programs for security vulnerabili-
ties and coding mistakes. splint analyzes the code without executing it, so runtime errors are not caught.
splint on the example above gives:

% splint -weak warn.c
Splint 3.1.1 --- 19 Jul 2006

warn.c: (in function main)

warn.c:8:8: Test expression for if is assignment expression: variable = 24
The condition test is an assignment expression. Probably, you mean to use ==
instead of =. If an assignment is intended, add an extra parentheses nesting
(e.g., if ((a = b)) ...) to suppress this message. (Use -predassign to
inhibit warning)

Finished checking --- 1 code warning

splint without -weak gives an additional warning:

warn.c:8:8: Test expression for if not boolean, type int: variable = 24
Test expression type is not boolean or int. (Use -predboolint to inhibit
warning)

If you want a very strict check try splint -strict.

11 A few words about the C99 standard

Note that it is not supported by all compilers.
C99 extends the previous C-version, C89, and adds support for (among other things):

e a boolean data type, complex numbers

e intermingled declarations and code

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU
20 2012

e //-comments

e inline functions

e variable-length arrays

e restrict qualifier to allow more aggressive code optimization (more later on)
Here a few lines showing how to use the boolean data type:

#include <stdbool.h>

bool b;

b =a> b;
b = true;
b = false;

Here complex numbers:

#include <complex.h>
double complex z, W, WzZ;

z =1+ 2 % I;
w=3+4x*xTI;
wz = 3 * W ¥ Z;

printf ("%e %e\n", creal(wz), cimag(wz));

Intermingled declarations and code:

#include <stdio.h>

int main()

{
int k = 22;

for(int k = 0; k <= 2; k++) // C++ declaration style
printf ("%d\n", k);

printf ("%d\n", k);

return 0;

}

% gcc -std=c99 c99_mixed.c NOTE
% a.out

0

1

2

22

Inline functions. From the C-standard:

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU
2012 21

inline double func(double x)

Making a function an inline function suggests that calls to the function be as fast as possible. The
extent to which such suggestions are effective is implementation-defined.

Variable-length arrays:

double funcl(int, int);
double func2(int m, int n, double A[m][n]);
double func3(double A[m][n], int m, int n); // WRONG

int main()

{
int m = 50, n = 100;
double vec[n], Alml[n]l; // m, n OK here

}

double funcl(int m, int n)

{
double A[m][n], tmp[n]l; // allocated when entering funcl

func2(m, n, A);
}

double func2(int m, int n, double Alm]l[nl]l) // 0K, m, n first then A
{

}

double func3(double A[m][n], int m, int n) // WRONG, A first, m, n last
{

}

12 More on cpp

The gcec-command first runs the C preprocessor, cpp. cpp looks for lines starting with # followed by a directive
(there are several). From the man-page for cpp:

#include "filename"
#include <filename>

Read in the contents of filename at this location. This data is processed by cpp as if it were part of the current
file. When the <filename> notation is used, filename is only searched for in the standard “include” directories.
It is possible to tell cpp where to look for files by using the -I-option.

A typical header file contains named constants, macros (somewhat like functions) and function prototypes,
e.g:

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU
22 2012

#tdefine M_PI 3.14159265358979323846 /* pi */
#define __ARGS(a) a

extern int MPI_Send __ARGS((void *, int, MPI_Datatype, int, int, MPI_Comm)) ;

It is common to store several versions of a program in one file and to use cpp to extract a special version for
one system.

In _ompc_init from Omni, a Japanese implementation of OpenMP:

#ifdef OMNI_OS_SOLARIS

lnp = sysconf (_SC_NPROCESSORS_ONLN) ;
#else
#ifdef OMNI_OS_IRIX

lnp = sysconf (_SC_NPROC_ONLN) ;
#else
#ifdef OMNI_OS_LINUX

deleted code

Under Linux we would compile by:

cc -DOMNI_OS_LINUX ...

13 Using the man-command

One way of finding out what header-files are necessary, is to use the manual-command, e.g:

% man sin
SIN(3) Linux Programmer’s Manual SIN(3)

NAME
sin, sinf, sinl - sine function

SYNOPSIS
#include <math.h>

double sin(double x);
float sinf(float x);
long double sinl(long double x);

DESCRIPTION
The sin() function returns the sine of x,
where x is given in radians.

RETURN VALUE
The sin() function returns a value between -1 and 1.

CONFORMING TO
SVID 3, POSIX, BSD 4.3, IS0 9899. The float and
the long double variants are C99 requirements.

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU
2012 23

SEE ALSO
acos(3), asin(3), atan(3), atan2(3), cos(3), tan(3)

You will not find man-pages for everything. One can try to make a keyword search: man -k keyword.

14 More on matrices

In Fortran (dense) matrices are stored in the same way in (almost) all programs. This is because the matrix is
a builtin type in Fortran and the language has a lot of support for matrix computations. This is not the case
in C, and so there are several possible data structures for storing matrices. It is important to pick the proper
data structure if the matrix should be passed as an argument to a Fortran routine or used together with a
performance library. Another issue is how we would like to access the elements in the matrix. Is it important
to be able to write A[row] [col] or will *(A + row * n + col) do?

Here comes a short description of some alternative data structures. Suppose we would like to store the matrix:

123}

A:[4 5 6

The most obvious way is illustrated by the following short program.

#include <stdio.h>

int main()

{
double A[2][3], elem = 0;
int row, col;

for(row = 0; row < 2; rowt++)
for(col = 0; col < 3; col++)
Alrow] [col] = ++elem;

return 0;

}

This way to create matrices is rather limited. We would like to have a more dynamic choice of dimensions. The
first step would be something like:

#include <stdio.h>

int main()

{
const int m = 2, n = 3;
double A[m][n];

Some compilers accept such constructions, but not all (see page 21). The following is allowed, but a bit clumsy:

#include <stdio.h>

#define _M 2

#define _N 3

int main()

{
const int m = _M, n = _N;
double A[_M][_N];

Such a matrix can be passed as a parameter to a Fortran program.

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU
24 2012

14.1 Dynamic memory allocation

Some assignments in the course require that tests should be performed for a sequence of matrices of increasing
sizes. It is inconvenient having to edit the program, changing the dimensions, recompiling etc. This leads us to
dynamic memory allocation. So first a few words about that.

The C-library routines malloc and free are used to allocate memory and to return it. stdlib.h contains
the prototypes. In C++ we have new and delete. Java has garbage collection, so only new is necessary.
Fortran90 has allocate and deallocate.

We will concentrate on C from now on. ptr = malloc(size) returns a pointer, ptr, to a block of data at least
size bytes suitably aligned for any use. If there is not enough available memory ptr will be a null pointer.
free(ptr) will return the memory to the application, though not to the system. Memory is returned to the
system only upon termination of the application. If ptr is a null pointer, no action occurs. It is illegal to free the
same memory more than once, to try to use freed memory and to free using a pointer not obtained from malloc.

Here is a typical piece of code where we allocate 100 double precision numbers. Note the use of sizeof
and the check on the pointer value. We then store some values in the memory. The first loops uses pointer
arithmetic and the second uses vector notation. Note that vec is a pointer and not a vector but it is allowed to
mix the notation.

There are differences between vectors and pointers though. If we have the declaration:

double *vec, vector[100];

vec can point to something else but vector cannot. We need space for the pointer variable, vec, but vector
itself takes no space,

#include <stdio.h>
#include <stdlib.h>

int main()

{
double *vec; // vec is a pointer to double
int n = 100, k;

if((vec = malloc(n * sizeof(double))) == NULL) { // sizeof(double) = 8
printf("malloc of vec failed.\n");
exit (EXIT_FAILURE); // EXIT_FAILURE a named constant defined in stdlib.h

}

for(k = 0; k < n; kt++)

x(vec + k) = k; // pointer notation
for(k = 0; k < n; k++)

vecl[k] = k; // vector notation
free(vec); // release the memory
return 0;

}

What I would like to do is to allocate memory for an m X n-matrix A, using malloc, and then pass A as an
argument to a function, receiving A as an m X n-matrix so that I can use matrix-indexing A[row] [col] inside
the function. This can be done with some trickery (and with some compilers), but I do not know how to do it in
a completely legal way (following the C-standard) unless I use variable-length arrays defined in C99, see page 21.

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU
2012 25

The following pages show some common ways of storing matrices in C. Some ways can work together with
Fortran and some cannot. We know that a matrix is stored by rows in C. So if A is the address of the [0] [0]-
element, A[row] [col] has address A + n * row + col where n is the number of elements in a row. We can
use vector indexing instead of using pointer arithmetic. Here is an example (to make the code shorter I will not
check that malloc succeeded, a bad programming practice). I have added a function to show how the parameter
could be passed.

#include <stdio.h>
#include <stdlib.h>

double sum_elements(double *A, int m, int n);

int main()
{
double *A;
int m = 2, n = 3, k;

A = malloc(m * n * sizeof(double)); // Allocate memory for the m x n-matrix

for(k = 0; k < m * n; k++)
Alk] = k + 1; // This is ONE way to access the elements

printf ("result = %e\n", sum_elements(A, m, n));

free(A);
return 0;

}

double sum_elements(double *A, int m, int n)
{

double sum = 0;

int row, col;

for(row = 0; row < m; rowt++)
for(col = 0; col < n; col++)
sum += A[n * row + coll; // This simulates A[row] [col]-access.
// We could use pointer notation.
return sum;

}

One advantage of this approach is that it easy to pass the array as an argument to a Fortran routine (and it is
easy to store the matrix by columns instead). Note that Fortran uses column-major order and not row-major
order as C.

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU

26

14.2 This will not work with Fortran

Here come two other ways to store a matrix. The first method does not work together with Fortran though,

but the other does. Both methods support A[row] [col]-indexing.
Here comes the first example:

#include <stdio.h>
#include <stdlib.h>

double sum_elements(double **A, int m, int n);

int main()

{
double **A, elem = 0; // Note *x*
int m = 2, n = 3, row, col;

A = malloc(m * sizeof (double *)); // Allocate space for row pointers.
// Note double * . sizeof(double *) = 8.

for(row = 0; row < m; row++)
Alrow] = malloc(n * sizeof(double)); // Allocate space for elements in a row.
// Note double.

for(row = 0; row < m; rowt++)
for(col = 0; col < n; col++)
Alrow] [col] = ++elem; // Note A[row] [coll

printf ("result = %e\n", sum_elements(A, m, n));

for(row = 0; row < m; rowt++) // free
free(A[row]);

free(A); // free again,
// Note the order of the calls to free.

return 0;

}

double sum_elements(double **A, int m, int n)
{

double sum = 0;

int row, col;

for(row = 0; row < m; rowt++)
for(col = 0; col < n; col++)

sum += Al[row] [coll;

return sum;

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU
2012 27

The memory layout may look something like this after we have initialised the matrix. The arrows show how
the addresses point.

variable content address
[pp——— Al0] 135200 134168 --+
| Al1] 135232 134176 --|--+
I [
| A[o0][0] 1 135200 <--+ | start of first row
I AT0]1[1] 2 135208 I
I AT0][2] 3 135216 |
I 135224 | Note, a gap
| Al1]1[0] 4 135232 <----- + start of second row
I A[1]1[1] 5 135240
I A[1]1[2] 6 135248
I
+---- A 134168 429080

A points to A[0] which in turn points to A[0] [0], the first element in the first row. A[1] points to the beginning
of the second row, i.e. A[1][0]. The first malloc allocates space for A[0] and A[1] (m row pointers). Then
comes a loop with m calls to malloc where each one allocates memory for storing the n elements in row.

We note that sizeof (double *) is eight since A[0] and A[1] are eight bytes apart (134176-134168=8). The
double precision numbers are eight bytes apart, except between A[0] [2] and A[1] [0] where the gap happens
to be 16 bytes. This is the reason this data structure cannot be used when calling Fortran routines, the elements
are not contiguous in memory.

One advantage with this data structure is that all the rows need not have the same length.

Note also that this storage requires more memory than the usual matrix data structure (we need extra space
for the row pointers). That is true with the next method as well, but it has the advantage of giving contiguous
elements, making it possible to pass the array to a Fortran routine.

14.3 This will work with Fortran

double *xA;

A = malloc(m * sizeof (double *)); // Allocate space for row pointers.
// Note double * .

AT0] = malloc(m * n * sizeof(double)); // Allocate space for the elements in the matrix.
// Note that we get contiguous elements.
for(row = 1; row < m; rowt++)
Alrow] = A[O] + row * n; // Give the row pointers their values, i.e.
// find out where each row starts.
// There are n elements in each row.

for(row = 0; row < m; row++)
for(col = 0; col < n; col++)
Alrow] [col] = ++elem;

The memory layout may look something like this after we have initialised the matrix. The arrows show how
the addresses point.

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU

28 2012

variable content address

Fo> AT0] 135768 134744 -+

| AT1] 135792 134752 —-|--+

| [

| Al0][0] 1 135768 <--+ | start of first row

| AT0]1[1] 2 135776 |

| AT0]1[2] 3 135784 |

| Al1]1[0] 4 135792 <-———- + start of second row

| A[1][1] 5 135800

| A[1][2] 6 135808

|

+--—- A 134744 429080

To pass the array to Fortran we use the parameter &A[0] [0], A[0] or *A.

For more details about this and other topics, see the C-FAQ:
http://www.faqgs.org/faqs/by-newsgroup/comp/comp.lang.c.html

14.4 C and large arrays

Some of the assignments require that you use large arrays. This may be a problem in C. Consider the following
program:

#include <stdio.h>

main()

{
int k, n = 2000000;
double large_array[n];

for(k = 0; k < n; k++)
large_arrayl[k] = 1;

printf("Last %f\n", large_array[n - 1]);

return 0;

}
When we try to run it we get:

% gcc stack_problems_1.c
% a.out
Segmentation fault

The reason is that large_array is allocated on the stack, which has a limited size. We can find out the size by
using the command limit. Thus:

% 1limit (works provided you use tcsh, type ulimit -a if you are using bash)
p y yp y g

cputime unlimited
filesize unlimited
datasize unlimited

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU
2012 29

stacksize 10240 kbytes
coredumpsize 0 kbytes
memoryuse unlimited
vmemoryuse unlimited
descriptors 1024
memorylocked 32 kbytes
maxproc 500

So, the stack is limited to 10240 kbyte, but we need 2000000 * 8 / 1024 kbyte, i.e. 15625 kbyte (the stack is
used for some other purposes as well so it must be a bit larger). So, let us increase the stack size and try again:

% limit stacksize 15700 (in bash ulimit -s 15700)
% a.out
Last 1.000000

Another way is to store the array in a segment in a.out. If we make large_array static, i.e. we have the type
declaration: static double large_array[2000000]; our program will work with the default stack size. The
array is now stored in the bss-segment.

% gcc stack_problems_2.c
% limit stacksize
stacksize 8192 kbytes

% a.out

Last 1.000000

% size a.out
text data bss dec hex filename
925 252 16000032 16001209 £428b9 a.out

One drawback with static variables is that they exist for the lifetime of the program (even if we do not use the
array). So, yet another way (common) is to use dynamic memory allocation (i.e. we use malloc/free) placing
the array on the heap:

#include <stdio.h>
#include <stdlib.h>

int main()

{
int k, n = 2000000;
double *large_array;

if ((large_array = malloc(n * sizeof(double))) == NULL) {
printf ("Could not malloc large_array.\n");
exit (EXIT_FAILURE);

}

for(k = 0; k < n; k++)
large_array[k] = 1;

printf("Last %f\n", large_array[n - 1]);
free(large_array);

return 0;

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU
30 2012

15 A note on structs and const

In one lecture and the corresponding lab we will use structs (records in Pascal, post in Swedish). We will also
write the function:

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhsl[])

where mxArray is a struct. This section will also explain what const, in const mxArray *prhs[] means.

const is used to protect variables against accidental change. It also serves as documentation for anyone reading
the code (this variable is not supposed to be changed). We start with some simpler examples, protecting scalar
variables.

15.1 Structures

Here is a toy-example of a struct, my_mxArray, where we store a pointer to double (will point to allocated
doubles) and an integer storing the number of allocated.

#include <stdio.h>
#include <stdlib.h>

typedef struct {
double *vec;
int n;

} my_mxArray;

int main()

{
// mx is a pointer to my_mxArray and pmx is a vector of pointers to my_mxArray
my_mxArray mx, *pmx[2];

// Store values in mx
mx.n = 20;
mx.vec = malloc(mx.n * sizeof (double));
for(int k¥ = 0; k < mx.n; k++)
*(mx.vec + k) = k;

printf ("%f, %f\n", *(mx.vec), *(mx.vec + mx.n - 1));

// Allocate space for the my_mxArray:s
pmx[0] = malloc(sizeof (my_mxArray));
pmx[1] = malloc(sizeof (my_mxArray));

// and store values in the two structs

(*pmx[0]).n = 30; // *pmx[0].n is wrong

pmx[1] -> n = 40; // a correct alternative (see the precedence table)
pmx[0] -> vec = malloc(pmx[0] -> n * sizeof (double));

pmx[1] -> vec = malloc(pmx[1] -> n * sizeof (double));

for(int k = 0; k < pmx[0] -> n; k++)
*(pmx[0] -> vec + k) = k;

printf ("%f, %f\n", *(pmx[0] -> vec), *(pmx[0] -> vec + pmx[0] -> n - 1));

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU

2012

31

free(mx.vec);

const_exl(const double a, const double *b, double * const c, const double * const d)

free(pmx[0]
free(pmx[1]
return 0O;
}
15.2 const
{
at+; //
b+ //
(xb)++; //
ct+; //
(kc)++; //
d++; //
Ged)++5 //
}

% gcc -c const_exl.c

const_exl.c:
const_exl.c
const_exl.c
const_exl.c
const_exl.c
C

const_exl.

const double a and double const a are equivalent, so those forms have not been included above.

© N O

)
)

error:

error:
error:

error:
error:

protects a

can change the pointer itself
but not what it points to
protects the pointer

but not what it points to
protects the pointer

and what it

points to

In function ’const_exl1’:

error: increment
error: increment
error: increment
. error: increment

15.3 const and structures

of read-only location
of read-only location
of read-only location
of read-only location

:10: error: increment of read-only location

Now for a mix of const and structures. “illegal” means that the compiler will complain, OK means that it will

not complain (though it may not be useful programming). To simplify the example we redfined struct.

typedef struct {
double v[10];

int n;
} my_mxArray;

void exl(const my_mxArray * s[])

void ex2(my_mxArray * const s[])

{
(xs[0]).v[B] =
s[0] -> v[5] =
s[1] = s[0];

}

{
s[0] -> v[5] = 7;
s[1] = s[0];

}

7
7

// or void exl(my_mxArray comnst * s[])

// illegal
// illegal

// 0K

// 0K

// illegal

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU
32 2012

void ex3(const my_mxArray * const s[])

{
s[0] -> v[5] = 7; // illegal
s[1] = s[0]; // illegal
}
void ex4(const my_mxArray * const s[])
{
double *pv;

pv = (double *) s[0] -> v;
pvls] = 7; // OK, the compiler cannot protect us against everything
}

In the last example we “fool” the compiler, changing the protected v-array using the pointer pv.

HPC

Thomas Ericsson

Computational Mathematics, Chalmers/GU

2012

33

16 Precedence and associativity of C-operators

Operators have been grouped in order of decreasing precedence, where

operators between horizontal lines have the same precedence.

Operator | Meaning Associativity
() function call —
L] vector index
-> structure pointer

structure member
++ postfix increment
- postfix decrement
! logical negation —
- bitwise negation
++ prefix increment
-- prefix decrement
+ unary addition
- unary subtraction
* indirection
& address
(type) | type cast
sizeof | number of bytes
* multiplication —
/ division
% modulus
+ binary addition —
binary subtraction
< left shift —
> right shift
< less than —
<= less or equal
> greater than
>= greater or equal
== equality —
1= inequality
& bitwise and —
- bitwise xor —
| bitwise or —
&& logical and —
[logical or —
7 conditional expression —
= assignment —
+= combined assignment and addition
-= combined assignment and subtraction
*= combined assignment and multiplication
/= combined assignment and division
= combined assignment and modulus
&= combined assignment and bitwise and
"= combined assignment and bitwise xor
[= combined assignment and bitwise or
<= combined assignment and left shift
»>= combined assignment and right shift
comma —

HPC

34

Thomas Ericsson
Computational Mathematics, Chalmers/GU
2012

Here are a few comments, see a textbook or my links for a complete description.

Left to right associativity (—) means that a-b-c is evaluated as (a-b)-c and not a-(b-c). a = b =
c, on the other hand, is evaluated asa = (b = c). Note that the assignment b = c returns the value of c.

if (a<b<c) ...;meansif ((a < b) < c) ...;wherea < bis1 (true)ifa < band 0 (false)
otherwise. This number is then compared to c¢. The statement does not determine “if b is between a and
¢’

a++; is short fora = a + 1;,s0is ++a;. Both a++ and ++a can be used in expressions, e.g. b = at+;,
c = ++a;. The value of a++; is a’s value before it has been incremented and the value of ++a; is the new
value.

a += 3; is short fora = a + 3;.

As in many languages, integer division is exact (through truncation), so 4 / 3 becomes 1.
Similarly, i = 1.25;, will drop the decimals if i is an integer variable.

exprl 7 expr2 : expr3 equals expr2 if exprl is true, and equals expr3, otherwise.

(type) is used for type conversions, e.g. (double) 3
becomes 3.0 and (int) 3.25 is truncated to 3.

sizeof (type_name) or sizeof expression gives the size in bytes necessary to store the quantity. So,
sizeof (double) is 8 on our system and sizeof (1 + 2) is 4 (four bytes for an integer).

When two or more expressions are separated by the comma operator, they evaluate from left to right.
The result has the type and value of the rightmost expression. In the following example, the value 1 is
assigned to a, and the value 2 is assigned tob. a = b =1, b += 2, b -= 1;

Do not write too tricky expressions. It is easy to make mistakes, it is hard to read and one may end
up with undefined statements. a[i++] = i; and i = ++i + 1; are both undefined. See the standard,
section 6.5, if you are interested in why.

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU
2012 35

17 A short introduction to Fortran

The next few pages contain the rudiments of Fortran 90 and a glance at FORTRAN 77. This text is sufficient
for the assignments, but you need more for real programming. I have not tried to show all the different ways a
program can be written.

FORTRAN was designed by a group, lead by John W. Backus at IBM. The language was proposed as alter-
native to coding in assembly language and the first compiler appeared in 1957. The language evolved through
the years but you will still find huge amounts of code written in FORTRAN 66 (came in 1966) and FORTRAN 77.
So you must be able to read such code but you probably do not have to write any (if you are lucky :-). You will
use some FORTRAN 77-code in one of the labs.

Fortran 90 (no capitalization) is essentially a new language. It has array operations (somewhat like MATLAB),
pointers, recursion, prototypes, modules, overloading of operators (and more). FORTRAN 77 has none of these.
Fortran 90 is much nicer than FORTRAN 77, which is quite primitive. Fortran 95 was a minor revision of Fortran
90, but Fortran 2003 is a major update containing support for object-oriented programming. The most recent
version is Fortran 2008, which is a minor upgrade of the 2003-version. This text does not contain any code-
examples in Fortran 2003 or Fortran 2008 and not many compilers have full support for these latest versions.
Fortran is used primarily for scientific computing, and in this author’s view the language is much better suited
for such tasks than C. The main reason is that Fortran has better support for vectors and matrices.

We start with a Fortran 90-example, but first some basic rules. Fortran 90 (and later) supports a free for-
mat, you can write the statements wherever you like on the line (not so in FORTRAN 77 and earlier). Case or
blanks (space) are not significant (unless they are in strings or serve as a separator between keywords). The
examples contain extra blanks to increase readability. Comments are written using !. A statement ends when
the line ends. Long statements can be continued by adding & at the end of the line that should be continued
(like adding ... in MATLAB).

There should be one main program, program program_name where you can choose program_name (the same
rules as for variable names in MATLAB). You end the main program with end or end program_name . There
are (essentially) two types of procedures, functions and subroutines (correspond to void functions in C).
Fortran has an implicit type rule. Unless you specifically give a type of a variable, all variables are single
precision real unless the variable name starts with one of i, j, k, 1, m, n in which case the variable is an
integer. Using the implicit rule is asking for problems, like in the following example: (using % as the prompt in
the command window):

% cat spell.f90 list the program
program spell
sum = 0.0 ! set summation variable to zero
do k = 1, 1000 ! when k = 1, 2, ..., 1000
sum = sum + 1.0 / k ! update sum
end do
print*, ’the sum is ’, smu ! print the value

end program spell

% gfortran spell.f90 compile
% a.out execute
the sum is 8.6880505E-44 garbage

Note that the compiler, gfortran, does not warn us (compilers usually do not). If we want a warning we add
the statement implicit none, after the first line, making it necessary to supply type declarations, so

program spell

HPC

Thomas Ericsson

Computational Mathematics, Chalmers/GU

36 2012
implicit none ! no implicit type rule
real 11 sum ! a single precision variable
integer :: k ! an integer variable

% gfortran spell.f90
In file spell.£90:10
print*, ’the sum is ’, smu ! print the value
1
Error: Symbol ’smu’ at (1) has no IMPLICIT type

Correcting the error and running again we get the printout

the sum is 7.485478

In Fortran call by reference is used for both arrays and scalars (it is possible to say much more about this
topic, but this is sufficient for the HPC-course). This means that a procedure can change the value of a scalar
argument, which is not the case in C unless you pass the address of the variable to the function.

18 A simple example

The code contains one main-program one function and a subroutine. The function computes the inner product
of two vectors and the subroutine sums the elements in an array and returns the sum in a parameter. The
line-numbers have been added to make it easier to comment the code, they are not part of the program.

1 program main

2 implicit none ! Highly recommended!
3 integer :: k, n, in

4 double precision :: s

5 double precision :: ddot ! the type of the ddot-function
6

7 ! Adrray indices start at one by default.

8 double precision, dimension(100) a, b

9

10 n = 100

11 printx, "Type a value for in:"

12 readx*, in

13 print*, "This is how you write: in = ", in

14

15 do k = 1, n ! do when k = 1, 2,

16 a(k) = k

17 b(k) = -sin(dble(k)) ! using sin

18 end do

19

20 print*, "The inner product is ", ddot(a, b, n)
21

22 call sum_array(a, s, n) ! NOTE, call

23 print*, "The sum of the array is ", s

24

25 end program main

Additional comments:

line 5, tells the calling program the type of the function. It is possible, and sometimes necessary, to provide
more elaborate prototypes, but this is not covered in this course. Single precision is written real in Fortran.

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU
2012 37

line 8: You can write the index-range dimension(begin:end), e,g, dimension(-20:35) or dimension(0:20)
if you are a C-programmer (in which case 20 is the last and legal index).

line 11-13: simple I/O-statements with a standard layout (there are more fancy versions).

line 15, 18: the standard loop. More generally, do variable = start, end, step, where step = 1 is the
default.

line 16: note () for the index.

line 17: the type cast (type conversion) from integer k to double precision dble (k) is necessary, or the compiler
will complain. No automatic conversion like in C.

line 20: calling the function ddot.

line 22: calling the subroutine, note that the result is returned in the scalar s.

1 function ddot(x, y, n) result(s)

2 implicit none

3 integer :: n

4 double precision, dimension(n) :: x, y
5 double precision :: s ! The type of the function
6

7 integer 0k

8

9 s = 0.0

10 do k = 1, n

11 s = s + x(k) * y(k)

12 end do

13
14 end function ddot

line 1, result defines a result-variable. You give the function a value by assigning a value to the result-variable,
much like in MATLAB.

line 5, you give the function its type using a type declaration for the result-variable.

line 7, k is local to the function (as usual).

line 9, 0.0 is actually a single precision zero, which is converted to a double precision zero (the type of s). More
about constants later on.

1 subroutine sum_array(a, s, n)
2 implicit none

3 integer i n

4 double precision :: s

5 double precision, dimension(n) :: a
6

7 integer :: k

8

9 s = 0.0

10 do k = 1, n

11 s = s + a(k)

12 end do

13
14 end subroutine sum_array

line 1, 9, 11: since call by reference is used, the subroutine changes the original value of s.

Some additional comments.
Since Fortran 90 has support for array operations the main program could have been shortened:

print*, "The inner product is ", dot_product(a, b)

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU
38 2012

print*, "The sum of the array is ", sum(a)

dot_product and sum are built-in functions.

19 Numerical constants

1 is an integer constant. Fortran (like C) performs integer division using truncation. 4/3 becomes 1 and -4/3
becomes -1.

1.0 is a real constant (single precision) and 1.0d0 is a double precision constant in Fortran77. The d0 stands
for zero exponent and d for double precision, so 1.0 - 10°.

-1.23e-14 is the single precision value —1.23 - 10714 and -1.23d-14 the double precision value.

Fortran has built-in support for complex arithmetic. See a Fortran-book or tutorial for details.

In Fortran90 it is possible to parameterize the real- and integer types and create more portable code using a
module (similar to a simple class) e.g.:

module floating_point

! sp = at least 5 significant decimals and
! |exponent range| <= 30 which implies

! TEEE single precision.

integer, parameter :: sp = selected_real_kind(5, 30)
integer, parameter :: dp = selected_real_kind(10, 300)
integer, parameter :: prec = dp ! pick one

end module floating_point

program main

use floating_point ! gives access to the module
real (kind = prec) X, ¥

real (kind = prec), dimension(100) :: a, b

x = 1.24_prec ! constant of kind (type) prec
y = 1.24e-4_prec !

19.1 Warning: do not mix single and double precision

You can mix single and double precision, but the outcome may be unexpected. Here are a few examples.

1 program warning

2 implicit none

3 real :: sp ! a 32-bit floating point wvariable
4 double precision :: dp ! a 64-bit floating point wvariable
5

6 sp = sqrt(2.0d0) ! you lose digits

7 dp = sqrt(2.0) ! you lose digits

8

9 ! the abs-values are the errors

10 print*, sp, dp, abs(sp - sqrt(2.0d40)), abs(dp - sqrt(2.0d0))
11

12 print*, sqrt(2.0d0) * dp ! dp ts already ruined

13

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU
2012 39

14 ! (2.0 / 3.0) is computed in single, you lose digits

15 print*x, (2.0 / 3.0) * 3.0d4d0, 2.0 / 3.0 * 3.0d0

16

17 ! 3.0 4s first converted to 3.0d0, then 2.0d0 / 3.0d0 ts computed
18 print*, 2.0d0 / 3.0 * 3.0d0

19

20 ! integer division

21 print*x, 4 / 3 * 3.0d0

22

23 end program warning

Here is the output:
1.414214 1.41421353816986 2.420323430563087E-008 2.420323430563087E-008
1.99999996577146
2.00000005960464 2.00000005960464
2.00000000000000
3.00000000000000

SP = single precision and DP = double precision in these comments.

line 3, 4, sp is 32-bit SP-variable and dp 64-bit DP-variable.

line 6, sqrt(2.0d0) is computed in DP but then assigned to single.

line 7, sqrt (2.0) is computed in SP but then assigned to a DP-variable.

line 10, writing the values and errors (regarding sqrt (2.0d0) as exact).

line 12, using the accurate sqrt(2.0d0) but the SP-value stored in dp. The product is not 2.0.

line 15, due to the (), (2.0 / 3.0) is computed in single, this SP-quotient is then converted to DP (but
not re-computed) and the multiplied by the DP 3.0d0. The same happens with second expression, since it is
computed left to right (/ and * have the same priority).

line 18, the “weaker” (smaller) 3.0 is first converted to the “stronger” 3.0d0, giving 2.040 / 3.0d0, giving an
accurate answer.

line 21,4 / 3 becomes 1 which is promoted to 1.0d0 which is multiplied by 3.0d0, so the answer is not 4.0.

If you want to be on the safe side never mix precisions.

20 The simple example in FORTRAN 77

Here comes the FORTRAN 77-version, but first some comments. Fortran 90 is almost a new language, but in my
simple example the differences are not that striking.

e FORTRAN 77 has a column oriented layout dating back to the 80 column punched card. The first five
columuns are used for labels (positive integers), column six is for continuation statements, columns 7-72
for the statement and columns 73-80 are for comments (used to number the cards in case you dropped
them :-)

If you are young and have not heard about punched cards, have a look here:
http://en.wikipedia.org/wiki/Punch_cards .

e There are no result-statements in functions.

e The type declarations are written in a different way:
double precision a(n)

instead of

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU
40 2012

double precision, dimension(n) :: a

although FORTRAN 77-declarations are allowed in Fortran 90 as well. A FORTRAN 77-program is (es-
sentially) also a Fortran 90-program, so it is possible to mix the two styles. There are a few FORTRAN
77-constructions which have been deprecated in Fortran 90, and some Fortran 90-compilers may complain
if you compile old code.

The example program, coded in FORTRAN 77, is listed on the following two pages. It violates the ANSI-
standard in several ways, the most important being the use of do/enddo. Here are proper ways of writing
FORTRAN 77-loops using labels (the numbers). continue is an empty statement often used to mark the end of
a loop.

do 10k =1, n
s =s + x(k) * y(k)
10 continue

or shorter

do 20k =1, n
20 s =s + x(k) * y(k)

Here comes the code:

program main

Comments: c, C or * in column one
text in columns > 72
! Fortran 90-comment
First five columns: labels
Continuation line: non-blank in column 6
Statements: columns 7 through 72
Case or blanks are not significant (unless they are in strings).

¥ X X X X X ¥ X ¥ x

Arrays start at one by default.
*234567890 to know where we are

integer k, n, in

double precision a(100), b(100), sum
double precision ddot

n = 100
print*, "Type a value for in:"
read*, in

print*, "This is how you write: in = ", in
dok =1, n
a(k) = k
b(k) = -sin(dble(k))
end do
print*, "The inner product is ", ddot(a, b, n)

call sum_array(a, sum, n) ! NOTE, call
print*, "The sum of the array is ", sum

end

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU
2012 41

c double precision is the type of the function
double precision function ddot(x, y, n)
implicit none
integer n
double precision x(n), y(n)

integer k
double precision sum

sum = 0.0 ! could use ddot instead of sum
dok =1, n

sum = sum + x(k) * y(k)
end do

ddot = sum ! give the function its value

end

subroutine sum_array(a, sum, n)
implicit none

integer n

double precision a(n), sum

integer k

sum = 0.0

dok =1, n

sum = sum + a(k)
end do
end

Suppose you, by mistake, move the double precision-statement in sum_array one step to the left. The letter
d, in the sixth column, tells the compiler that ther previous line (integer n) continues, essentially giving (spaces
are not significant in variables names in FORTRAN 77), the line:

integer ndoubleprecisiona(n), sum

resulting in complaints, from the compiler, about n and a lacking a type declaration. Removing the implicit
none silences the complaints, the compiler will assume that a(k) is a call of the function a.

Removing one more space will give another compiler error, a non-digint in the label field.
Writing a long line, like:

c comments
c23456789012345678901234567890123456789012345678901234567890123456789012
s = s + long and complicated expression + 2.1d72

will add 2.1d7 and not the intended 2.1d72.

Here is a final curiosity, which according to legend caused the crash of Mariner 1 spacecraft, but legend was
wrong and Fortran was not to blame in this case, see: http://en.wikipedia.org/wiki/Mariner_1

and http://catless.ncl.ac.uk/Risks/9.54.html#subjl.1

But FORTRAN 66 could have caused a problem, as the Risks-article says. Consider the following legal piece of
code (legal in FORTRAN 66 and 77, that is, not legal in Fortran 90):

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU
42 2012

do 5 k=1, 125
s = s + vec(k)
5 continue

This is not a loop but an assignment, the variable do5k is assigned the value 1.125. The dot should have been
a comma. There was no implicit-statement in FORTRAN 66 (it came in FORTRAN 77), but a good compiler of
its day could list variables occurring once.

Be very careful when programming in FORTRAN 77.

21 How to compile

The Fortran compilers available on the student system are: g77 (FORTRAN 77), gfortran and g95 (both For-
tran 90 and 77). It would be interesting to use the Intel ifort-compiler, but we do not have a license. You can
fetch a free copy for Linux (provided you have the disk space, a few hundred Mbyte). See the course homepage
for details.

In these handouts I will use g95 and I will assume that a Fortran90-program has the suffix .£90. Some
examples:

yA the prompt in the shell
% g95 prog.f90 if everything in one prog.f90, prog.f would be Fortran77

Produces the executable file a.out

% a.out execute
% ./a.out if you don’t have . in your path

Suppose we have three files main.f90, dot.f90 and sum.f90.
% 95 main.f90 dot.f90 sum.f90

Can compile the files one by one. -c means “compile only”, do not link.

% g95 -c main.f90 produces the object file main.o
% g95 -c dot.f90 produces the object file dot.o
% g95 -c sum.f90 produces the object file sum.o

% g95 main.o dot.o sum.o link the object files

% g95 main.o dot.f90 sum.o works as well, note .f90

The last version is useful if you are working with and re-compiling a few routines and linking with existing
object files, containing a large part of the code.

One can give many options (or flags) to the compiler. Note that the names are not standardized between
compilers.

% g95 -03 prog.f90 optimize the code

22 If-statements and logical expressions

double precision :: a, b, c, d
logical it q ! Fortran has a logical type
if(a < b .and. ¢ == d .or. .not. q) then
zero or more statements
else
zero or more statements
end if

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU
2012

43

You cannot use 0 and 1 to denote false and true, as you can
.false. and .true. (yes, the dots should be there).

in C. Instead you have the logical constants,

Operation | FORTRAN 77 | Fortran 90

< 1t <

< .le. <=
= .eq. ==
.ne. /=
> .ge. >=
> .gt. >

and .and. and
or .or. or.
not .not. not

23 A small Fortran 90-example

Here is a tiny example showing some of the array capabilities of Fortran 90.

program array_example
implicit none
! works for other types as well

integer k

integer, dimension(-4:3) a ! Note -4
integer, dimension(8) :: b, ¢ ! Default 1:8
integer, dimension(-2:3, 3) M

a =1"! set all elements to 1

b=<(1, 2, 3, 4, 5, 6, 7, 8 /) ! constant array
b=10 * b ! like in Matlab

c(1:3) = b(6:8) ! like in Matlab

print*, ’size(a), size(c) = sgize(a), size(c)
print*, ’lbound(a), ubound(a) = ’, lbound(a), ubound(a)
print*, ’lbound(c), ubound(c) = ’, lbound(c), ubound(c)
c(4:8) = b(8:4:-1) ! almost like Matlab, step is -1
print*, ’>c = ’, ¢ ! can print a whole array
print*, ’minval(c) = ’, minval(c) ! a built-in functions
a=a+b*c ! elementwise *
print*, ’a =, a
print*, ’sum(a) = ’, sum(a) ! another built-in
M=0
M(1, :) = b(1:3) ! Row with index one
print*x, *M(1, :) =, M(1, :)
M(:, 1) = 20 ! The first column
where (M == 0) ! instead of two loops

M= -1

end where

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU
44 2012

print*, ’lbound(M) = ’, lbound(M) ! an array

do k = lbound(M, 1), ubound(M, 1) ! print M
print ’(a, i2, a, i2, 2ib)’, > MO, k, ’,) =, &

Mk, :)
end do
end
% a.out
size(a), size(c) = 88

lbound(a), ubound(a) -4 3

lbound(c), ubound(c) = 1 8

c = 6070 80 80 70 60 50 40

minval(c) = 40

a = 601 1401 2401 3201 3501 3601 3501 3201
sum(a) = 21408

M(1, :) = 10 20 30
lbound(M) = -2 1

M(-2, :) =20 -1 -1
M(-1, :) =20 -1 -1
MCO, :) =20 -1 -1
M(C 1, :) =20 20 30
M(C2, :) =20 -1 -1
M(3, :) =20 -1 -1

24 A common Fortran construction

Even if we program in Fortran 90 we typically use huge amounts of FORTRAN 77-code. This makes it necessary
to understand something about the layout of matrices in memory and how the compiler computes the address
of a specific element, the address computation. If you get this wrong disaster will follow.

FORTRAN 77 does not have dynamic memory allocation (like Fortran 90 and C). Say you want to solve a
sequence of linear least squares problems of different sizes. In FORTRAN 77 you would typically reserve space
for the largest matrix you need, even though the actual problem might be smaller. Say that the largest problem
has max_m rows and max_n columns and that actual (current) problem has m rows and n columns (m < max_m
and n < max_n).

Say you pass the matrix as an argument to a procedure. The compiler (when compiling the procedure) must
be told about the extent of the first dimension (the number of rows), of the matrix, in order to produce the
address computation code.

The reason for rows rather columns, is that Fortran stores matrices in column-major order (column after
column). If adr () is the address of A(j, k) then

adr(A(j, k)) = 8 * (adr(A(1, 1)) + max.m *x (k - 1) + j - 1)

eight, since we assume that memory is byte-addressable and that A is a double precision matrix (eight bytes per
floating point number). In C a matrix is stored in row-major order (so the compiler must know the number of
columns in the matrix), but since you can allocate the precise number of elements in C this is less of an issue.
In the following program we reserve space for a 5 x 4-matrix, line 4, and all the elements are set to 0 (so we can
spot incorrect elements later on). parameter on line 3, defines named constants, so max_m and max_n are not
variables but names for the numbers 5 and 4 respectively. We are only using a 3 x 3-sub matrix of A, and on
lines 10-12 this matrix is set to [1, 2, 3; 4, 5, 6; 7, 8, 9] (using MATLAB-syntax). On line 15 print_A
is called, the subroutine prints the 3 x 3-sub matrix. On line 19 print_A is called again, but this time using m
instead of the correct max_m.

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU

2012 45

The crucial line in print_A is line 26, where it says max_m in dimension(max_m, max_n). max_n is of no
importance (at least not for the address computation). Line 30 is a more elaborate print-statement using a
format.

program wrong_maXx_m
implicit none

1

2

3 integer, parameter max_m = 5, max_n = 4

4 integer, dimension(max_m, max_n) :: A = 0

5 integer m, n

6

7 m =3 ! using part of the maz_m times maz_n-mairic
8 n =3

9

10 ACL, 1:n) = (/ 1, 2, 3 /)

11 AC2, 1:n) = (/ 4, 5, 6 /)

12 A, 1:n) = (/ 7, 8, 9 /)

13

14 printx*, ’Calling print_A with the correct max_m’
15 call print_A(A, max_m, max_n, m, n)

16

17 print*, 2------ - ’
18 printx, ’Calling print_A with an incorrect max_m’
19 call print_A(A, m, max_n, m, n) ! using m instead of maxz_m
20

21 end program wrong_max_m

22

23 subroutine print_A(A, max_m, max_n, m, n)

24 implicit none

25 integer max_m, max_n, m, n

26 integer, dimension(max_m, max_n) :: A

27 integer row, col

28

29 do row = 1, m

30 write(x, (a3, i2, a, 5i5)’) ’row ’, row, ’:°, A(row, 1:mn)
31 end do

32

33 end subroutine print_A

Here is the run:

Calling print_A with the correct max_m

row 1: 1 2 3
row 2: 4 5 6
row 3: 7 8 9

Calling print_A with an incorrect max_m

row 1: 1 0 5
row 2: 4 0 8
row 3: 7 2 0

To see how the second result is produced we look at the memory layout (horizontally, to save space). | denotes
a column-break.

In the main-program

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU
46 2012

after line 4
00000]O0O0O0O0O0O]OOOOO]OOOOO
after line 12

147001 25800136900]00000

in print_A with the incorrect max_m = 3
147100215801 036|1900[10001]00

If we had not set all the elements in A to zero, the zeros in the second printout could have been random numbers
(what happened to be stored in those memory locations). Removing the initialization on line 4 and running
again, one may get things like (where I had to change the format to make room for the large negative number):

Calling print_A with an incorrect max_m

row 1: 1 62 5
row 2: 4 1 8
row 3: 7 2 -1264574544

It is not necessary for the compiler to know max_n when compiling print_A (unless A is a three dimensional
array, of course), so it is legal to write

double precision, dimension(max_m, *) :: A
or
double precision, dimension(max_m, 1) :: A

just to tell the compiler that A is two-dimensional (the * marks an index position). Better is:
double precision, dimension(max_m, max_n) :: A

since index checks can be performed by some compilers.

A more common name for max_m is LDA, Leading Dimension A. This can be seen in the manual page for
the FORTRAN 77 Lapack routine dgesv:

NAME
dgesv - compute the solution to a real system of linear equations A * X = B,

SYNOPSIS
SUBROUTINE DGESV(N, NRHS, A, LDA, IPIVOT, B, LDB, INFO)

INTEGER N, NRHS, LDA, LDB, INFO

INTEGER IPIVOT (*)

DOUBLE PRECISION A(LDA,*), B(LDB,*) A NOTE LDA

ARGUMENTS

N (input) The number of linear equations, i.e., the order of the matrix A. N >= 0.

NRHS (input)
The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= O.

A (input/output)
On entry, the N-by-N coefficient matrix A. On exit, the factors L and U from the
factorization A = PxL*U; the unit diagonal elements of L are not stored.

LDA (input)
The leading dimension of the array A. <emmm - NOTE LDA

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU
2012 47

LDA >= max(1,N).

There is are nicer interface in Fortran90 (C++). Essentially, subroutine gesv(A, B, ipiv, info) where
gesv is polymorphic, (for the four types S, D, C, Z for single, double, complex and double complex) and where
the size information is included in the matrices. Most people seem to use the FORTRAN 77-interface, however,
and it is easier to use from C.

25 Dynamic memory allocation in Fortran 90

Here are two ways, first automatic arrays:

call dynamic(k + r * s, 100) ! for example

subroutine dynamic(m, n)

integer ::m, n

double precision, dimension(m, n) :: A

double precision, dimension(-2:n) :: vec ! first index -2, just to show you can
compute ...

end subroutine dynamic
The second method is similar to C’s malloc/free.

subroutine dynamic(m, n)

integer i m, n
double precision, allocatable, dimension(:, :) :: A

double precision, allocatable, dimension(:) 11 vec
integer :: status

allocate(vec(-2:n)) ! first index -2, just to show you can

allocate(A(m, n), stat = status) ! if you are careful
if (status /= 0) then
! some problem, this is very primitive error handling
print*, ’Cannot allocate A’
stop
end if

compute ...

deallocate(vec)
deallocate(A)

end subroutine dynamic

26 Some dangerous things

When debugging code it is very important to check actual and formal parameter lists. Actual parameters are
the ones supplied when calling the routine, formal parameters are the ones inside the routine.

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU
48 2012

Check position, number and type. It is possible to use so-called interface blocks (“prototypes”) for increased
security.

program main
double precision :: a, b

a=20.0
call sub(a, 1.0, b) ! three parameters
print*, a, b
end
subroutine sub(i, j) ! two parameters and different types in the call
integer :: i, j

i=1+1
J 10.0 ! trying the change the value of the constant 1.0
end

% a.out
Segmentation fault the result depends on the compiler

Remove the line j = 10.0 and run again:

% a.out the result depends on the compiler
4.940656458412465E-324 1.330526861551857E-312

b is undefined and the contents of a is treated as an integer inside the subroutine. Since Fortran uses call by
reference, the interpretation of the data, corresponding to the formal parameter a, inside the subroutine is given
by the type declaration, integer :: i.

C- and Fortran compilers do not usually check array bounds. Here is an example in C.

#include <stdio.h>
void sub(double al]);

int main()

{
double b[10], al[10];
b[0] = 1;
sub(a);
printf("%f\n", b[0]);
return 0;

}

void sub(double al])

{
a[10] = 12345.0;

}

Running this program we get:

% a.out
12345.000000

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU
2012 49

So b[0] has changed even though it is not a parameter to the function, sub. The reason is that a[10] =
12345.0; is illegal, nine is the largest index and a[10] happens to have the same address as b[0]. Changing
a[10] to a[1000000], in the function, gives Segmentation fault.

Some Fortran-compilers can check subscripts (provided you do not lie):

program main
double precision, dimension(10) :: a

call lie(a)
print*, ’a(l) = ?, a(l)

end program main
subroutine lie(a)

double precision, dimension(10) :: a
do j =1, 100 !!! NOTE

a(j) =3
end do

end subroutine lie

% gfortran -fbounds-check lie.f90

% a.out

Fortran runtime error: Array reference out of bounds for array ’a’, upper bound of dimension 1
exceeded (in file ’1lie.f90’, at line 12)

If we change dimension(10) to dimension(100), in the subroutine, so lying, the compiler will not detect the
index error.

HPC

50

Thomas Ericsson

Computational Mathematics, Chalmers/GU

2012

27 Precedence of Fortran 90-operators

Operators between horizontal lines have the same precedence.

Operator Meaning
unary user-defined operator
Kok power
* multiplication
/ division
+ unary addition
- unary subtraction
+ binary addition
- binary subtraction
// string concatenation
== .EQ. equality
/= .NE. inequality
< .LT. less than
<= .LE. less or equal
> .GT. greater than
>= .GE. greater or equal
.NOT. logical negation
.AND. logical and
.OR. logical or
.EQV. logical equivalence
.NEQV. logical non-equivalence
binary user-defined operator

Comiments:

== is the Fortran90 form and .EQ. is the Fortran77 form, etc. In Fortran90 lower case is permitted, .e.g .not. .

About the user defined operators. In Fortran90 it is possible to define ones own operators by overloading
existing operators or by creating one with the name .name. where name consists of at most 31 letters.

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU
2012 51

28 A few words about tcsh and bash

The shell is a command-line interpreter, usually running as a sub-process to a command window. When you,
for example, give the command cd a_path, the shell will change your current directory, and when you type 1s,
the shell will create a new process, starting the compiled C-program /bin/1s. There are a number of shells, two
wellknown are the Bourne shell, /bin/sh, written by Stephen Bourne at Bell Labs and csh, /bin/csh, written
by Bill Joy while at the University of California, Berkeley. See http://en.wikipedia.org/wiki/Unix_shell
for more historical notes.

On the math-system /bin/shis a symbolic link to /bin/bash the Bourne-Again shell and /bin/cshis a symbolic
link to /bin/tcsh, the TENEX C shell.

You can change shell if you like, I am using tcsh, and I will start with some aspects of tcsh.

28.1 The path

The location of a file or a directory is given by its path. An absolute path starts at the root in the file tree. The
root is denoted / (slash). The path to my HPC-directory is /chalmers/users/thomas/HPC . The file ex.£90, in
this directory, has the path /chalmers/users/thomas/HPC/ex.f90. There are also relative paths.

Suppose the current directory is /chalmers/users/thomas . A path to the ex.f90 is then HPC/ex.f90 .
Suppose your current directory is something else, then ~“thomas/HPC/ex.f90 is a path to the file. ~, by it-
self, denotes your home directory, “user, is the path to the home directory of user. So I could have written,
~“/HPC/ex.£90 . .. is the level above, and . is the current directory. That is why we sometimes write ./a.out,
se below.

The shell (csh, tcsh, sh, ksh, bash, ...) keeps several variables. One important such variable is the path.
I will concentrate on [t]csh, a few words about bash come at the end of this section. The path contains a
blank-separated list of directories. When you type a command (which is not built-in, such as cd) the shell will
search for a directory containing the command (an executable file with the given name). If the shell finds the
command it will execute it, if not, it will complain:

% set path = () no directories
% cd HPC cd is built-in
% 1s

1s: Command not found.

% /bin/ls works

A.mat ... etc

% set path = (/bin)
% ls now tcsh finds 1s
A.mat ... etc

The set is local to the particular shell and lasts only the present login session.

Sometimes there are several different versions of a command. The shell will execute the command it finds
first (from left to right).

% which 1ls

/bin/1s

% which gfortran
/usr/bin/gfortran comes with the system

% which gfortran used in the course 2006
/chalmers/users/thomas/HPC/gfortran/bin/gfortran

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU
52 2012

In the first which, /usr/bin comes before the HPC-directory, and in the second /usr/bin comes after.
If you do not have . in your path, the shell will not look for executables in the current directory.

% pwd print current directory
/chalmers/users/thomas/HPC/Test

% a.out

a.out: Command not found. no . in the path
% ./a.out works

% set path = ($path .) add . to the path
% a.out works

$path is the value of path. Suppose the path contains ~ .

% cp a.out “/a.outl
% which a.outl
a.outl: Command not found.

% rehash rebuild the internal hash table
% which a.outl
/chalmers/users/thomas/a.outl

A command does not have to be a compiled program.

% 1s -1 /bin/ls
-rwxr-xr-x 1 root root 82796 Jun 20 13:52 /bin/ls

% file /bin/ls
/bin/ls: ELF 64-bit LSB executable, AMD x86-64, version 1 (SYSV), for GNU/Linux 2.6.9,
dynamically linked (uses shared libs), for GNU/Linux 2.6.9, stripped

% which cd
cd: shell built-in command.

% which apropos

/usr/bin/apropos

% file /usr/bin/apropos

/usr/bin/apropos: Bourne shell script text executable
% head -3 /usr/bin/apropos

#!/bin/sh

#

apropos -- search the whatis database for keywords.

A user would usually (perhaps not if one is a student; see below for more details) set the path-variable in the
startup file .tcshrc which usually resides in the login directory. The period in the name makes the file invisible.
Type 1s -a to see the names of all the dot-files

To see your path, type echo $path, or give the command set, which prints all the shell variables. Shell-
variables are not exported to sub-processes so the shell creates an environment variable, PATH, as well. PATH is
exported to sub-processes and it contains a :-separated list of directories).

% set var = hello
% echo $var like print
hello

HPC

Thomas Ericsson
Computational Mathematics, Chalmers/GU
2012 53

% tcsh start a sub-shell
% echo $var
var: Undefined variable.

% exit

% setenv var hello an environment variable, no =
% tcsh sub-shell

% echo $var

hello

To see all your environment variables, type setenv. Another useful environment variable is the manual search
path, MANPATH and the LD_LIBRARY_PATH (much more details later on).

28.2 Now something about bash

Most of the above details about tcsh work in bash as well. Here are some differences. The shell startup file
is called .bashrc. The path-variable is named PATH. You can set (a short path) the following way (you do not
use set as in tcsh):

% PATH=/bin:/usr/bin

To export a variable to a sub-process, use the export-command, like in this example:

bash-3.2$ A_VARIABLE=123 bash-3.2$ is the prompt
bash-3.2$ echo $A_VARIABLE

123

bash-3.2$ bash start a sub-shell

bash-3.2$ echo $A_VARIABLE
not defined

bash-3.2$ export A_VARIABLE=123 wuse export

bash-3.2$ bash start a sub-shell
bash-3.2$% echo $A_VARIABLE
123 defined

set prints all the variables, but there is no setenv-command, use export instead.

For much more on tcsh and bash try

man tcsh
man bash

or

info tcsh
info bash

for a more structured layout.

28.3 A note on the student environment

To make it easier for beginners (both teachers and students) Chalmers/GU has a standard environment where
you do not have to create your own startup files. One does not have to use it (I do not). The following page
describes how to modify the standard environment:
http://www.chalmers.se/its/EN/computer-workplace/linux/various-linux-questions

HPC

