
Process control under unix
Processes are created using the fork-system call. System call:

the mechanism used by an application program to request ser-

vice from the operating system (from the unix-kernel). man -s2
intro, man -s2 syscalls. printf (for example) is not a sys-

tem call but a library function. man -s3 intro for details.

#include <sys/wait.h> /* for wait */
#include <sys/types.h> /* for wait and fork */
#include <unistd.h> /* for fork and getppid */
#include <stdio.h>

int main()
{
int var, exit_stat;
pid_t pid;

var = 10;
printf("Before fork\n");

if ((pid = fork()) < 0) { /* note () */
printf("fork error\n");
return 1;

} else if (pid == 0) { /* I am a child */
var++;
printf("child\n");
sleep(60); /* do some work */

} else { /* I am a parent */
printf("parent\n");
wait(&exit_stat); /* wait for (one) */

} /* child to exit; not */
/* necessary to wait */

printf("ppid = %6ld, pid = %6ld, var = %d\n",
getppid(), pid, var); /* get parent proc id */

return 0;
}

1

% a.out
Before fork
child
parent
ppid = 6843, pid = 0, var = 11 child
ppid = 27174, pid = 6844, var = 10 parent

fork creates the child process (from the parent process) by mak-

ing a copy of the parent (so the child gets copies of the heap and

stack for example). The child and parent continue executing

with the instruction that follows the call to fork. So fork is

called from the parent and returns both to the parent and the

child.

Every process is identified by a number, the process id. or pid.

We can list the pids (and some other properties) of all the pro-

cesses running in the computer (this list has been shortened).

The ps-commando takes a huge number of options.

% ps -fel | grep thomas
UID PID PPID CMD
thomas 5442 27174 xterm
thomas 5446 5442 -csh

thomas 6843 27174 a.out <-- parent
thomas 6844 6843 a.out <-- child

thomas 6851 5446 ps -fel
thomas 6852 5446 grep thomas

thomas 27174 27171 -tcsh
thomas 27171 27152 sshd: thomas@pts/62
root 27152 3203 sshd: thomas [priv]
root 3203 1 /usr/sbin/sshd
root 1 0 init [5]
...

2

A process that hangs (not uncommon in parallel programming)

can be terminated using the kill-command which sends a signal

to a process. There are different signals and they can be used

for communication between processes. Signal number 9, sigkill,

cannot be caught.

% kill -l
HUP INT QUIT ILL TRAP ABRT BUS FPE KILL USR1 SEGV USR2
...

% ps U thomas
PID TTY STAT TIME COMMAND
8604 pts/62 S+ 0:00 a.out <-- kill this one
...
% kill -9 8604 (or kill -KILL 8604)

A process can choose to catch the signal using a a signal handler

routine. It can also ignore (some) signals:

#include <signal.h>
#include <stdio.h>
int main()
{
/* SIGINT is defined /usr/include/bits/signum.h*/
if (sigignore(SIGINT) == -1)
printf("*** Error when calling sigignore.\n");

while(1) /* loop forever */
;

return 0;
}

% gcc signal.c
% a.out
^C^C^C^C^C^C^C^C^C^\Quit

% /bin/stty -a
intr = ^C; quit = ^\; erase = ^H; etc....

3

To start a child process that differs from the parent we use the

exec system call (there are several forms). exec replaces the

child (the process which it is called from) with a new program.

#include <sys/wait.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>

int main()
{
int exit_stat;
pid_t pid;

if ((pid = fork()) < 0) {
printf("fork error\n");
return 1;

} else if (pid == 0) { /* I am a child */
/* replace this process by another */
/* execlp(file, name_shown_by_ps,

arg1, ..., argn, NULL) */

/* (char *) 0 is a null pointer. (char*)
is a type cast. See the C FAQ for details.*/

/* new is a compiled C-program*/
if(execlp("new", "new_name", (char*) 0) < 0) {

printf("*** execlp error\n");
return 1;

}

} else /* I am a parent. Wait */
wait(&exit_stat); /* or do something else */

return 0;
}

Very common usage in command& .

4

Interprocess communication

Most parallel computing tasks require communication between

processes. This can be accomplished in several different ways on

a unix system. The pipe, |, is a standard example:

% ps aux | grep a.out

The ps and grep processes are running in parallel and are com-

municating using a pipe. Data flows in one direction and the

processes must have a common ancestor. The pipe handles syn-

chronisation of data (grep must wait for data from ps and ps
may not deliver data faster than grep can handle, for example).

The communication is usually local to one system, but using

rsh (remote shell) or ssh (secure shell) it may be possible to

communicate between different computers:

% ps aux | ssh other_computer "grep a.out > /tmp/junk"

/tmp/junk is created on other_computer. (There are other

remote commands such as rcp/scp, remote copy).

FIFOs (or named pipes) can be used to communicate between

two unrelated processes. A general way to communicate between

computers over a network is to use so called sockets.

5

When a (parallel) computer has shared memory it is possible

to communicate via the memory. Two (or more processes) can

share a portion of the memory. Here comes a master (parent)

program.

#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int main()
{
int exit_stat, shmid, info, k;
pid_t pid;
struct shmid_ds buf;
double *shmaddr;
char s_shmid[10];
/*
* Create new shared memory segment and then

* attach it to the address space of the process.

*/
shmid=shmget(IPC_PRIVATE, (size_t) 512, SHM_R|SHM_W);
shmaddr = shmat(shmid, (void*) 0, 0);

/* Store some values */
for (k = 0; k < 512 / 8; k++)

*(shmaddr + k) = k;

/* Create new proces */
if ((pid = fork()) < 0) {
printf("fork error\n");
return 1;

} else if (pid == 0) { /* I am a child */

6

/* convert int to string */
sprintf(s_shmid, "%d", shmid);

if (execlp("./child", "child_name", s_shmid,
(char *) 0) < 0) {

printf("*** In main: execlp error.\n");
return 1;

}
} else {
wait(&exit_stat);
/* Remove the segment. */
info = shmctl(shmid, IPC_RMID, &buf);

}
return 0;

}

Here comes a slave (child) program.

#include <stdio.h>
#include <stdlib.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int main(int argc, char *argv[])
{ int k, shmid;
double *shmaddr;

printf("In child\n"); printf("argc = %d\n", argc);
printf("argv[0] = %s\nargv[1] = %s\n",argv[0],argv[1]);

shmid = atoi(argv[1]); /* convert to int */
printf("shmid = %d\n", shmid);
shmaddr = shmat(shmid, (void*) 0, SHM_RDONLY);

for (k = 0; k < 5; k++) /* "Fetch" and print values.*/
printf("*(shmaddr+%d) = %f\n", k,*(shmaddr + k));

return 0;
}

7

% gcc -o master master.c
% gcc -o child child.c
% master
In child
argc = 2
argv[0] = child_name
argv[1] = 22183946
shmid = 22183946

*(shmaddr+0) = 0.000000

*(shmaddr+1) = 1.000000

*(shmaddr+2) = 2.000000

*(shmaddr+3) = 3.000000

*(shmaddr+4) = 4.000000

In general some kind of synchronisation must be used when ac-

cessing the memory. There are such tools (e.g. semaphores) but

since we will look at a similar construction in the next section

we drop the subject for now.

Using the command ipcs we can get a list of segments. It may

look like:

% ipcs
------ Shared Memory Segments --------
key shmid owner perms bytes nattch
status
0x00000000 22249482 thomas 600 512 0

... more stuff

In case of problems we can remove segments, e.g.

ipcrm -m 22249482.

8

Nonblocking communication - a small
example

Suppose we have a pool of tasks where the amount of time to

complete a task is unpredictable and varies between tasks.

We want to write an MPI-program, where each process will ask

the master-process for a task, complete it, and then go back

and ask for more work. Let us also assume that the tasks can

be finished in any order, and that the task can be defined by a

single integer and the result is an integer as well (to simplify the

coding).

The master will perform other work, interfacing with the user,

doing some computation etc. while waiting for the tasks to be

finished.

We could divide all the tasks between the processes at the be-

ginning, but that may lead to load inbalance.

An alternative to the solution, on the next page, is to create two

threads in the master process. One thread handles the commu-

nication with the slaves and the other thread takes care of the

user interface.

One has to very careful when mixing threads and MPI, since the

MPI-system may not be thread safe, or not completely thread

safe. The MPI-2.0 standard defines the following four levels:

• MPI_THREAD_SINGLE: Only one thread will execute.

• MPI_THREAD_FUNNELED: The process may be multi-threaded,

but only the main thread will make MPI calls (all MPI calls

are “funneled” to the main thread).

• MPI_THREAD_SERIALIZED: The process may be multi-threaded,

and multiple threads may make MPI calls, but only one at a

time: MPI calls are not made concurrently from two distinct

threads (all MPI calls are “serialized”).

• MPI_THREAD_MULTIPLE: Multiple threads may call MPI, with

no restrictions.

See the standard for more details.

9

The master does the following:

set_of_tasks = { task_id:s }

Send a task_id to each slave and remove
these task_id:s from set_of_tasks

while (not all results have been received) {
while (no slave has reported a result) // NB
do some, but not too much, work

if (tasks remaining) {
pick a task_id from the set_of_tasks and
remove it from the set_of_tasks
send task_id to the slave
(i.e. to the slave that reported the result)

} else
send task_id = QUIT to slave

}

Here is the slave code:

dont_stop = 1 /* continue is a keyword in C*/
while (dont_stop) {
wait for task_id from master
dont_stop = task_id != QUIT

if (dont_stop) {
work on the task
send result to master

}
}

The nonblocking communication is used in the while-loop marked

NB. If the master is doing too much work in the loop, in may

delay the slaves.

10

Details about nonblocking communication

A nonblocking send start call initiates the send operation, but

does not complete it. The send start call will return before the

message was copied out of the send buffer. A separate send

complete call is needed to complete the communication, i.e., to

verify that the data has been copied out of the send buffer.

Similarly, a nonblocking receive start call initiates the receive

operation, but does not complete it. The call will return before

a message is stored into the receive buffer. A separate receive

complete call is needed to complete the receive operation and

verify that the data has been received into the receive buffer.

This is where the master can do some work in parallel with

the wait. Using a blocking receive the master could not work in

parallel.

If the send mode is standard then the send-complete call may

return before a matching receive occurred, if the message is

buffered. On the other hand, the send-complete may not com-

plete until a matching receive occurred, and the message was

copied into the receive buffer.

Nonblocking sends can be matched with blocking receives, and

vice-versa.

Here is comes a nonblocking send:

MPI_Request request;

MPI_Isend(&message, msg_len, MPI_INT, rank, tag,
MPI_COMM_WORLD, &request);

It looks very much like a blocking send, the only differences are

the name MPI_Isend(I stands for an almost immediate return),

and the extra parameter, request. The variable is a handle to

a so-called opaque object.

11

Think of ths communication object as being a C-structure with

variables keeping track of the tag and destination etc. request
is used to identify communication operations and match the

operation that initiates the communication with the operation

that terminates it. We are not supposed to access the informa-

tion in the object, and its contents is not standardised.

A nonblocking receive may look like:

MPI_Request request;

MPI_Irecv(&message, msg_len, MPI_INT, rank,
tag, MPI_COMM_WORLD, &request);

Here are some functions for completing a call:

MPI_Request request, requests[count];
MPI_Status status;

MPI_Wait(&request, &status);
MPI_Test(&request, &flag, &status);
MPI_Testany(count, requests, &index, &flag, &status);

and here is a simplified description. request is a handle to a

communication object, referred to as object.

MPI_Wait returns when the operation identified by request is

complete. So it is like a blocking wait. If the object was created

by a nonblocking send or receive call, then the object is

deallocated and request is set to MPI_REQUEST_NULL.

MPI_Test returns flag = true if the operation identified by

request is complete. In such a case, status contains

information on the completed operation; if the object was

created by a nonblocking send or receive, then it is deallocated

and request is set to MPI_REQUEST_NULL.
The call returns flag = false, otherwise. In this case, the

value of status is undefined.

12

Finally MPI_Testany. If the array of requests contains active

handles then the execution of MPI_Testanyhas the same effect

as the execution of

MPI_Test(&requests[i], flag, status),
for i=0, 1 ,..., count-1,

in some arbitrary order, until one call returns flag = true, or

all fail. In the former case, index is set to the last value of i,
and in the latter case, it is set to MPI_UNDEFINED.

If request (or requests) does not correspond to an ongoing

operation, the routines return immediately.

Now it is time for the example. We have n_slaves numbered

from 0 up to n_procs - 2. The master has rank n_procs - 1.
The number of tasks are n_tasks and we assume that the num-

ber of slaves is not greater than the number of tasks. task_ids
is an array containing a non-negative integer identifying the task.

A task id of QUIT = -1 tells the slave to finish.

The computed results (integers) are returned in the array results.

next_taskpoints to the next task in task_idsand n_received
keeps track of how many tasks have been finished by the slaves.

Here comes the code. First the master-routine.

13

void master_proc(int n_procs, int n_slaves, int n_tasks,
int task_ids[], int results[])

{
const int max_slaves = 10, tag = 1, msg_len = 1;
int hit, message, n_received, slave, next_task, flag;
double d;
MPI_Request requests[max_slaves];
MPI_Status status;

next_task = n_received = 0;

/* Initial distribution of tasks*/
for (slave = 0; slave < n_slaves; slave++) {
MPI_Send(&task_ids[next_task], msg_len, MPI_INT,

slave, tag, MPI_COMM_WORLD);

/* Start a nonblocking receive*/
MPI_Irecv(&results[next_task], msg_len, MPI_INT,

MPI_ANY_SOURCE, MPI_ANY_TAG,
MPI_COMM_WORLD, &requests[slave]);

next_task++;
}

/* Wait for all results to come in ...*/
while (n_received < n_tasks) {
flag = 0;
while (!flag) {
/* Complete the receive */
MPI_Testany(n_slaves, requests, &hit, &flag,

&status);
d = master_work(); /* Do some work */

}

14

n_received++; /* Got one result */
slave = status.MPI_SOURCE; /* from where? */

/* Hand out a new task to the slave,
unless we are done

*/
if (next_task < n_tasks) {
MPI_Send(&task_ids[next_task], msg_len, MPI_INT,

slave, tag, MPI_COMM_WORLD);

MPI_Irecv(&results[next_task], msg_len, MPI_INT,
MPI_ANY_SOURCE, MPI_ANY_TAG,
MPI_COMM_WORLD, &requests[hit]);

next_task++;
} else { /* No more tasks */
message = QUIT;
MPI_Send(&message, msg_len, MPI_INT, slave, tag,

MPI_COMM_WORLD);
}

}
}

15

and then the code for the slaves

void slave_proc(int my_rank, int master)
{
const int msg_len = 1, tag = 1;
int message, result, dont_stop;
MPI_Status status;

dont_stop = 1;
while (dont_stop) {
MPI_Recv(&message, msg_len, MPI_INT, master,

MPI_ANY_TAG, MPI_COMM_WORLD, &status);

dont_stop = message != QUIT;
if (dont_stop) {
/* Simulate work */
result = 100 * message + my_rank;
sleep(message);

MPI_Send(&result, msg_len, MPI_INT, master,
tag, MPI_COMM_WORLD);

}
}

}

16

Suppose we are using three slaves and have ten tasks, the

task_ids-array takes indices from zero to nine.

The work is simulated by using the sleep-function and the ten

tasks correspond to sleeping 1, 2, 3, 1, 2, 3, 1, 2, 3, 1 seconds.

The work done by the master, in master_work, takes 0.12 s per

call.

The table below shows the results from one run.

When a number is repeated two times the slave worked with this

task for two seconds (similarly for a repetition of three).

slaves task number sleep time
0 1 2 0 1

time 1 2
1 0 1 2 2 3
2 3 1 2 3 1
4 5 4 2 4 2
4 5 4 6 5 3
5 5 7 8 6 1
6 9 7 8 7 2
7 8 8 3

9 1

So had it been optimal, the run should have taken 7 s wallclock

time (the sum of the times is 19, so it must take more than 6

s wallclock time, as 3 · 6 < 19. The optimal time must be an

integer, and the next is 7). The time needed was 7.5 s and the

master was essentially working all this time as well.

Using two slaves the optimal time is 10 s, and the run took

10.8 s.

17

