Process control under unix

Processes are created using the f or k-system call. System call:
the mechanism used by an application program to request ser-
vice from the operating system (from the unix-kernel). man -s2
intro, man -s2 syscalls. printf (for example) is not a sys-
tem call but a library function. man -s3 i ntr o for details.

k for wait */
k for wait and fork */
Kk for fork and getppid=*/

#i ncl ude <sys/wait.h>
#i ncl ude <sys/types. h>
#i ncl ude <uni std. h>

#i ncl ude <stdio. h>

int main()

{
int var, exit_stat;
pid_t pid;
var = 10;

printf("Before fork\n");

if ((pid=fork()) <0) { kK
printf("fork error\n");

note () */

return 1;
} elseif (pid == 0) { /< 1 ama child*/
var ++;
printf("child\n");
sl eep(60); [+ do some work */
} else { /* | am a parent */
printf("parent\n");
wait (&exit_stat); Kk wait for (one) */
} /+* child to exit; not */

/* necessary to wait =/

printf("ppid = %61d, pid = %ld, var = %\n",
getppid(), pid, var); & get parent proc id=*/
return O;

% a. out

Before fork

child

par ent

ppid = 6843, pid = 0, var =11 child
ppid = 27174, pid = 6844, var = 10 par ent

f or k creates the child process (from the parent process) by mak-
ing a copy of the parent (so the child gets copies of the heap and
stack for example). The child and parent continue executing
with the instruction that follows the call to fork. So fork is
called from the parent and returns both to the parent and the
child.

Every process is identified by a number, the process id. or pid.
We can list the pids (and some other properties) of all the pro-
cesses running in the computer (this list has been shortened).
The ps-commando takes a huge number of options.

% ps -fel | grep thomas

u D PI D PPID CMD

t homas 5442 27174 xterm

t homas 5446 5442 -csh

t homas 6843 27174 a.out <-- parent

t honas 6844 6843 a.out <-- child

t homas 6851 5446 ps -fel

t homas 6852 5446 grep thomas

t honas 27174 27171 -tcsh

t homas 27171 27152 sshd: thomas@ts/ 62
r oot 27152 3203 sshd: thomas [priv]
r oot 3203 1 /usr/sbin/sshd

root 1 0 init [5]

A process that hangs (not uncommon in parallel programming)
can be terminated using the ki | | -command which sends a signal
to a process. There are different signals and they can be used
for communication between processes. Signal number 9, sigkill,
cannot be caught.

kill -1
HUP INT QUIT ILL TRAP ABRT BUS FPE KILL USR1 SEGV USR2

% ps U thomas
PID TTY STAT
8604 pts/62 S+

TI ME COMVAND

0: 00 a. out <-- kill this one

%kill -9 8604 (or kill -KILL 8604)

A process can choose to catch the signal using a a signal handler
routine. It can also ignore (some) signals:

#i ncl ude <signal . h>
#i ncl ude <stdio. h>
int main()
{
/+* SIGNT is defined /usr/include/bits/signum h/
if (sigignore(SIGNT) ==-1)
printf("s+x Error when calling sigignore.\n");
whi | e(1) /* 1 oop forever */
return O;

}

% gcc signal.c
% a. out
rererererererererCM Qui t

% /bin/stty -a
intr = ~C, quit = "\; erase = "H, etc....

3

To start a child process that differs from the parent we use the
exec system call (there are several forms). exec replaces the
child (the process which it is called from) with a new program.

#i ncl ude <sys/wait.h>
#i ncl ude <sys/types. h>
#i ncl ude <unistd. h>

#i ncl ude <stdio. h>

int main()

{
int exit_stat;
pid_t pi d;

if ((pid="fork()) <0) {
printf("fork error\n");
return 1;

} elseif (pid==0) { /| ama child =/
/+ replace this process by another =/

/+ execlp(file, name_shown_by_ps,
argl, ..., argn, NULL) */
/* (char *) 0 is a null pointer. (charx)

is a type cast. See the C FAQ for details.*/

/* newis a conpiled C program/

i f(execl p("new', "new_nane", (char*) 0) < 0) {
printf("x*+ execlp error\n");
return 1;
}
} else /* | ama parent. Wait =/
wait (&exit_stat); /* or do sonething el sex/
return O;

}

Very common usage in conmandé&.

4

Interprocess communication

Most parallel computing tasks require communication between
processes. This can be accomplished in several different ways on
a unix system. The pipe, |, is a standard example:

% ps aux | grep a.out

The ps and gr ep processes are running in parallel and are com-
municating using a pipe. Data flows in one direction and the
processes must have a common ancestor. The pipe handles syn-
chronisation of data (gr ep must wait for data from ps and ps
may not deliver data faster than gr ep can handle, for example).

The communication is usually local to one system, but using
rsh (remote shell) or ssh (secure shell) it may be possible to
communicate between different computers:

% ps aux | ssh other_conputer "grep a.out > /tnp/junk"

/tmp/ j unk is created on ot her _conput er. (There are other
remote commands such as r cp/ scp, remote copy).

FIFOs (or named pipes) can be used to communicate between
two unrelated processes. A general way to communicate between
computers over a network is to use so called sockets.

When a (parallel) computer has shared memory it is possible
to communicate via the memory. Two (or more processes) can
share a portion of the memory. Here comes a master (parent)
program.

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

<sys/types. h>
<uni std. h>
<stdi o. h>
<sys/ipc. h>
<sys/shm h>

int main()

{
i nt exit_stat,
pid_t pi d;
struct shm d_ds buf;
doubl e *shmaddr ;
char s_shmi d[10]
| *
* Create new shared nmenory segnent and then
* attach it to the address space of the process
*/
shm d=shnget (| PC_PRI VATE, (size_t) 512, SHM R SHM W ;
shmaddr = shmat (shmid, (void*) 0, 0)

shmid, info, k;

/+* Store sonme val ues */
for (k = 0; k <512/ 8; k++)
*(shmaddr + k) = k;

/* Create new proces */

if ((pid=fork()) <0) {
printf("fork error\n")
return 1,

} elseif (pid ==

0) { /1 ama child*/

/* convert
sprintf(s_shmd,

int to string=/
"od", shm d)
if (execlp("./child",

"child_nanme", s_shmd,

(char =) 0) < 0) {
printf("«** In main: execlp error.\n");
return 1;
}
} else {

wait(&exit_stat);

/* Renove the segnent. */

info = shnrtl (shnmid, | PC_RM D, &buf)
}
return O;

}

Here comes a slave (child) program.

<stdi 0. h>

<stdlib. h>
<sys/ipc. h>
<sys/shm h>

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

int main(int argc, char xargv[])
{ int k, shm d;
doubl e *shmaddr

printf("In childin"); printf("argc = %\ n", argc)
printf("argv[0] = %s\nargv[1l] = %\n",argv[0], argv[1]

k convert to int x/
shm d);

shm d = atoi(argv[1])
printf("shmd = %\ n"

shmaddr = shmat (shmi d, (void*) 0, SHM RDONLY)

for (k =0; k <5; k++) /~ "Fetch" and print val uesx/
printf("+~(shmaddr+%d) = % \n", k, *(shmaddr + k))

return O;

% gcc -0 master naster.c
% gcc -o child child.c

% mast er

In child

argc = 2

argv[0] = child_name
argv[1] = 22183946

shm d = 22183946
*(shmaddr +0) = 0. 000000
*(shmaddr +1) = 1. 000000
*(shmaddr +2) = 2. 000000
*(shmaddr +3) = 3. 000000
*(shmaddr +4) = 4. 000000

In general some kind of synchronisation must be used when ac-
cessing the memory. There are such tools (e.g. semaphores) but
since we will look at a similar construction in the next section
we drop the subject for now.

Using the command i pcs we can get a list of segments. It may
look like:

% i pcs

------ Shared Menory Segnents --------

key shm d owner per ms byt es r
stat us

0x00000000 22249482 thomas 600 512 0

nore stuff

In case of problems we can remove segments, e.g.

ipcrm-m 22249482

Nonblocking communication - a small
example

Suppose we have a pool of tasks where the amount of time to
complete a task is unpredictable and varies between tasks.

‘We want to write an MPI-program, where each process will ask
the master-process for a task, complete it, and then go back
and ask for more work. Let us also assume that the tasks can
be finished in any order, and that the task can be defined by a
single integer and the result is an integer as well (to simplify the
coding).

The master will perform other work, interfacing with the user,
doing some computation etc. while waiting for the tasks to be
finished.

‘We could divide all the tasks between the processes at the be-
ginning, but that may lead to load inbalance.

An alternative to the solution, on the next page, is to create two
threads in the master process. One thread handles the commu-
nication with the slaves and the other thread takes care of the
user interface.

One has to very careful when mixing threads and MPI, since the
MPI-system may not be thread safe, or not completely thread
safe. The MPI-2.0 standard defines the following four levels:

e VPI _THREAD_SI NGLE Only one thread will execute.

e VP| _THREAD_FUNNELED The process may be multi-threaded,
but only the main thread will make MPI calls (all MPI calls
are “funneled” to the main thread).

e VPl _THREAD_SERI ALI ZEDThe process may be multi-threaded,
and multiple threads may make MPI calls, but only one at a
time: MPI calls are not made concurrently from two distinct
threads (all MPI calls are “serialized”).

e VPl _THREAD_MULTI PLE Multiple threads may call MPI, with
no restrictions.

See the standard for more details.

9

The master does the following:

set _of _tasks = { task_id:s }

Send a task_id to each slave and renpve
these task_id:s fromset_of _tasks

while (not all results have been received) {
while (no slave has reported a result) // NB
do some, but not too nmuch, work

if (tasks remaining) {
pick a task_id fromthe set_of _tasks and
renove it fromthe set_of _tasks
send task_id to the slave
(i.e. to the slave that reported the result)
} else
send task_id = QUIT to sl ave
}

Here is the slave code:

dont _stop = 1 /x continue is a keyword in Cx/
while (dont_stop) {

wait for task_id from master

dont_stop = task_id != QUIT

if (dont_stop) {
work on the task
send result to master
}
}

The nonblocking communication is used in the whi | e-loop marked
NB. If the master is doing too much work in the loop, in may
delay the slaves.

10

Details about nonblocking communication

A nonblocking send start call initiates the send operation, but
does not complete it. The send start call will return before the
message was copied out of the send buffer. A separate send
complete call is needed to complete the communication, i.e., to
verify that the data has been copied out of the send buffer.

Similarly, a nonblocking receive start call initiates the receive
operation, but does not complete it. The call will return before
a message is stored into the receive buffer. A separate receive
complete call is needed to complete the receive operation and
verify that the data has been received into the receive buffer.

This is where the master can do some work in parallel with
the wait. Using a blocking receive the master could not work in
parallel.

If the send mode is standard then the send-complete call may
return before a matching receive occurred, if the message is
buffered. On the other hand, the send-complete may not com-
plete until a matching receive occurred, and the message was
copied into the receive buffer.

Nonblocking sends can be matched with blocking receives, and
vice-versa.

Here is comes a nonblocking send:

MPI _Request request;

MPI _| send(&message, nsg_len, MPI_INT, rank, tag,
MPI _COWM WORLD, &request);

It looks very much like a blocking send, the only differences are
the name MP| _| send (I stands for an almost immediate return),
and the extra parameter, r equest. The variable is a handle to
a so-called opaque object.

11

Think of ths communication object as being a C-structure with
variables keeping track of the tag and destination etc. r equest
is used to identify communication operations and match the
operation that initiates the communication with the operation
that terminates it. We are not supposed to access the informa-
tion in the object, and its contents is not standardised.

A nonblocking receive may look like:

MPI _Request request;

MPI _Irecv(&message, nsg_len, MPI_INT, rank,
tag, MPI_COWM WORLD, &request);

Here are some functions for completing a call:

MPI _Request request, requests[count];
MPI _Status status;

MPI _WAi t (& equest, &status);
MPI _Test (& equest, &flag, &status);
MPI _Test any(count, requests, & ndex, &flag, &status);

and here is a simplified description. request is a handle to a
communication object, referred to as object.

MPI _WAi t returns when the operation identified by r equest is
complete. So it is like a blocking wait. If the object was created
by a nonblocking send or receive call, then the object is
deallocated and r equest is set to MPI _REQUEST_NULL

MPI _Test returns fl ag = trueif the operation identified by
request is complete. In such a case, St at us contains
information on the completed operation; if the object was
created by a nonblocking send or receive, then it is deallocated
and r equest is set to MPl _REQUEST_NULL

The call returns fl ag = fal se otherwise. In this case, the
value of st at us is undefined.

12

Finally MPI _Test any. If the array of requests contains active
handles then the execution of MPl _Test any has the same effect

voi d master_proc(int

n_procs, int n_slaves, int n_tasks
int task_ids[], int results[])

as the execution of {
MPI _Test(&requests[i], flag, status), F:onst_ int max_slaves = 1.0‘ tag = 1, meg_len = 1,
for i=0, 1 count-1, int hit, nessage, n_received, slave, next_task, flag;
doubl e d;
in some arbitrary order, until one call returns fl ag = true, or MPI _Request requests[nmax_sl aves];
all fail. In the former case, i ndex is set to the last value of i, MPl _Status status;
and in the latter case, it is set to MPI _UNDEFI NED
next _task = n_received = 0;
If request (or requests) does not correspond to an ongoing
operation, the routines return immediately. /* Initial distribution of tasksx/
for (slave = 0; slave < n_slaves; slave++) {
Now it is time for the example. We have n_s| aves numbered MPI _Send(&t ask_i ds[next _task], nsg_len, MPI_INT,
from 0 up to n_procs - 2 The master has rank n_procs - 1 sl ave, tag, MPI _COVM WORLD);
The number of tasks are n_t asks and we assume that the num-
ber of slaves is not greater than the number of tasks. t ask_i ds /* Start a nonbl ocking receivex/
is an array containing a non-negative integer identifying the task. MPI _Irecv(&r esults[next_task], msg_len, MPI _INT,
A task id of QUI T = -1 tells the slave to finish. MPI _ANY_SOURCE, MPI _ANY_TAG,
MPI _COW WORLD, &requests[slave]);
The computed results (integers) are returned in the array r esul t s. next _task++;
next _t ask points to the next task int ask_i dsand n_r ecei ved)
keeps track of how many tasks have been finished by the slaves. /* Wait for all results to come in ...x*/
while (n_received < n_tasks) {
Here comes the code. First the master-routine. flag = O;
while (!flag) {
/* Conpl ete the receivex/
MPI _Test any(n_sl aves, requests, &hit, &flag,
&st atus);
d = master_work(); / Do some work */
}
13 14
n_recei ved++; /* Got one result */ and then the code for the slaves
sl ave = status. MPI _SOURCE; k from where? * [. . .
void slave_proc(int ny_rank, int naster)
/* Hand out a new task to the slave, { . _ ..
const int mseg_len = 1, tag = 1;
unl ess we are done . '
.l int message, result, dont_stop;
. MPI _St at us st at us;
if (next_task < n_tasks) {
MPI _Send(&t ask_i ds[next _task], msg_l en, MPI _INT, dont_stop = 1;
sl ave, tag, MPI_COVM WORLD); whi Ig (dont si op) {
MPI _Irecv(&results[next_task], msg_len, MPI _INT, WP _Recv(sprrlesisge+AgsgﬁlLlenéwN3I \XIIPN:D rrgssttaetrt,]s) :

MPI _ANY_SOURCE, MPI _ANY_TAG,
MPI _COVM WORLD, &requests[hit]);
next _task++;
} else { /* No nore tasks */
message = QUIT;
MPI _Send(&ressage, nsg_| en,
MPI _COMM WORLD) ;

MPI _I NT, slave, tag,

15

dont _stop = nessage != QUIT,;

if (dont_stop) {
/* Simulate work »/
result = 100 * nmessage + ny_rank;
sl eep(nessage) ;

MPI _Send(&result, msg_len, MPI_INT,
tag, MPlI_COWM WORLD);

mast er,

16

Suppose we are using three slaves and have ten tasks, the
t ask_i ds-array takes indices from zero to nine.

The work is simulated by using the sl eep-function and the ten
tasks correspond to sleeping 1, 2, 3, 1, 2, 3, 1, 2, 3, 1 seconds.
The work done by the master, in mast er _wor k, takes 0.12 s per
call.

The table below shows the results from one run.
‘When a number is repeated two times the slave worked with this
task for two seconds (similarly for a repetition of three).

sl aves task numnber sleep tine
0 1 2 1

NoOUARANPR T
© 00 owo
NNDA DR R

00O NNN

©ONO U A WNR O

WN R WN R WN

©
[N

So had it been optimal, the run should have taken 7 s wallclock
time (the sum of the times is 19, so it must take more than 6
s wallclock time, as 36 < 19. The optimal time must be an
integer, and the next is 7). The time needed was 7.5 s and the
master was essentially working all this time as well.

Using two slaves the optimal time is 10 s, and the run took
10.8 s.

17

