
Lecture Notes
on

High Performance Computing

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2
x 10

−7 Times on a 250 MHz SGI

table size

tim
e/

co
m

pa
ris

on

Thomas Ericsson

Mathematics

Chalmers/GU

2012

1

High Performance Computing

Thomas Ericsson, computational mathematics, Chalmers

office: L2075

phone: 772 10 91
e-mail: thomas@chalmers.se

My homepage:

http://www.math.chalmers.se/~thomas

The course komepage:

http://www.math.chalmers.se/Math/Grundutb/CTH/
tma881/1112

Assignments, copies of handouts (lecture notes etc.), schedule

can be found on the www-address.

We have two lectures and two labs per week. No lab today.

Prerequisites:

• a programming course (any language will do)

• the basic numerical analysis course

• an interest in computers and computing; experience of

computers and programming

If you do not have a Chalmers/GU-account, you need to contact

the helpdesk to get a personal account.

2

Why do we need HPC?

• Larger and more complex mathematical models require greater

computer performance. Scientific computing is replacing

physical models, for example.

•When computer performance increases new problems can be

attacked.

To solve problems in a reasonable time using available resources

in a good way we need competence in the following areas:

1. algorithms

2. hardware; limitations and possibilities

3. code optimization

4. parallelization and decomposition of problems and algorithms

5. software tools

This course deals primarily with points 2-5. When it comes to

algorithms we will mostly study the basic building blocks.

The next pages give some, old and new, examples of

demanding problems.

For each problem there is a list of typical HPC-questions,

some of which you should be able to answer after having

passed this course.

3

A real-time application

Simulation of surgery; deformation of organs; thesis work

(examensarbete) Prosolvia. Instead of using a standard

deformation more realistic deformations were required.

Organs have different structure, lung, liver etc.

Requires convincing computer graphics in real time; no flicker

of the screen; refresh rate ≥ 72 Hz.

Using a shell model implies solving a sparse linear system,

Ax = b, in 0.01 s (on a 180 MHz SGI O2 workstation, the typical

customer platform).

•What do we expect? Is there any chance at all?

• Is there a better formulation of the problem?

•What linear solver is fastest? Sparse, band, iterative, ...?

– Datastructures, e.g.

– General sparse: {j, k, aj,k}, aj,k 6= 0, j ≥ k.

– Dense banded.

– Memory accesses versus computation.

• Should we write the program or are there existing ones?

Can we us the high performance library made by SGI?

• If we write the code, what language should we use, and how

should we code in it for maximum performance?

• Can we find out if we get the most out of the CPU? How?

Are we using 20% of top speed or 90%?

•What limits the performance, the CPU (the floating point

unit) or the memory?

4

Integrals and probability

Graduate student in mathematical statistics. What remained of

the thesis work was to make large tables of integrals:
∫ ∞

0

f(x) dx, where f(x)→∞ when x→ 0+

The integrand was complicated and was defined by a Matlab-

program. No chance of finding a primitive function. Using the

Matlab routine quad (plus a substitution), to approximate the

integral numerically, the computer time was estimated to several

CPU-years. Each integral took more than an hour to compute.

• Is this reasonable, is the problem really this hard?

• Are Matlab and quad good tools for such problems?

• How can one handle singularities and infinite intervals?

Solution: Switching to Fortran and Quadpack (a professional

package) the time for one integral came down to 0.02 s (with the

same accuracy in the result).

• Matlab may be quite slow.

• quad is a simple algorithm; there are better methods

available now, e.g. quadl.

5

Mesh generation for PDEs in 3D

require huge amounts of storage and computer time.

Airflow around an aircraft; 3 space dimensions and time.

CFD (Computational Fluid Dynamics).

Discretize (divide into small volume elements) the air in the

box and outside the aircraft. Mesh generation (using m3d, an

ITM-project, Swedish Institute of Applied Mathematics) on one

RS6000 processor:

wed may 29 12:54:44 metdst 1996 So this is old stuff
thu may 30 07:05:53 metdst 1996

183463307 may 2 13:46 s2000r.mu

tetrahedrons in structured mesh: 4 520 413
tetrahedrons in unstructured mesh: 4 811 373

• Choice of programming language and data structures.

• Handling files and disk.

Now we must solve the PDE given the mesh...

6

More PDEs: Weather forecasts

SMHI, Swedish Meteorological and Hydrological Institute.

HIRLAM (HIgh Resolution Limited Area Model).

HIROMB (HIgh Resolution Operational Model of the Baltic).

Must be fast. “Here is the forecast for yesterday.”

Parallel implementation of HIROMB, lic-thesis KTH.

Divide the water volume into pieces and distribute the pieces

onto the CPUs.

• Domain decomposition (MPI, Message Passing).

• Load balancing. Communication versus computation.

• Difficult sub-problems. Implicit solver for the ice equations.

Large (105 equations) sparse Jacobians in Newton’s method.

7

Three weeks runtime

Consultant work, for Ericsson, by a colleague of mine.

Find the shape of a TV-satellite antenna such that the “image”

on the earth has a given form (some TV-programs must no be

shown in certain countries).

Algorithm: shape optimization + ray tracing.

Three weeks runtime (for one antenna) on a fast single-CPU

PC. One of the weeks for evaluating trigonometric functions.

You do not know much about the code (a common situation).

Can you make it faster? How? Where should you optimize?

• Choice of algorithm.

• Profiling.

• Faster trigonometric functions. Vector forms?

• Parallel version? How? Speedup? (OpenMP)

8

A Problem from Medicine

Inject a radionuclide that attacks a tumour.

How does the radioactivity affect the surrounding tissue?

To be realistic the simulation should contain some 7 · 107 cells.

Matlab-program computing a huge number of integrals (absorbed

dose).

The original program would take some 26 000 years runtime.

After switching to Fortran90, changing the algorithm, by

precomputing many quantities (the most important part) and

cleaning up the code, the code solved the problem in 9 hours on

a fast PC (a speedup by a factor of 2.6 · 107).

9

Contents of the Course

There are several short assignments which illustrate typical

problems and possibilities.

• Matlab (get started exercises, not so technical).

• Uniprocessor optimization.

• Low level parallel threads programming.

• MPI, parallel programming using Message Passing.

• OpenMP, more automatic threads programming.

Many small and short programs, matrix- and vector

computations (often the basic operations in applications).

Simple algorithms.

E.g. test how indirect addressing (using pointers) affects

performance:

do k = 1, n
j = p(k) ! p is a pointer array
y(j) = y(j) + a * x(j)

end do

• You will work with C, Fortran and some Matlab and several

software tools and packages.

• Java is not so interesting for HPC.

At most two students per group. Each group should hand in

written reports on paper (Swedish is OK). Not e-mail.

There are deadlines, see www.

10

In more detail...

• A sufficient amount of C and Fortran90 (77) for the labs,

tutorial.

• Computer architecture, RISC/CISC, pipelining, caches...

•Writing efficient programs for uniprocessors, libraries,

Lapack, ...

• Necessary tools: make, ld, prof, ...

• Introduction to parallel systems, SIMD, MIMD, shared

memory, distributed memory, network topologies, ...

• POSIX threads, pthreads.

• MPI, the Message Passing Interface.

• Shared memory parallelism, OpenMP.

• Parallel numerical analysis, packages.

• A few words about GPU-programming, CUDA.

Note: this is not a numerical analysis course. We will study

simple algorithms (mainly from linear algebra).

You will not become an expert in any of the above topics

(smörg̊asbord), but you will have a good practical

understanding of high performance computing.

The course will give you a good basis for future work

11

Literature

You can survive on the lecture notes, web-pages and man-pages.

There are a fair number of HPC-books available as E-books

(Books24x7) through the Chalmers library homepage.

A web-version of Designing and Building Parallel Programs, by

Ian Foster, 1995, can be found at:

http://www-unix.mcs.anl.gov/dbpp.

For more books, have a look at the homepage under

Documentation.

Read: “Introduction to C, Fortran 90, FORTRAN 77, tcsh and

bash” which you can find on the homepage under Diary. I no

longer lecture C and Fortran

12

Programming languages for HPC

The two dominating language groups are Fortran and C/C++.

Fortran90/95/2003 is more adapted to numerical computations.

It has support for complex numbers, array operations,

handling of arithmetic etc. New code is written in

Fortran90/95/2003 (Fortran66/77 is used for existing code only).

Fortran90/95 has simple OO (Object Oriented) capabilities

(modules, overloading, but no inheritance).

C++ is OO and has support for some numerics (standard

library) or can be adapted using classes, overloading etc.

C is less suited for numerical computing (my opinion).

Too few built-in tools and it cannot be modified.

C/C++ is almost the only choice when it comes to low level

unix programming. It is not uncommon to code the computa-

tional part in Fortran and a computer graphics (or unix) part in

C/C++.

Commercial Fortran compilers generate fast code: competition

(benchmarks), simple language, no aliasing. One of Fortran’s

most important advantages. Speed is (almost) everything in

many applications.

It is harder to generate fast code from C/C++.

It is very easy to write inefficient programs in C++.

More about performance later on.

13

Operating Systems

Most HPC-systems are Linux/Unix-based. Here is a list from

www.top500.org listing the operating systems used on the 500

fastest systems in the world (Nov 2011).

OS family Count Share %

Linux 457 91.4 %

Unix 30 6.0 %

Mixed 11 2.2 %

Windows 1 0.2 %

BSD Based 1 0.2 %

Matlab

Matlab is too slow for demanding applications:

• Statements may be interpreted (not compiled, although there

is a Matlab compiler). In Matlab 6.5 (and later) there is a

JIT-accelerator (JIT = Just In Time).

You can switch off/on JIT by feature accel off,
feature accel on. Try it!

• The programmer has poor control over memory.

• It is easy to misuse some language constructs, e.g. dynamic

memory allocation.

• Matlab is written in C, Java and Fortran.

• Matlab is not always predictable when it comes to perfor-

mance.

• The first assignment contains more examples and a case study.

You can start working with the Matlab assignment now.

14

Using make

Make keeps track of modification dates and recompiles

the routines that have changed.

Suppose we have the programs main.f90 and sub.f90 and that

the executable should be called run. Here is a simple makefile

(it should be called Makefile or makefile):

run: main.o sub.o
g95 -o run main.o sub.o

main.o: main.f90
g95 -c main.f90

sub.o: sub.f90
g95 -c sub.f90

A typical line looks like:

target: files that the target depends on
^Ia rule telling make how to produce the target

Note the tab character. Make makes the first target in the make-

file. -c means compile only (do not link) and -o gives the name

of the executable.

To use the makefile just give the command make.

% make
g95 -c main.f90
g95 -c sub.f90
g95 -o run main.o sub.o

To run the program we would type run .

15

If we type make again nothing happens (no file has changed):

% make
‘run’ is up to date.

Now we edit sub.f90 and type make again:

% make
g95 -c sub.f90
g95 -o run main.o sub.o

Note that only sub.f90 is compiled. The last step is to link

main.o and sub.o together (g95 calls the linker, ld).

Writing makefiles this way is somewhat inconvenient if we have

many files. make may have some builtin rules, specifying how to

get from source files to object files, at least for C. The following

makefile would then be sufficient:

run: main.o sub.o
gcc -o run main.o sub.o

Fortran90 is unknown to some make-implementations and on the

student system one gets:

% make
make: *** No rule to make target ‘main.o’,

needed by ‘run’. Stop.

We can fix that by adding a special rule for how to produce an

object file from a Fortran90 source file.

run: main.o sub.o
g95 -o run main.o sub.o

.SUFFIXES: .f90

.f90.o:
g95 -c $<

16

$<, a so called macro, is short for the Fortran file.

One can use variables in make, here OBJS and FFLAGS.

OBJS = main.o sub.o
FFLAGS = -O3

run: $(OBJS)
g95 -o run $(FFLAGS) $(OBJS)

.SUFFIXES: .f90

.f90.o:
g95 -c $(FFLAGS) $<

OBJS (for objects) is a variable and the first line is an assignment

to it. $(OBJS) is the value (i.e. main.o sub.o) of the variable

OBJS. FFLAGS is a standard name for flags to the Fortran com-

piler. I have switched on optimization in this case. Note that

we have changed the suffix rule as well.

Make knows about certain variables, like FFLAGS. Suppose we

would like to use the ifort-compiler instead. When compiling

the source files, make is using the compiler whose name is stored

in the variable FC (or possible F90 or F90C). We write:

OBJS = main.o sub.o
FC = ifort
FFLAGS = -O3

run: $(OBJS)
$(FC) -o run $(FFLAGS) $(OBJS)

.SUFFIXES: .f90

.f90.o:
$(FC) -c $(FFLAGS) $<

It is usually important to use the same compiler for compiling

and linking (or we may get the wrong libraries). It may also be

important to use the same Fortran flags.

17

Sometimes we wish the recompile all files (we may have changed

$(FFLAGS)for example). It is common to have the target clean.
When having several targets we can specify the one that should

be made:

OBJS = main.o sub.o
FC = g95
FFLAGS = -O3

run: $(OBJS)
$(FC) -o run $(FFLAGS) $(OBJS)

Remove objects and executable
clean:

rm -f $(OBJS) run

.SUFFIXES: .f90

.f90.o:
$(FC) -c $(FFLAGS) $<

Without -f, rm will complain if some files are missing.

We type:

% make clean
rm -f main.o sub.o run

18

Suppose we like to use a library containing compiled routines.

The new makefile may look like:

OBJS = main.o sub.o
FC = g95
FFLAGS = -O3
LIBS = -lmy_library

run: $(OBJS)
$(FC) -o run $(FFLAGS) $(OBJS) $(LIBS)

.SUFFIXES: .f90

.f90.o:
$(FC) -c $(FFLAGS) $<

If you are using standard functions in C sin, exp etc. you must

use the math-library:

cc ... -lm

The equivalent makefile for C-programs looks like:

OBJS = main.o sub.o
CC = cc
CFLAGS = -O3
LIBS = -lmy_library -lm

run: $(OBJS)
$(CC) -o run $(CFLAGS) $(OBJS) $(LIBS)

clean:
rm -f $(OBJS) run

19

For the assignments it is easiest to have one directory and one

makefile for each. It is also possible to have all files in one

directory and make one big makefile.

OBJS1 = main1.o sub1.o
OBJS2 = main2.o sub2.o
CC = cc
CFLAGS = -O3
LIBS1 = -lm
LIBS2 = -lmy_library

all: prog1 prog2

prog1: $(OBJS1)
$(CC) -o $@ $(CFLAGS) $(OBJS1) $(LIBS1)

prog2: $(OBJS2)
$(CC) -o $@ $(CFLAGS) $(OBJS2) $(LIBS2)

clean:
rm -f $(OBJS1) $(OBJS2) prog1 prog2

When one is working with (and distributing) large projects it

is common to use make in a recursive fashion. The source code

is distributed in several directories. A makefile on the top-level

takes care of descending into each sub-directory and invoking

make on a local makefile in each directory.

20

A few words about header files. Suppose main.c depends on

defs.h and params.h. main.c calls sub1.c and sub2.c, where

sub2.c depends on defs.h and constants.h, which in turn

includes const.h. A suitable makefile might be:

OBJS = main.o sub1.o sub2.o
CC = gcc
CFLAGS = -O3
LIBS = -lm

a.out: $(OBJS)
$(CC) -o $@ $(CFLAGS) $(OBJS) $(LIBS)

main.o: defs.h params.h
sub2.o: defs.h constants.h const.h

Remove objects and executable
clean:

rm -f $(OBJS) a.out

In can be complicated to create the header file dependencies,

the makedepend-program may help. Say we have this makefile

(named makefile or Makefile, with no header file dependen-

cies):

OBJS = main.o sub1.o sub2.o
CC = gcc
CFLAGS = -O3
LIBS = -lm

a.out: $(OBJS)
$(CC) -o $@ $(CFLAGS) $(OBJS) $(LIBS)

Remove objects and executable
clean:

rm -f $(OBJS) a.out

21

makedependon the source files will append the dependencies on

the existing makefile:

% makedepend *.c
% cat Makefile
OBJS = main.o sub1.o sub2.o
CC = gcc
CFLAGS = -O3
LIBS = -lm

a.out: $(OBJS)
$(CC) -o $@ $(CFLAGS) $(OBJS) $(LIBS)

Remove objects and executable
clean:

rm -f $(OBJS) a.out
DO NOT DELETE

main.o: defs.h params.h
sub2.o: defs.h constants.h const.h

This is how the new makefile works:

% make let us assume a.out is up to date
‘a.out’ is up to date.

% touch defs.h changing defs.h
% make
gcc -O3 -c -o main.o main.c
gcc -O3 -c -o sub2.o sub2.c
gcc -o a.out -O3 main.o sub1.o sub2.o -lm

makedependworks for Fortran as well provided you use #include.

There is much more to say about make. See e.g. the O’Reilly-

book, Robert Mecklenburg, Managing Projects with GNU Make,

3rd ed, 2004.

22

Computer Architecture

Why this lecture?

Some knowledge about computer architecture is necessary:

• to understand the behaviour of programs

• in order to pick the most efficient algorithm

• to be able to write efficient programs

• to know what computer to run on

(what type of architecture is your code best suited for)

• to read (some) articles in numerical analysis

The change of computer architecture has made it necessary to

re-design software, e.g Linpack ⇒ Lapack.

23

A very simple (and traditional) model of a computer:

CPU Memory devices
I/O

bus
I/O busMemory

The CPU contains the ALU, arithmetic and logic unit and the

control unit. The ALU performs operations such as +, -, *, / of

integers and Boolean operations.

The control unit is responsible for fetching, decoding and

executing instructions.

The memory stores instructions and data. Instructions are fetched

to the CPU and data is moved between memory and CPU using

buses.

I/O-devices are disks, keyboards etc.

The CPU contains several registers, such as:

• PC, program counter, contains the address of the next

instruction to be executed

• IR, instruction register, the executing instruction

• address registers

• data registers

The memory bus usually consist of one address bus and one data

bus. The data bus may be 64 bits wide and the address bus may

be ≥ 32 bits wide. With the introduction of 64-bit computers,

buses tend to become increasingly wider. The Itanium 2 uses

128 bits for data and 44 bits for addresses.

Operations in the computer are synchronized by a clock.

A modern CPU may run at a few GHz (clock frequency). The

buses are usually a few (4-5) times slower.

24

A few words on 64-bit systems

Why 64 bit?

• A larger address range, can address more memory.

With 32 bits we can (directly) address 4 Gbyte, which is

rather limited for some applications.

•Wider busses, increased memory bandwidth.

• 64-bit integers.

Be careful when mixing binaries (object libraries) with your own

code. Are the integers 4 or 8 bytes?

% cat kind.c
#include <stdio.h>

int main()
{
printf("sizeof(short int) = %d\n", sizeof(short int));
printf("sizeof(int) = %d\n", sizeof(int));
printf("sizeof(long int) = %d\n", sizeof(long int));

return 0;
}

% gcc kind.c On the 32-bit student system, 2010
% a.out
sizeof(short int) = 4
sizeof(int) = 4
sizeof(long int) = 4

% a.out On the 64-bit student system
sizeof(short int) = 4
sizeof(int) = 4
sizeof(long int) = 8 4 if gcc -m32

Running the 32-bit binary on the 64-bit system behaves like the

32-bit system. One cannot run the 64-bit binary om the 32-bit

system.
25

CISC (Complex Instruction Set Computers) before ≈ 1985.

Each instruction can perform several low-level operations, such

as a load from memory, an arithmetic operation, and a memory

store, all in a single instruction.

Why CISC?

For a more detailed history, see the literature.

• Advanced instructions simplified programming

(writing compilers, assembly language programming).

Software was expensive.

• Memory was limited and slow so short programs were good.

(Complex instructions ⇒ compact program.)

Some drawbacks:

• complicated construction could imply a lower clock frequency

• instruction pipelines hard to implement

• long design cycles

• many design errors

• only a small part of the instructions was used

According to Sun: Sun’s C-compiler uses about 30% of the

available 68020-instructions (Sun3 architecture). Studies show

that approximately 80% of the computations for a typical

program requires only 20% of a processor’s instruction set.

When memory became cheaper and faster, the decode and

execution on the instructions became limiting.

Studies showed that it was possible to improve performance with

a simple instruction set and where instructions would execute in

one cycle.

26

RISC - Reduced Instruction Set Computer

• IBM 801, 1979 (publ. 1982)

• 1980, David Patterson, Berkeley, RISC-I, RISC-II

• 1981, John Hennessy, Stanford, MIPS

• ≈ 1986, commercial processors

A processor whose design is based on the rapid execution of a

sequence of simple instructions rather than on the provision of

a large variety of complex instructions.

Some RISC-characteristics:

• load/store architecture; C = A + B

LOAD R1,A
LOAD R2,B
ADD R1,R2,R3
STORE C,R3

• fixed-format instructions (the op-code is always in the same

bit positions in each instruction which is always one word

long)

• a (large) homogeneous register set, allowing any register to

be used in any context and simplifying compiler design

• simple addressing modes with more complex modes replaced

by sequences of simple arithmetic instructions

• one instruction/cycle

• hardwired instructions and not microcode

• efficient pipelining

• simple FPUs; only +, -, *, / and √ .

sin, exp etc. are done in software.

27

Advantages: Simple design, easier to debug, cheaper to

produce, shorter design cycles, faster execution,

easier to write optimizing compilers

(easier to optimize many simple instructions than a few

complicated with dependencies between each other).

CISC - short programs using complex instructions.

RISC - longer programs using simple instructions.

So why is RISC faster?

The simplicity and uniformity of the instructions make it

possible to use pipelining, a higher clock frequency and to write

optimizing compilers.

Will now look at some techniques used in all RISC-computers:

• instruction pipelining

work on the fetching, execution etc. of instructions in parallel

• cache memories

small and fast memories between the main memory and the

CPU registers

• superscalar execution

parallel execution of instructions (e.g. two integer

operations, *, + floating point)

The most widely-used type of microprocessor, the x86 (Intel), is

CISC rather than RISC, although the internal design of newer

x86 family members is said to be RISC-like. All modern CPUs

share some RISC characteristics, although the details may differ

substantially.

28

Pipelining - performing a task in several
steps, stages

Analogy: building cars using an assembly line in a factory.

Suppose there are five stages (can be more), .e.g

IF Fetch the next instruction from memory.

ID Instruction decode.

EX Execute.

M, WM Memory access, write to registers.

IF ID MEX WB

IF ID MEX WB

IF ID MEX WB

IF ID MEX WB

IF ID MEX WB

Clock cycle number

1 2 3 4 5 6 7 8 9

Instruction

k+1

k+2

k+3

k+4

k

29

So one instruction completed per cycle once the pipeline is filled.

Not so simple in real life: different kind of hazards, that pre-

vent the next instruction from executing during its designated

clock cycle. Can make it necessary to stall the pipeline (wait

cycles).

• Structural hazards arise from resource conflicts, e.g.

• two instructions need to access the system bus (fetch data,

fetch instruction),

• not fully pipelined functional units (division usually takes

10-20 cycles, for example).

• Data hazards arise when an instruction depends on the

results of a previous instruction (will look at some cases in

later lectures) e.g.

a = b + c
d = a + e d depends on a

The second addition must not start until a is available.

• Control hazards arise from the pipelining of branches

(if-statements).

An example of a control hazard:

if (a > b - c * d) then
do something

else
do something else

end if

Must wait for the evaluation of the logical expression.

If-statements in loops may cause poor performance.

30

Several techniques to minimize hazards (look in the literature

for details) instead of just stalling. Some examples:

Structural hazard:

Add hardware. If the memory has only one port LOAD adr,R1
will stall the pipeline (the fetch of data will conflict with a later

instruction fetch). Add a memory port (separate data and

instruction caches).

Data hazards:

• Forwarding: b + c available after EX, special hardware

“forwards” the result to the a + e computation (without in-

volving the CPU-registers).

• Instruction scheduling. The compiler can try and rearrange

the order of instruction to minimize stalls.

Try to change the order between instructions using the wait-

time to do something useful.

a = b + c
d = a + e

load b
load c
add b + c has to wait for load c to complete

load b
load c
load e give the load c time to complete
add b + c in parallel with load e

31

Control hazards: (many tricks)

• Add hardware; can compute the address of the branch target

earlier and can decide whether the branch should be taken

or not.

• Branch prediction; try to predict, using “statistics”, the way

a branch will go. Compile-time/run-time. Can work very

well. The branch att the end of a for-loops is taken all the

times but the last.

• Speculative execution: assume the branch not taken and con-

tinue executing (no stall). If the branch is taken, must be

able do undo.

32

Superscalar CPUs

Fetch, decode and execute more than one instruction in parallel.

More than one finished instruction per clock cycle. There may,

e.g. be two integer ALUs, one unit for floating point addition

and subtraction one for floating point multiplication. The units

for +, - and * are usually piplined (they need several clock cycles

to execute).

There are also units for floating point division and square root;

these units are not (usually) pipelined.

MULT xxxxxxxx
MULT xxxxxxxx
MULT xxxxxxxx

Compare division; each xxxxxxxxxx is 10-20 cycles:

DIV xxxxxxxxxx
DIV xxxxxxxxxx
DIV xxxxxxxxxx

How can the CPU keep the different units busy?

The CPU can have circuits for arranging the instructions in

suitable order, dynamic scheduling (out-of-order-execution).

To reduce the amount of hardware in the CPU we can let the

compiler decide a suitable order. Groups of instructions (that

can be executed in parallel) are put together in packages. The

CPU fetches a whole package and not individual instructions.

VLIW-architecture, Very Long Instruction Word.

The Intel & HP Itanium CPU uses VLIW (plus RISC ideas).

Read the free chapter from: W. Triebel, Itanium Architecture

for Software Developers. See the first chapter in: IA-32 Intel

Architecture Optimization Reference Manual for details aboute

the Pentium 4. Read Appendix A in the Software Optimization

Guide for AMD64 Processors. See the web-Diary for links.
33

More on parallel on floating point operations.

flop = floating point operation.

flops = plural of flop or flop / second.

In numerical analysis a flop may be an addition-multiplication

pair. Not unreasonable since (+, *) often come in pairs, e.g. in

an inner product.

Top floating point speed =

of cores × flop / s =

of cores × # flop / clock cycle × clock frequency

Looking in instruction_tables.pdfat www.agner.org one

can find out the performance of several CPUs. One core in the

student machines (Intel Pentium Dual-core, E6300, Wolfdale-

3M) can, in the best of cases, finish 1 addition and 0.5 multipli-

cation per clock cycle using x87-instructions. Divisions, which

are not pipelined, may take up to 20 cycles.

It is, however, common with vector units, like Intel’s SSE, in

modern CPUs. These units can work in parallel on short vec-

tors of numbers.

To use the the vector unit you need a compiler that can vec-

torize. The vector unit may not be IEEE 754 compliant (not

correctly rounded). So results may differ between the vector-

ized and unvectorized versions of the same code.

Each core in the lab-computers can execute a vectorized add

and a vectorized multiply operation per cycle. Each operation

can work on two double (or four single) precision numbers in

parallel. Division is still slow.

See www.spec.org for benchmarks with real applications.

34

Memory is the problem - caches

1980 1985 1990 1995 2000 2005 2010
10

0

10
1

10
2

10
3

10
4

year

p
er

fo
rm

an
ce

Performance of CPU and memory (Patterson & Hennessy)

CPU

Memory

CPU: increase 1.35 improvement/year until 1986,

and a 1.55 improvement/year thereafter.

DRAM (dynamic random access memory), slow and cheap,

1.07 improvement/year.

Use SRAM (static random access memory) fast & expensive for

cache.

35

Direct mapped cache

Memory devices
I/O

CPU

C
ache

The cache is a small and fast memory used for storing both

instructions and data.

This is the simplest form of cache-construction.

variable, e.g. 4 bytes

������������

������������

����������

Main memoryCache

these lines
occupy the
the same place
in the cache

cache line

bytes are needed

even if only a few

copy the whole line

36

There are more general cache constructions.

This is a two-way set associative cache:

���������
���������
���������
���������

��������
��������
��������
��������

����������
��������Set

Data

A direct mapped cache is one-way set associative.

In a fully associative cache data can be placed anywhere.

����������
����������
����������

����������
����������
����������

����������
����������
����������
����������

����������
����������
����������
����������

����������
����������
����������

����������
����������
����������

����������
����������
����������
����������

������
������
������

������
������
������

�������
�������
�������
�������

������������������
������
������
������

�������
�������
�������

�������
�������
�������

Data

37

To use a cache efficiently locality is important.

• instructions: small loops, for example

• data: use part of a matrix (blocking)

Instructions

Data

Good
locality

Main memory

Not necessarily good locality together.

Make separate caches for data and instructions.

Can read instructions and data in parallel.

38

L1 and L2 caches

Faster

Larger

L1 caches

Instruction

Data

DisksL2 cache memory
Main

CPU

O(10) kbyte O(1) Mbyte O(1) GbyteO(10) bytes O(100) Gbyte

Memory hierarchy.

Newer machines even have an L3 cache.

39

The student machines

(Some) Intel and AMD cpu:s have an instruction, cpuid, that

gives details about the CPU, such as model, SSE-features, L1-

and L2-cache properties. These values can be hard to find just

reading manuals.

Unfortunately one has to code in assembler to access this

information. gcc supports inlining of assembly code using the

asm-function. asm makes it possible to “connect” registers with

C-variables. There is a cpu id-code available from

http://linux.softpedia.com/(search for cpuid) .

You find info. in /proc/cpuinfoand /proc/meminfoas well.

These files and the above program provide the following

information (and more) about the student machines:

Model: Intel Core i5-650, 3.20 GHz.

L1 Data Cache: 32 k, 8-way
L2 Cache: 256 k, 8-way
L3 Cache: 4 M, 16-way

All the cashes have a 64-byte line size.

The TLB has several levels (like the ordinary caches).
data TLB: 4-way, 64 entries
instruction TLB: 4-way, 64 entries
L2 TLB: 4-way, 512 entries

The system has a pagesize of 4 kbyte.
% getconf PAGESIZE
4096

4 Gbyte main memory

Two cores and hyper-threading, so /proc/cpuinfo and
top report four cores.

40

A note on reading assembly output

In the lecture and during the labs I said it was sometimes useful

to look at the assembler code produced by the compiler.

Here comes a simple example. Let us look at the the following

function.

double dot(double x[], double y[], int n)
{
double s;
int k;

s = 0.0;
for (k = 0; k < n; k++)

s += x[k] * y[k];

return s;
}

First some typical RISC-code from a Sun ULTRA-Sparc CPU.

I used gcc and compiled the code by:

gcc -S -O3 dot.c

-S produces the assembler output on dot.s.
Here is the loop (code for passing parameters, setting up for the

loop, and returning the result is not included).

.LL5: My translation
ldd [%o0+%g1], %f8 %f8 = x[k]
ldd [%o1+%g1], %f10 %f10 = y[k]
add %g2, 1, %g2 k = k + 1
fmuld %f8, %f10, %f8 %f8 = %f8* %f10
cmp %o2, %g2 k == n? Set status reg.
faddd %f0, %f8, %f0 %f0 = %f0 + %f8
bne .LL5 if not equal, go to .LL5
add %g1, 8, %g1 increase offset

41

Some comments.

%f8 and %f10 are registers in the FPU. When entering the

function, the addresses of the first elements in the arrays are

stored in registers %o0 and %o1. The addresses of x[k] and

y[k] are given by %o0 + 8k and %o1 + 8k. The reason for the

factor eight is that the memory is byte addressable (each byte

has an address). The offset, 8k, is stored in register %g1.

The offset, 8k, is updated in the last add. It looks a bit strange

that the add comes after the branch, bne. The add-instruction is,

however, placed in the branch delay slot of the branch-instruction,

so it is executed in parallel with the branch.

add is an integer add. faddd is a “floating point add double”. It

updates %f0, which stores the sum. %f0 is set to zero before the

loop. cmp compares k with n (the last index) by subtracting the

numbers. The result of the compare updates the Z-bit (Z for

zero) in the integer condition code register. The branch instruc-

tion looks at the Z-bit to see if the branch should be taken or not.

We can make an interesting comparison with code produced on

the AMD64. The AMD (Intel-like) has both CISC- and RISC-

characteristics. It has fewer registers than the Sparc and it does

not use load/store in the same way. The x87 (the FPU) uses

a stack with eight registers. In the code below, eax etc. are

names of 32-bit CPU-registers. (in the assembly language a % is

added).

.L5:
fldl (%ebx,%eax,8)
fmull (%ecx,%eax,8)
faddp %st, %st(1)
incl %eax
cmpl %eax, %edx
jne .L5

42

When the loop is entered %ebx and %ecx contain the addresses

of the first elements of the arrays. Zero has been pushed on the

stack as well (corresponds to s = 0.0).

fldl (%ebx,%eax,8)loads a 64 bit floating point number. The

address is given by %ebx + %eax*8. The number is pushed on

the top of the stack, given by the stackpointer %st.

Unlike the Sparc, the AMD can multiply with an operand in

memory (the number does not have to be fetched first). So the

fmull multiplies the top-element on the stack with the number

at address %ecx + %eax*8 and replaces the top-element with

the product.

faddp %st, %st(1)adds the top-elements on the stack

(the product and the sum, s), pops the stack, the p in faddp,
and replaces the top with the new value of s.

incl increases k (stored in %eax) and cmpl compares it to n.
jne stands for jump if not equal.

43

Virtual memory
Use disk to “simulate” a larger memory. The virtual address

space is divided into pages e.g. 4 kbytes. A virtual address is

translated to the corresponding physical address by hardware

and software; address translation.

A

B

C

D

B

C

A

D

Physical memoryVirtual memory

Disk

A page is copied from disk to memory when an attempt is made

to access it and it is not already present (page fault). When the

main memory is full, pages must be stored on disk (e.g. the least

recently used page since the previous page fault). Paging.

(Swapping; moving entire processes between disk and memory.)

Some advantages of virtual memory:

• simplifies relocation (loading programs to memory),

independece of physical addresses;

several programs may reside in memory

• security, can check access to protected pages, e.g. read-only

data; can protect data belonging to other processes

• allows large programs to run on little memory; only used

sections of programs need be present in memory; simplifies

programming (e.g. large data structures where only a part

is used)
44

Virtual memory requires locality (re-use of pages) to work well,

or thrashing may occur.

A few words on address translation

The following lines sketch one common address translating

technique.

A virtual address is made up by two parts, the virtual page

number and the page offset (the address from the top of the

page).

The page number is an index into a page table:

physical page address =
page_table(virtual page number)

The page table is stored in main memory (and is sometimes

paged). To speed up the translation (accessing main memory

takes time) we store part of the table in a cache, a transla-

tion lookaside buffer, TLB which resides in the CPU (O(10) −
O(1000) entries).

Once again we see that locality is important. If we can keep

the references to a few pages, the physical addresses can found

in the TLB and we avoid a reference to main memory. If the

address is not available in the TLB we get a TLB miss (which is

fairly costly, taking tens of clock cycles).

Reading the actual data may require a reference to main

memory, but we hope the data resides in the L1 cache.

Second best is the L2 cache, but we may have to make an

access to main memory, or worse, we get a page fault and

have to make a disk access (taking millions of clock cycles).

45

Please see the separate Beamer-file, Code Optimization.

46

Low level profiling

valgrind and PAPI are two tools for counting cache misses.

http://valgrind.org/.

From 22nd stanza in “Gŕımnismál” (poetic Edda). In old Ice-

landic and Swedish:

Valgrind heitir, Valgrind den heter,

er stendr velli á som varsnas p̊a slätten,

heilög fyr helgum dyrum; helig framför helig dörrg̊ang;

forn er sú grind, forn̊aldrig är grinden,

en at fáir vitu, och f̊a veta,

hve hon er ı́ lás lokin. hur hon i l̊as är lyckt.

and a reasonable (I believe) English translation:

Valgrind is the lattice called,

in the plain that stands,

holy before the holy gates:

ancient is that lattice,

but few only know

how it is closed with lock.

The main gate of Valhall (Eng. Valhalla), hall of the heroes slain

in battle.

From the manual:

“valgrind is a flexible program for debugging and profiling Linux

executables. It consists of a core, which provides a synthetic

CPU in software, and a series of ”tools”, each of which is a de-

bugging or profiling tool.”

The memcheck tool performs a range of memory-checking func-

tions, including detecting accesses to uninitialized memory, mis-

use of allocated memory (double frees, access after free, etc.)

and detecting memory leaks.

47

We will use the cachegrind tool:

cachegrind is a cache simulator. It can be used to annotate every

line of your program with the number of instructions executed

and cache misses incurred.

valgrind --tool=toolname program args

I have installed the latest version under:

/chalmers/sw/unsup64/valgrind-3.7.0(binaries in bin).

Call the following routine:

void sub0(double A[1000][1000], double*s)
{
int j, k, n = 1000;

*s = 0;

for (j = 0; j < n; j++)
for (k = 0; k < n; k++)

*s += A[k][j]; // Bad locality
}

Compile with -g -O3 (try without -O3 and see the difference):

% gcc -g -O3 main.c sub.c

I have edited the following printout:

% valgrind --tool=cachegrind a.out
Cachegrind, a cache and branch-prediction profiler
Copyright (C) 2002-2011, and GNU GPL’d, by
Nicholas Nethercote et al.
Using Valgrind-3.7.0 and LibVEX;
rerun with -h for copyright info
Command: a.out

9.990000e+08 8.464193e-02

48

I refs: 13,117,835
I1 misses: 855
LLi misses: 852
I1 miss rate: 0.00%
LLi miss rate: 0.00%

D refs: 3,039,758 (1,028,285 rd + 2,011,473 wr)
D1 misses: 1,126,162 (1,000,876 rd + 125,286 wr)
LLd misses: 246,498 (121,231 rd + 125,267 wr)
D1 miss rate: 37.0% (97.3% + 6.2%)
LLd miss rate: 8.1% (11.7% + 6.2%)

LL refs: 1,127,017 (1,001,731 rd + 125,286 wr)
LL misses: 247,350 (122,083 rd + 125,267 wr)
LL miss rate: 1.5% (0.8% + 6.2%)

LL last level (three on our machines).

valgrind produced the file, cachegrind.out.21981, in this

run, (21981 is a pid).

To see what source lines are responsible for the cache misses we

use cg_annotate cachegrind.out.21981 -auto=yes. I have

edited the listing and removed the columns dealing with the

instruction caches (the lines are too long otherwise).

Dr D1mr DLmr Dw D1mw DLmw
0 0 0 1 0 0 *s = 0;
1 1 1 0 0 0 for (j = 0;
0 0 0 0 0 0 for (k = 0;

1,000,000 999,995 120,408 1,000,000 0 0 *s += A[k][j];

Dr: data cache reads (ie. memory reads).

D1mr: L1 data cache read misses.

DLmr: L3 cache data read misses.

Dw: D cache writes (ie. memory writes).

D1mw: L1 data cache write misses.

DLmw: L3 cache data write misses.

49

To decrease the number of Dw:s we use a local summation variable

(no aliasing).

double local_s = 0;
for (j = 0; j < n; j++)

for (k = 0; k < n; k++)
local_s += A[k][j];

*s = local_s;

We can also interchange the loops. Here are the counts:

Dr D1mr D3mr Dw
1000000 999995 120408 1000000 original
1000000 124999 124999 1000000 interchange
1000000 999999 125407 1 local_s
1000000 125000 125000 1 local_s, interchange

valgrind cannot count TLB-misses, so switch to PAPI, which

can. PAPI = Performance Application Programming Interface

http://icl.cs.utk.edu/papi.
PAPI requires root privileges to install, so I have tested the code

at PDC.

PAPI uses hardware performance registers, in the CPU, to count

different kinds of events, such as L1 data cache misses and TLB-

misses. Here is (a shortened example).

Update 2012: papiex is not supported any longer (but can be

fetched from icl.cs.utk.edu/~mucci/papiex/.
An alternative is to make calls from withing the source code.

50

% icc main.c sub.c
% papiex -m -e PAPI_L1_DCM -e PAPI_L2_DCM \

-e PAPI_L3_DCM -e PAPI_TLB_DM -- ./a.out

Processor: Itanium 2
Clockrate: 1299.000732
Real usecs: 880267
Real cycles: 1143457807
Proc usecs: 880000
Proc cycles: 1143120000

PAPI_L1_DCM: 2331
PAPI_L2_DCM: 3837287
PAPI_L3_DCM: 3118846
PAPI_TLB_DM: 24086796

Event descriptions:
Event: PAPI_L1_DCM: Level 1 data cache misses
Event: PAPI_L2_DCM: Level 2 data cache misses
Event: PAPI_L3_DCM: Level 3 data cache misses
Event: PAPI_TLB_DM: Data TLB misses

The values change a bit between runs, but the order of magni-

tude stays the same. Here are a few tests. I call the function 50

times in a row. time in seconds. cycl = 109 process cycles. L1,
L2, L3 and TLB in kilo-misses. local using a local summation

variable.

icc -O0 icc -O3 icc -O3 icc -O3
local loop interc

time: 3.5 0.6 0.07 0.3
cycl: 4.6 0.8 0.09 0.4 Giga
L1: 13 4 3 4 kilo
L2: 3924 3496 1923 2853 kilo
L3: 3169 3018 1389 2721 kilo
TLB: 24373 24200 24 24 kilo

51

time and cycl are roughly the same, since the clockrate is 1.3

GHz. Note that the local summation variable, in column three,

makes a dramatic difference. This is the case for loop interchange

as well (column four) where we do not have a local summation

variable (adding one gives essentially column three).

Note the drastic reduction of TLB-misses in the fast runs.

Here comes PAPI on the blocking example,

s = s + A(i, k) * B(k, j), with ifort -O3.
n = 5000 and ten calls.

On the Itanium:

bs: NO BL 16 32 40 64 128
time: 5.6 2.0 1.6 1.5 1.6 5.1
L1: 69 46 41 43 44 52 kilo
L2: 306 51 48 52 54 59 Mega
L3: 31 33 38 38 36 35 Mega
TLB: 257 19 12 10 15 267 Mega

Note again the drastic reduction of TLB-misses.

52

Profiling on a higher level

Most unix systems have prof and gprof which can be used to

find the most time consuming routines. gcov can find the loops

(statements), in a routine, that are executed most frequently.

man prof, man gprof, man gcov for details.

This is how you use gprof on the student system.

The flags are not standardised, so you have to read the

documentation, as usual.

ifort -O3 -qp prog.f90 sub.f90
icc -O3 -qp prog.c sub.f90

gfortran -O3 -pg prog.f90 sub.f90
gcc -O3 -pg prog.c sub.c
g++ -O3 -pg prog.cc sub.c

./a.out produces gmon.out
gprof

One can use other options, of course, and have more than two

files. One should link with the profiling options as well since it

may include profiled libraries.

Profiling disturbs the run; it takes more time.

The Intel compilers have support for “Profile-guided Optimiza-

tion”, i.e. the information from the profiled run can be used by

the compiler (the second time you compile) to generate more

efficient code.

53

A few words about gcov. This command tells us:

• how often each line of code executes

• what lines of code are actually executed

Compile without optimization. It works only with gcc. So it

should work with gfortran as well. There may, however, be

problems with different versions of gcc and the gcc-libraries.

See the web-page for the assignment for the latest details.

To use gcov on the student system (not Intel in this case) one

should be able to type:

gfortran -fprofile-arcs -ftest-coverage prog.f90 \
sub.f90

./a.out

gcov prog.f90 creates prog.f90.gcov
gcov sub.f90 creates sub.f90.gcov

less prog.f90.gcov etc.

and for C

gcc -fprofile-arcs -ftest-coverage prog.c sub.c

similarly for gfortran and g++.

54

Example: Solve Ax = b where A is a 5000 × 5000 non-singular

matrix. Test Lapack’s dgesv and Linpack’s dgefa and dgesl.
First gprof:

% gprof | less
or
% gprof | more (or m with alias m more)

(I have alias m less)
or
% gprof > file_name (emacs file_name, for example)
etc.

The first part of the output is the flat profile, such a profile can

be produced by prof as well. Part of it, in compressed form,

comes on the next page. The flat profile may give a sufficient

amount of information.

First the Lapack-run. The following has been compressed side-

ways.

Each sample counts as 0.01 seconds.
% cumulative self self total
time seconds seconds calls s/call s/call name
97.54 42.80 42.80 78 0.55 0.55 dgemm_
1.37 43.40 0.60 80 0.01 0.01 dtrsm_
0.93 43.81 0.41 4921 0.00 0.00 dger_
0.16 43.88 0.07 1 0.07 43.90 MAIN__
0.05 43.90 0.02 5000 0.00 0.00 idamax_
0.00 43.90 0.00 4999 0.00 0.00 dscal_
0.00 43.90 0.00 875 0.00 0.00 lsame_
0.00 43.90 0.00 158 0.00 0.00 dlaswp_
0.00 43.90 0.00 79 0.00 0.01 dgetf2_
0.00 43.90 0.00 79 0.00 0.00 dlamch_
0.00 43.90 0.00 1 0.00 43.83 dgesv_
0.00 43.90 0.00 1 0.00 43.82 dgetrf_
0.00 43.90 0.00 1 0.00 0.02 dgetrs_
0.00 43.90 0.00 1 0.00 0.00 ilaenv_

55

% time: the percentage of the total running time of the program

used by this function.

cumulative seconds: a running sum of the number of seconds

accounted for by this function and those listed above it.

self seconds: the number of seconds accounted for by this func-

tion alone. This is the major sort for this listing.

calls: the number of times this function was invoked, if this

function is profiled, else blank.

self ms/call: the average number of milliseconds spent in this

function per call, if this function is profiled, else blank.

total ms/call: the average number of milliseconds spent in this

function and its descendents per call, if this function is profiled,

else blank.

name: the name of the function. This is the minor sort for

this listing. The index shows the location of the function in the

gprof listing. If the index is in parenthesis it shows where it

would appear in the gprof listing if it were to be printed.

56

The top three routines are BLAS-routines:

dgemm, matrix multiplication

dtrsm, solves a triangular system

dger, rank-one update.

It is very important with fast BLAS. using Goto-BLAS, the

execution times goes down from 43 s to 7.5 s.

Using Linpack (BLAS1-routines) takes 51.6 s.

Goto-BLAS cannot help much, 45.9 s.

% cumulative self self total
time seconds seconds calls s/call s/call name
98.06 50.83 50.83 12507499 0.00 0.00 daxpy_
1.78 51.75 0.92 1 0.92 51.75 dgefa_
0.14 51.82 0.07 1 0.07 51.86 MAIN__
0.06 51.85 0.03 4999 0.00 0.00 dscal_
0.02 51.86 0.01 4999 0.00 0.00 idamax_
0.00 51.86 0.00 1 0.00 0.04 dgesl_

Let us run gcov on daxpy.

Part of the output (compressed):
% gcov daxpy.o
File ’daxpy.f’
Lines executed:66.67% of 24
daxpy.f:creating ’daxpy.f.gcov’
...
10427606236: 40: do 50 i = mp1,n,4
10415098750: 41: dy(i) = dy(i) + da*dx(i)
10415098750: 42: dy(i+1) = dy(i+1) + da*dx(i+1)
10415098750: 43: dy(i+2) = dy(i+2) + da*dx(i+2)
10415098750: 44: dy(i+3) = dy(i+3) + da*dx(i+3)

-: 45: 50 continue
...

57

More about gprof

gprof produces a call graph as well. It shows, for each function,

which functions called it, which other functions it called, and

how many times. There is also an estimate of how much time

was spent in the subroutines called by each function. This is the

Lapack-run.

index %time self children called name
... deleted lines

0.00 43.82 1/1 dgesv_ [3]

[4] 99.8 0.00 43.82 1 dgetrf_ [4]
42.80 0.00 78/78 dgemm_ [5]
0.59 0.00 78/80 dtrsm_ [6]
0.00 0.43 79/79 dgetf2_ [7]
0.00 0.00 157/158 dlaswp_ [13]
0.00 0.00 1/1 ilaenv_ [15]

--
42.80 0.00 78/78 dgetrf_ [4]

[5] 97.5 42.80 0.00 78 dgemm_ [5]
0.00 0.00 156/875 lsame_ [12]

... deleted lines

Each routine has an index (see table at the end) and is presented

between ---lines. Let us look at dgemm.

42.8s was spent in dgemm itself, 97.5% of total (including calls

from dgemm). dgetrf (parent) called dgemmwhich in turn called

lsame, a child.

dgetrf made 78 out of 78 calls of dgemm. dgemm called lsame
156 out of 875 times.

See the documentation for an explanation of all the times (self
and children).

58

Profiling in Matlab

Matlab has a built-in profiling tool. help profile for more

details. Start Matlab (must use the GUI).

>> profile on
>> run % The assignment
Elapsed time is 1.337707 seconds.
Elapsed time is 13.534952 seconds.
>> profile report % in mozilla or netscape
>> profile off

You can start the profiler using the GUI as well

(click in “Profiler” using “Desktop” under the main meny). The

output comes in a new window and contains what looks like the

flat profile from gprof.

One can see the details in individual routines by clicking on

the routine under Function Name. This produces a gcov-type

of listing. It contains the number of times a line was executed

and the time it took.

59

Using Lapack from Fortran and C

Use Lapack to solve a problem like:

1 −1 −2 −3 −4

1 1 −1 −2 −3

2 1 1 −1 −2

3 2 1 1 −1

4 3 2 1 1

x =

−9

−4

1

6

11

The solution is the vector of ones. We use the Lapack-routine

dgesv from Lapack. Here is a man-page:

NAME
DGESV - compute the solution to a real system of

linear equations A * X = B,

SYNOPSIS
SUBROUTINE DGESV(N, NRHS, A, LDA, IPIV, B, LDB, INFO)
INTEGER INFO, LDA, LDB, N, NRHS
INTEGER IPIV(*)
DOUBLE PRECISION A(LDA,*), B(LDB, *)

PURPOSE
DGESV computes the solution to a real system of linear
equations A * X = B, where A is an N-by-N matrix and X
and B are N-by-NRHS matrices.
The LU decomposition with partial pivoting and row
interchanges is used to factor A as A = P* L * U,
where P is a permutation matrix, L is unit lower
triangular, and U is upper triangular. The factored
form of A is then used to solve the system of equations
A * X = B.

ARGUMENTS
N (input) INTEGER

The number of linear equations, i.e., the order
of the matrix A. N >= 0.

60

NRHS (input) INTEGER
The number of right hand sides, i.e., the number
of columns of the matrix B. NRHS >= 0.

A (input/output) DOUBLE PRECISION array, dimension
(LDA,N) On entry, the N-by-N coefficient matrix
A. On exit, the factors L and U from the
factorization A = P*L*U; the unit diagonal
elements of L are not stored.

LDA (input) INTEGER
The leading dimension of the array A.
LDA >= max(1,N).

IPIV (output) INTEGER array, dimension (N)
The pivot indices that define the permutation
matrix P; row i of the matrix was interchanged
with row IPIV(i).

B (input/output) DOUBLE PRECISION array, dimension
(LDB,NRHS) On entry, the N-by-NRHS matrix of
right hand side matrix B. On exit, if INFO = 0,
the N-by-NRHS solution matrix X.

LDB (input) INTEGER
The leading dimension of the array B.
LDB >= max(1,N).

INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an

illegal value
> 0: if INFO = i, U(i,i) is exactly zero. The

factorization has been completed, but the
factor U is exactly singular, so the
solution could not be computed.

61

In Fortran90, but using the F77 interface, and F77-type

declarations (to get shorter lines) this may look like:

program main
integer, parameter :: n = 10, lda = n, &

ldb = n, nrhs = 1
integer :: info, row, col, ipiv(n)
double precision :: A(lda, n), b(ldb)

do col = 1, n
do row = 1, n
A(row, col) = row - col

end do
A(col, col) = 1.0d0
b(col) = 1 + (n * (2 * col - n - 1)) / 2

end do

call dgesv (n, nrhs, A, lda, ipiv, b, ldb, info)

if (info == 0) then
print*, "Maximum error = ", maxval(abs(b - 1.0d0))

else
print*, "Error in dgesv: info = ", info

end if

end program main

% Compile and link, somehow, to Lapack
% a.out
Maximum error = 4.218847493575595E-15

Where can we find dgesv? There are several options. Fetching

the Fortran-code from Netlib, using a compiled (optimized)

library etc. One of the assignments, Lapack (Uniprocessor

optimization), deals with these questions.

62

The following optimized libraries contain Lapack and BLAS (and

perhaps routines for fft, sparse linear algebra, etc. as well).

• AMD: ACML (AMD Core Math Library).

• Intel: MKL (Intel Math Kernel library).

• SGI: complib.sgimath (Scientific and Mathematical Library).

• IBM: ESSL (Engineering and Scientific Subroutine Library).

• Sun: Sunperf (Sun Performance Library).

There may be parallel versions.

Now for C and C++

Fairly portable (do not use local extensions of the compiler).

Think about: In C/C++

• matrices are stored by row (not by column as in Fortran)

• matrices are indexed from zero

• call by reference for arrays, call by value for scalars

• the Fortran compiler MAY add an underline to the name

• you may have to link with Fortran libraries

(mixing C and Fortran I/O may cause problems, for example)

• C++ requires an extern-declaration, in C you do not have

to supply it (but do)

• make sure that C and Fortran types are compatible (number

of bytes)

• some systems have C-versions of Lapack

In the example below I have linked with the Fortran-version since

not all systems have C-interfaces. Make sure not to call dgesv
from C on the Sun, if you want the Fortran-version (dgesv gives

you the C-version).

63

#include <math.h>
#include <stdio.h>

#ifdef __cplusplus
extern "C" void // For C++
#else
extern void // For C
#endif

dgesv_(int *, int *, double *, int *, int[],
double[], int *, int *);

// int [] or int *. double [][] is NOT OK but
// double [][10] is, provided we
// call dgesv_ with A and not &A[0][0].

int main()
{
int n = 10, lda = n, ldb = n, nrhs = 1,

info, row, col, ipiv[n];
double A[lda][n], b[n], s, max_err;

// Make sure you have the correct mix of types.
printf("sizeof(int) = %ld\n", sizeof(int));

// Indexing from zero.
for (col = 0; col < n; col++) {

for (row = 0; row < n; row++)
A[col][row] = row - col; // Note TRANSPOSE

b[col] = 1 + (n * (1 + 2 * col - n)) / 2;
A[col][col] = 1;

}

64

// Note underline and & for the scalar types.
// &A[0][0] not to get a
// conflict with the prototype.

dgesv_(&n, &nrhs, &A[0][0], &lda, ipiv, b,
&ldb, &info);

if (info) {
printf("Error in dgesv: info = %d\n", info);
return 1;

} else {
max_err = 0.0;
for (row = 0; row < n; row++) {
s = fabs(b[row] - 1.0);
if (s > max_err)
max_err = s;

}
printf("Maximum error = %e\n", max_err);
return 0;

}
}

65

Interfacing Matlab with C

It is not uncommon that we have a program written in C (or

Fortran) and need to communicate between the program and

Matlab.

The simplest (but not the most efficient) way to fix the com-

munication is to use ordinary text files. This is portable and

cannot go wrong (in any major way). The drawback is that it

may be a bit slow and that we have to convert between the in-

ternal binary format and text format. We can execute programs

by using the unix-command (or ! or system).

One can do more, however:

• Reading and writing binary MAT-files from C

• Calling Matlab as a function (Matlab engine)

• Calling a C- or Fortran-function from Matlab (using MEX-

files, compiled and dynamically linked C- or Fortran-routines)

In the next few pages comes a short example on how to use

MEX-files.

MEX-files

Let us write a C-program that can be called as a Matlab-function.

The MEX-routine will call a band solver, written in Fortran,

from Lapack for solving an Ax=b-problem. The routine uses a

Cholesky decomposition, where A is a banded, symmetric and

positive definite matrix.

b contains the right hand side(s) and x the solution(s).

I fetched the routines from www.netlib.org.

Matlab has support for solving unsymmetric banded systems,

but has no special routines for the positive definite case.

66

We would call the function by typing:

>> [x, info] = bandsolve(A, b);

where A stores the matrix in compact form. info returns some

status information (A not positive definite, for example).

bandsolve can be an m-file, calling a MEX-file. Another alter-

native is to let bandsolvebe the MEX-file. The first alternative

is suitable when we need to prepare the call to the MEX-file or

clean up after the call.

The first alternative may look like this:

function [x, info] = bandsolve(A, b)
A_tmp = A; % copy A
b_tmp = b; % copy b
% Call the MEX-routine
[x, info] = bandsolve_mex(A_tmp, b_tmp);

I have chosen to make copies of A and b. The reason is that

the Lapack-routine replaces A with the Cholesky factorization

and b by the solution. This is not what we expect when we

program in Matlab. If we have really big matrices, and if we do

not need A and b afterwards we can skip the copy (although the

Matlab-documentation says that it “may produce undesired side

effects”).

I will show the code for the second case where we call the MEX-

file directly. Note that we use the file name, bandsolve, when

invoking the function. There should always be a mexFunctionin

the file, which is the entry point. This is similar to a C-program,

there is always a main-routine.

It is possible to write MEX-files in Fortran, but is more

natural to use C.

67

First some details about how to store the matrix (for the band

solver). Here an example where we store the lower triangle. The

dimension is six and the number of sub- (and super-) diagonals

is two.

a11 a22 a33 a44 a55 a66
a21 a32 a43 a54 a65 *
a31 a42 a53 a64 * *

Array elements marked * are not used by the routine.

The Fortran-routine, dpbsv, is called the following way:

call dpbsv(uplo, n, kd, nB, A, lda, B, ldb, info)

where

uplo = ’U’: Upper triangle of A is stored
’L’: Lower triangle of A is stored

We will assume that uplo = ’L’ from now on

n = the dimension of A
kd = number of sub-diagonals
nB = number of right hand sides (in B)
A = packed form of A
lda = leading dimension of A
B = contains the right hand side(s)
ldb = leading dimension of B
info = 0, successful exit

< 0, if info = -i, the i-th argument had
an illegal value

> 0, if info = i, the leading minor of order i
of A is not positive definite, so the
factorization could not be completed,
and the solution has not been computed.

Here comes bandsolve.c (I am using C99-style comments).

I will assume we use a 64-bit system.

68

#include <math.h>
// For Matlab
#include "mex.h"

void dpbsv_(char *, int *, int *, int *, double *,
int *, double *, int *, int *);

void mexFunction(int nlhs, mxArray*plhs[],
int nrhs, const mxArray *prhs[])

// See the C-tutorial for a discussion of const.

{
double *px, *pA, *pb, *pA_tmp;
mxArray *A_tmp;
char uplo = ’L’;
int k, A_rows, A_cols, b_rows, b_cols, kd, info;

// Check for proper number of arguments
if (nrhs != 2) {

mexErrMsgTxt("Two input arguments required.");
} else if (nlhs > 2) {

mexErrMsgTxt("Too many output arguments.");
}

A_rows = mxGetM(prhs[0]);
kd = A_rows - 1; // # of subdiags
A_cols = mxGetN(prhs[0]); // = n

b_rows = mxGetM(prhs[1]);
b_cols = mxGetN(prhs[1]);

if (b_rows != A_cols || b_cols <= 0)
mexErrMsgTxt("Illegal dimension of b.");

69

// Create a matrix for the return argument
// and for A. dpbsv destroys A and b).
// Should check the return status.
plhs[0]=mxCreateDoubleMatrix(b_rows, b_cols, mxREAL);
if (nlhs == 2) // if two output arguments

plhs[1] = mxCreateDoubleMatrix(1, 1, mxREAL);
A_tmp = mxCreateDoubleMatrix(A_rows, A_cols, mxREAL);

px = mxGetPr(plhs[0]); // Solution x
pA = mxGetPr(prhs[0]); // A
pA_tmp = mxGetPr(A_tmp); // temp for A
pb = mxGetPr(prhs[1]); // b

for (k = 0; k < b_rows * b_cols; k++) // b -> x

*(px + k) = *(pb + k);

for (k = 0; k < A_rows * A_cols; k++) // A -> A_tmp

*(pA_tmp + k) = *(pA + k);

dpbsv_(&uplo, &A_cols, &kd, &b_cols, pA_tmp,
&A_rows, px, &b_rows, &info);

if (info)
mexWarnMsgTxt("Non zero info from dpbsv.");

if (nlhs == 2)

*mxGetPr(plhs[1]) = info; // () higher prec.
// than *

// Should NOT destroy plhs[0] or plhs[1]
mxDestroyArray(A_tmp);

}

70

Some comments:

nrhs is the number of input arguments to the MEX-routine.

prhs is an array of pointers to input arguments. prhs[0]points

to a so-called, mxArray, a C-struct containing size-information

and pointers to the matrix-elements.

prhs[0] corresponds to the first input variable, A etc.

Since one should not access the member-variables in the struct

directly, there are routines to extract size and elements.

A_rows = mxGetM(prhs[0]);extracts the number of rows and

A_cols = mxGetN(prhs[0]);extracts the number of columns.

The lines

plhs[0]=mxCreateDoubleMatrix(b_rows, b_cols, mxREAL);
plhs[1]=mxCreateDoubleMatrix(1, 1, mxREAL);

allocate storage for the results (of type mxREAL, i.e. ordinary

double).

A_tmp = mxCreateDoubleMatrix(A_rows, A_cols, mxREAL);
allocates storage for a copy of A, since the Lapack-routine de-

stroys the matrix.

px = mxGetPr(plhs[0]);extracts a pointer to the (real-part)

of the matrix elements and stores it in the pointer variable, px.

The first for-loop copies b to x (which will be overwritten by the

solution). The second loop copies the matrix to the temporary

storage, pointed to by A_tmp. This storage is later deallocated

using mxDestroyArray.

Note that neither the input- nor the output-arguments should

be deallocated.

71

It is now time to compile and link. This is done using the

Bourne-shell script mex. Since we would like to change some

parameters when compiling, we will copy and edit an options

file, mexopts.sh.

% which matlab
/chalmers/sw/sup64/matlab-2011b/bin/matlab
(ls -ld /chalmers/sw/sup64/matlab* to see the versions)

% cp /chalmers/sw/sup64/matlab-2011b/bin/mexopts.sh .
% chmod u+w mexopts.sh add write permissons for you

Edit mexopts.sh and search for glnxa64, change

CFLAGS=’-ansi -D_GNU_SOURCE’
to
CFLAGS=’-Wall -std=c99 -D_GNU_SOURCE’

to get more warnings and to use C99-style comments.

Use default gfortran or you may have link-problems.

Now it is time to compile, I assume we have the Fortran-files

available:

% mex -f ./mexopts.sh bandsolve.c *.f

which creates bandsolve.mexa64.

You will get an error message:

Warning: You are using gcc version "4.1.2".etc. but

it seems to work OK anyhow.

72

We can now test a simple example in Matlab:

>> A = [2 * ones(1, 5); ones(1, 5)]
A =

2 2 2 2 2
1 1 1 1 1

>> [x, info] = bandsolve(A, [3 4 4 4 3]’);
>> x’
ans = 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00
>> info
info = 0

Here a case when A is not positive definite:

>> A(1, 1) = -2; % Not positive definite
>> [x, info] = bandsolve(A, [3 4 4 4 3]’)
Warning: Non zero info from dpbsv.
% x equals b, since b is copied to x
>> info
info = 1

Note that the first call of bandsolvemay take much more time,

since the mex-file has to be loaded. Here a small test when

n=10000, kd=50:

>> tic; [x, info] = bandsolve(A, b); toc
Elapsed time is 0.099192 seconds.

>> tic; [x, info] = bandsolve(A, b); toc
Elapsed time is 0.055137 seconds.

>> tic; [x, info] = bandsolve(A, b); toc
Elapsed time is 0.055036 seconds.

Now to some larger problems:

With n=1000000 and kd=10, dpbsv takes 0.9 s and sparse

backslash 1.3 s on the 64-bit math compute server.

kd=20 gives the times 1.3 s and 2.5 s respectively.

73

Libraries, ar, ld

Numerical (and other software) is often available in libraries. To

use a subroutine from a library one has to use the linker to

include the routine. Advantages:

• Fewer routines to keep track of.

• There is no need to have source code for the library routines

that a program calls.

• Only the required modules are loaded.

These pages deal with how one can make libraries and use the

linker, link-editor, ld.

% cat sub1.f90
subroutine sub1
print*, ’in sub1’

end

% cat sub2.f90
subroutine sub2
print*, ’in sub2’

end

% cat sub3.f90
subroutine sub3
print*, ’in sub3’
call sub2

end

% cat main.f90
program main
call sub3

end

74

% ls sub*.f90
sub1.f90 sub2.f90 sub3.f90

% g95 -c sub*.f90
sub1.f90:
sub2.f90:
sub3.f90:

% ls sub*
sub1.f90 sub1.o sub2.f90 sub2.o sub3.f90 sub3.o

% ar -r libsubs.a sub*.o

% ar -t libsubs.a
sub1.o
sub2.o
sub3.o

% g95 main.f90 -L. -lsubs
% a.out
in sub3
in sub2

g95 calls the link-editor, ld, to combine main.o and the object

files in the library to produce the executable a.out-file. Note

that the library routines become part of the executable.

If you write -lname the link-editor looks for a library file with

name libname.a (or libname.so).

On some systems you may have to give the location of the

library using the flag -L (ld does not look everywhere). . means

current working directory, but you could have a longer path, of

course. You can have several -L flags.

75

From man ar:

ar creates an index to the symbols defined in relocatable

object modules in the archive when you specify the modifier s.

...

An archive with such an index speeds up linking to the library,

and allows routines in the library to call each other without

regard to their placement in the archive.

ar seems to do this even with ar -r ... as well.

If your library does not have this index:

% g95 main.f90 -L. -lsubs
./libsubs.a: could not read symbols:
Archive has no index; run ranlib to add one
% ranlib libsubs.a
% g95 main.f90 -L. -lsubs

The order of libraries is important:

% g95 -c sub4.f90 sub5.f90
sub4.f90:
sub5.f90:

% ar -r libsub45.a sub[45].o

% ar -t libsub45.a
sub4.o
sub5.o

76

% cat sub4.f90
subroutine sub4
print*, ’in sub4’
call sub2

end

% cat main.f90
program main ! A NEW main
call sub4

end

% g95 main.f90 -L. -lsubs -lsub45
./libsub45.a(sub4.o)(.text+0x6f): In function ‘sub4_’:
: undefined reference to ‘sub2_’

ld does not go back in the list of libraries.

% g95 main.f90 -L. -lsub45 -lsubs
% a.out
in sub4
in sub2

The compiler uses several system libraries, try g95 -v
One such library is the C math-library, /usr/lib/libm.a.

% ar -t /usr/lib/libm.a | grep expm1 | head -1
s_expm1.o

% man expm1
NAME expm1, expm1f, expm1l - exponential minus 1

#include <math.h>
double expm1(double x);

...

77

% cat main.c
#include <math.h>
#include <stdio.h>

int main()
{
double x = 1.0e-15;

printf("expm1(x) = %e\n", expm1(x));
printf("exp(x) - 1 = %e\n", exp(x) - 1.0);

return 0;
}

% gcc main.c
/tmp/cc40PH1o.o(.text+0x2b): In function ‘main’:
: undefined reference to ‘expm1’
/tmp/cc40PH1o.o(.text+0x53): In function ‘main’:
: undefined reference to ‘exp’

% gcc main.c -lm
% a.out
expm1(x) = 1.000000e-15
exp(x) - 1 = 1.110223e-15

78

Shared libraries

More about libm. The following output has been shortened.

% ls -l /usr/lib/libm.*
/usr/lib/libm.a
/usr/lib/libm.so -> ../../lib/libm.so.6

% ls -l /lib/libm.*
/lib/libm.so.6 -> libm-2.5.so

% ls -l /lib/libm-2.5.so
-rwxr-xr-x 1 root root 208352 6 jan 2009

/lib/libm-2.5.so*

What is this last file?

% ar -t /lib/libm-2.5.so
ar: /lib/libm-2.5.so: File format not recognized

Look for symbols (names of functions etc.):
% objdump -t /lib/libm-2.5.so | grep expm1
...
009fa690 w F .text 0000005b expm1
...

so means shared object. It is a library where routines are loaded

to memory during runtime. This is done by the dynamic link-

er/loader ld.so. The a.out-file is not complete in this case, so

it will be smaller.

One problem with these libraries is that they are needed at

runtime which may be years after the executable was created.

Libraries may be deleted, moved, renamed etc.

One advantage is shared libraries can be shared by every process

that uses the library (provided the library is constructed in that

way).

79

It is easier to handle new versions, applications do not have to

be relinked.

If you link with -lname, the first choice is libname.so and the

second libname.a.

/usr/lib/libm.so -> ../../lib/libm.so.6is a soft link

(an “alias”).

% ln -s full_path alias

The order is not important when using shared libraries (the

linker has access to all the symbols at the same time).

A shared library is created using ld (not ar) or the compiler,

the ld-flags are passed on to the linker.

% g95 -o libsubs.so -shared -fpic sub*.f90
% g95 main.f90 -L. -lsubs
% ./a.out
in sub4
in sub2

From man gcc (edited):

-shared
Produce a shared object which can then be linked with
other objects to form an executable. Not all systems
support this option. For predictable results, you must
also specify the same set of options that were used
to generate code (-fpic, -fPIC, or model suboptions)
when you specify this option.[1]

-fpic
Generate position-independent code (PIC) suitable for
use in a shared library, if supported for the target
machine. Such code accesses all constant addresses
through a global offset table (GOT). The dynamic
loader resolves the GOT entries when the program

80

starts (the dynamic loader is not part of GCC; it is
part of the operating system). ...

Since the subroutines in the library are loaded when we run the

program (they are not available in a.out) the dynamic linker

must know where it can find the library.

% cd ..
% Examples/a.out
Examples/a.out: error while loading shared libraries:
libsubs.so: cannot open shared object file: No such
file or directory

% setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH\:Examples
% Examples/a.out
in sub4
in sub2

LD_LIBRARY_PATHcontains a colon separated list of paths where

ld.sowill look for libraries. You would probably use a full path

and not Examples.

$LD_LIBRARY_PATH is the old value (you do not want to do

setenv LD_LIBRARY_PATH Examplesunless LD_LIBRARY_PATH
is empty to begin with.

The backslash is needed in [t]csh (since colon has a special

meaning in the shell). In sh (Bourne shell) you may do some-

thing like:

$ LD_LIBRARY_PATH=$LD_LIBRARY_PATH:Examples
$ export LD_LIBRARY_PATH (or on one line)

Some form of LD_LIBRARY_PATH is usually available (but the

name may be different). The SGI uses the same name for the

path but the linker is called rld. Under HPUX 10.20, for

example, the dynamic loader is called dld.sl and the path

SHLIB_PATH.

81

It is possible to store the location of the library when creating

a.out.

% unsetenv LD_LIBRARY_PATH
% g95 -o libsubs.so -shared -fpic sub*.f90
% g95 main.f90 -L. -lsubs
% a.out
a.out: error while loading shared libraries:
libsubs.so: cannot open shared object file:
No such file or directory

Add the directory in to the runtime library search path (stored

in a.out):

-Wl, means pass -rpath ‘pwd‘ to ld

% g95 -Wl,-rpath ‘pwd‘ main.f90 -L. -lsubs

% cd .. or cd to any directory
% Examples/a.out
in sub4
in sub2

A useful command is ldd (print shared library dependencies):

% ldd a.out
libsubs.so => ./libsubs.so (0x00800000)
libm.so.6 => /lib/tls/libm.so.6 (0x009e2000)
libc.so.6 => /lib/tls/libc.so.6 (0x008b6000)
/lib/ld-linux.so.2 (0x00899000)

Used on our a.out-file it will, in the first case, give:

% ldd Examples/a.out
libsubs.so => not found

In the second case, using rpath, ldd will print the full path.

82

And now to something related:

Large software packages are often spread over many directories.

When distributing software it is customary to pack all the di-

rectories into one file. This can be done with the tar-command

(tape archive). Some examples:

% ls -FR My_package
bin/ doc/ install* lib/ README
configure* include/ INSTALL Makefile src/

My_package/bin: binaries

My_package/doc: documentation
userguide.ps or in pdf, html etc.

My_package/include: header files
params.h sparse.h

My_package/lib: libraries

My_package/src: source
main.f sub.f

Other common directories are man (for manual pages), examples,
util (for utilities).

README usually contains general information, INSTALL contains

details about compiling, installation etc. There may be an install-
script and there is usually a Makefile (probably several).

If the package is using X11 graphics there may be an Imakefile.
The tool xmkmf (using imake) can generate a Makefile using lo-

cal definitions and the Imakefile.

In a Linux environment binary packages (such as the Intel com-

pilers) may come in RPM-format. See http://www.rpm.org/
or type man rpm, for details.

83

Let us now create a tar-file for our package.

% tar cvf My_package.tar My_package
My_package/
My_package/src/
My_package/src/main.f
My_package/src/sub.f
...
My_package/Makefile

One would usually compress it:

% gzip My_package.tar (or using bzip2) or
% tar zcvf My_package.tz My_package or tar jcvf ...

This command produces the file My_package.tar.gz.

.tgz is a common suffix as well (tar.bz2 or .tbz2 for bzip2).

To unpack such a file we can do (using gnu tar) (z for gunzip,
or zcat, x for extract, v for verbose and f for file):

% tar zxvf My_package.tar.gz
My_package
My_package/src/
...

Using tar-commands that do not understand z:

% zcat My_package.tar.gz | tar vxf - or
% gunzip -c My_package.tar.gz | tar vxf - or
% gunzip < My_package.tar.gz | tar vxf - or
% gunzip My_package.tar.gz followed by
% tar xvf My_package.tar

I recommend that you first try:

% tar ztf My_package.tar.gz
My_package/ ...

To see that files are placed in a new directory (and that are no

name conflicts).

Under GNOME there is an Archive Manager (File Roller) with

a GUI. Look under Applications/System Tools

84

An Overview of Parallel Computing

Flynn’s Taxonomy (1966). Classification of computers according

to number of instruction and data streams.

• SISD: Single Instruction Single Data, the standard

uniprocessor computer (workstation).

• MIMD: Multiple Instruction Multiple Data, collection of

autonomous processors working on their own data; the most

general case.

• SIMD: Single Instruction Multiple Data; several CPUs

performing the same instructions on different data.

The CPUs are synchronized.

Massively parallel computers.

Works well on regular problems. PDE-grids,

image processing.

Often special languages and hardware. Not portable.

Typical example, the Connection Machines from Thinking

Machines (bankruptcy 1994).

The CM-2 had up to 65536 (simple processors).

PDC had a 16384 proc. CM200.

Often called “data parallel”.

Two other important terms:

• fine-grain parallelism - small tasks in terms of code size and

execution time

• coarse-grain parallelism - the opposite

We talk about granularity.

85

MIMD Systems

Asynchronous (the processes work independently).

• Shared-memory systems. The programmer sees one big

memory. The physical memory can be distributed.

• Distributed-memory systems.

Each processor has its own memory. The programmer has to

partition the data.

The terminology is slightly confusing. A shared memory

system usually has distributed memory (distributed shared

memory). Hardware & OS handle the administration of memory.

Shared memory

Bus-based architecture

CPU CPU CPU CPU

Memory Memory

Interconnection network

• Limited bandwidth (the amount of data that can be sent

through a given communications circuit per second).

• Do not scale to a large number of processors. 30-40 CPUs

common.

86

To work well each CPU has a cache (a local memory) for

temporary storage.

CPU CPU CPU CPU

Memory Memory

Interconnection network

C C C C

I have denoted the caches by C. Cache coherence.

Common to use a switch to increase the bandwidth. Crossbar:

CPU

CPU

CPU

CPU

Mem Mem Mem Mem

switch

87

• Any processor can access any memory module. Any other

processor can simultaneously access any other memory

module.

• Expensive.

• Common with a memory hierarchy. Several crossbars may

be connected by a cheaper network. NonUniform Memory

Access (NUMA).

Example of a NUMA architecture: SGI Origin 2000, R10000

CPUS connected by a fast network.

L2 L2

Hub

CPUCPU

Main
Memory

Directory

Node board

Hub

R
outer

The hub manages each processor’s access to memory

(both local and remote) and I/O. Local memory accesses can be

done independently of each other. Accessing remote memory is

more complicated and takes more time.

88

More than two nodes are connected via a router. A router has

six ports. Hypercube configuration. When the system grows,

add communication hardware for scalability.

89

Two important parameters of a network:

Latency is the startup time (the time it takes to send a small

amount of data, e.g. one byte).

Bandwidth is the other important parameter.

How many bytes can we transfer per second (once the

communication has started)?

A simple model for communication:

time to transfer n bytes = latency + n / bandwidth

90

Distributed memory

In a distributed memory system, each processor has its own

private memory. A simple distributed memory system can be

constructed by a number of workstations and a local network.

Some examples:

A linear array and a ring (each circle is a CPU with memory).

Hypercubes of dimensions 0, 1, 2 and 3.

91

A 4-dimensional hypercube. Generally, a hypercube of dimen-

sion d+1 is constructed by connecting corresponding processors

in two hypercubes of dimension d.

If d is the dimension we have 2d CPUs, and the shortest path

between any two nodes is at most d steps (passing d wires). This

is much better than in a linear array or a ring. We can try to

partition data so that the most frequent communication takes

place between neighbours.

A high degree of connectivity is good because it makes it possible

for several CPUs to communicate simultaneously (less competi-

tion for bandwidth). It is more expensive though.

If the available connectivity (for a specific machine) is

sufficient depends on the problem and the data layout.

92

This is a mesh:

We can have meshes of higher dimension.

If we connect the outer nodes in a mesh we get a torus:

93

A Note on Cluster Computing

Many modern parallel computers are built by off-the-shelf

components, using personal computer hardware, Intel CPUs and

Linux. Some years ago the computers were connected by an

Ethernet network but faster (and more expensive) technologies

are available. To run programs in parallel, explicit message pass-

ing is used (MPI, PVM).

The first systems were called Beowulf computers named after

the hero in an Old English poem from around year 1000. They

are also called Linux clusters and one talks about cluster com-

puting.

In the poem, Beowulf, a hero of a tribe, from southern Sweden,

called the Geats, travels to Denmark to help defeat Grendel (a

monster), Grendel’s mother and a dragon.

The first few lines (of about 3000) first in Old English and then

in modern English:

wæs on burgum

Beowulf Scyldinga,

leof leodcyning, longe þrage

folcum gefræge (fæder ellor hwearf,

aldor of earde), o æt him eft onwoc

heah Healfdene; heold þenden lifde,

gamol ond gu reouw, glæde Scyldingas.

Now Beowulf bode in the burg of the Scyldings,

leader beloved, and long he ruled

in fame with all folk, since his father had gone

away from the world, till awoke an heir,

haughty Healfdene, who held through life,

sage and sturdy, the Scyldings glad.

94

A look at the Lenngren cluster at PDC

PDC (Parallell-Dator-Centrum) is the Center for Parallel

Computers, Royal Institute of Technology in Stockholm.

Lenngren (after the Swedish poet Anna Maria Lenngren, 1754-

1817) is a distributed memory computer from Dell consisting of

442 nodes. Each node has two 3.4GHz EMT64-Xeon processors

(EM64T stands for Extended Memory x 64-bit Technology) and

8GB of main memory. The peak performance of the system is

6Tflop/s. The nodes are connected with gigabit ethernet for

login and filesystem traffic. A high performance Infiniband net-

work from Mellanox is used for the MPI traffic.

A word on Infiniband. First a quote from

http://www.infinibandta.org/:
“InfiniBand is a high performance, switched fabric interconnect

standard for servers. ... Founded in 1999, the InfiniBand Trade

Association (IBTA) is comprised of leading enterprise IT vendors

including Agilent, Dell, Hewlett-Packard, IBM, SilverStorm, In-

tel, Mellanox, Network Appliance, Oracle, Sun, Topspin and

Voltaire. The organization completed its first specification in

October 2000.”

Another useful reference is http://en.wikipedia.org.

InfiniBand uses a bidirectional serial bus, 2.5 Gbit/s in each

direction. It also supports double and quad data rates for 5

Gbit/s or 10 Gbit/s respectively. For electrical signal reasons

8-bit symbols are sent using 10-bits (8B/10B encoding), so the

actual data rate is 4/5ths of the raw rate.

Thus the single, double and quad data rates carry 2, 4 or 8

Gbit/s respectively.

Links can be aggregated in units of 4 or 12, called 4X or 12X.

A quad-rate 12X link therefore carries 120 Gbit/s raw, or 96

Gbit/s of user data.

95

InfiniBand uses a switched fabric topology so several devices can

share the network at the same time (as opposed to a bus topol-

ogy). Data is transmitted in packets of up to 4 kB. All trans-

missions begin or end with a channel adapter. Each processor

contains a host channel adapter (HCA) and each peripheral has

a target channel adapter (TCA). It may look something like this:

CPU

MEM HCA

CPU CPU

MEM HCA

CPU

CPU

MEM HCA

CPU

TCA TCA

TCA

Switch

Switch

Switch

Switches forward packets between two of their ports based on an

established routing table and the addressing information stored

on the packets. A subnet, like the one above, can be connected

to another subnet by a router.

Each channel adapter may have one or more ports. A channel

adapter with more than one port, may be connected to multiple

switch ports. This allows for multiple paths between a source

and a destination, resulting in performance and reliability ben-

efits.

96

A simple example

Consider the following algorithm (the power method). A is a

square matrix of order n (n rows and columns) and x(k), k =

1, 2, 3, . . . a sequence of column vectors, each with n elements.

x(1) = random vector

for k = 1, 2, 3, . . .

x(k+1) = Ax(k)

end

If A has a dominant eigenvalue λ (|λ| is strictly greater than

all the other eigenvalues) with eigenvector x, then x(k) will be

a good approximation of an eigenvector for sufficiently large k

(provided x(1) has a nonzero component of x).

An Example:

>> A=[-10 3 6;0 5 2;0 0 1] % it is not necessary
A = % that A is triangular

-10 3 6
0 5 2
0 0 1

>> x = randn(3, 1);
>> for k = 1:8, x(:, k+1) = A* x(:, k); end
>> x(:,1:4)
ans =
-6.8078e-01 5.0786e+00 -5.0010e+01 5.1340e+02
4.7055e-01 1.3058e+00 5.4821e+00 2.6364e+01

-5.2347e-01 -5.2347e-01 -5.2347e-01 -5.2347e-01

>> x(:,5:8)
ans =
-5.0581e+03 5.0970e+04 -5.0774e+05 5.0872e+06
1.3077e+02 6.5281e+02 3.2630e+03 1.6314e+04

-5.2347e-01 -5.2347e-01 -5.2347e-01 -5.2347e-01

Note that x(k) does not “converge” in the ordinary sense.

We may have problems with over/underflow.
97

Revised algorithm, where we scale x(k) and keep only one copy.

x = random vector

x = x (1/ max(|x|)) Divide by the largest element

for k = 1, 2, 3, . . .

t = Ax

x = t (1/ max(|t|))
end

λ can be computed in several ways, e.g. xTAx/xTx (and we

already have t = Ax). In practice we need to terminate the

iteration as well. Let us skip those details.

How can we make this algorithm parallel on a distributed

memory MIMD-machine (given A)? One obvious way is to com-

pute t = Ax in parallel. In order to do so we must know the

topology of the network and how to partition the data.

+2+1=2

1

3

+ +

1

2

3

1

=2

3

all

tx

th
e p

ro
d

u
ct

th
e p

ro
d

u
ct

32 31 =

98

Suppose that we have a ring with #p processors and that #p

divides n. We partition A in blocks of β = n/#p (β for block

size) rows (or columns) each, so that processor 1 would store

rows 1 through β, processor 2 rows 1+β through 2β etc. Let us

denote these blocks of rows by A1, A2, . . . , A#p. If we partition

t in the same way t1 contains the first β elements, t2 the next β

etc, t can be computed as:

t1

t2
...

t#p

= Ax =

A1x

A2x
...

A#px

← on proc. 1

← on proc. 2
...

← on proc. #p

In order to perform the next iteration processor one needs t2, . . . , t#p,

processor two needs t1, t3, . . . , t#p etc.

The processors must communicate, in other words.

Another problem is how each processor should get its part, Aj,

of the matrix A. This could be solved in different ways:

• one CPU gets the task to read A and distributes the parts

to the other processors

• perhaps each CPU can construct its Aj by computation

• perhaps each CPU can read its part from a file (or from files)

Let us assume that the Aj have been distributed and look at the

matrix-vector multiply.

99

Here is an image showing (part of) the algorithm, when #p = 4.

White boxes show not yet received parts of the vector. The brick

pattern shows the latest part of the vector and the boxes with

diagonal lines show old pieces.

����
����
����

����
����
��������
����
����

����
����
����

����
����
����

����
����
��������
����
����

����
����
��������
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����

����

����

����

����
����
����

����
����
����

����
����
����
����

����
����
����
����

����

����

����

����

����

����

����

����

����

����

����
����
����

����
����
���� ����

����
����

����
����
����

����
����
����

����
����
����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����
����
����
����

����
����
����
����

Step 2Step 1

Step 3

3 4

2 1

����
����
����

����
����
��������
����
����

����
����
����

����
����
����

����
����
����

����

����

����

����

����

����

����

����

����

����

����

����

����

��������

����

����

����

����
����
����

����
����
��������

����
����

����
����
����

����

����

����

����

����
����
����

����
����
��������
����
����

����
����
����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����

����
����
���� ����

����
����

����
����
����

100

Some important terminology:

Let wct (wallclock time) be the time we have to wait for the

run to finish (i.e. not the total cputime). wct is a function of

#p, wct(#p) (although it may not be so realistic to change #p

in a ring.

This is a simple model of this function (for one iteration):

wct(#p) =
2n2

#p
Tflop + (#p− 1)

[

Tlat +
n

#p
Tbandw

]

where Tflop is the time for one flop, Tlat is the latency for the

communication and Tbandw is time it takes to transfer one double

precision number.

It is often the case that (roughly):

wct(#p) = seq. part of comp. +
parallel part of comp.

#p
+

#p (communication)

wct has a minimum with respect to #p (it is not optimal with

#p = ∞). The computational time decreases with #p but the

communication increases.

The speedup is defined as the ratio:

speedup(#p) =
wct(1)

wct(#p)

What we hope for is linear speedup, i.e. speedup(#p) = #p.

101

If you have a problem to solve (rather than an algorithm to

study) a more interesting definition may be:

speedup(#p) =
time for best implementation on one processor

wct(#p)

It is possible to have super linear speedup, speedup(#p) > #p;

this is usually due to better cache locality or decreased paging.

If our algorithm contains a section that is sequential (cannot

be parallelized), it will limit the speedup. This is known as

Amdahl’s law. Let us denote the sequential part with with s,

0 ≤ s ≤ 1 (part wrt time), so the part that can be parallelized

is 1− s. Hence,

speedup(#p) =
1

s + (1− s)/#p
≤ 1

s

regardless of the number of processors.

Instead of studying how the speedup depends on #p we can

fix #p and see what happens when we change the size of the

problem n. Does the speedup scale well with n? In our case:

speedup(n) =
2n2Tflop

2n2Tflop

#p
+ (#p− 1)

[

Tlat + nTbandw
#p

]

=
#p

1 + (#p− 1)
[

#pTlat
2n2Tflop

+ Tbandw
2nTflop

]

So

lim
n→∞

speedup(n) = #p

This is very nice! The computation is O(n2) and the

communication is O(n). This is not always the case.
102

Exercise: partition A by columns instead.

What happens if the processors differ in speed and amount of

memory? We have a load balancing problem.

Static load balancing: find a partitioning β1, β2, . . . , β#p such

that processor p stores βp rows and so that wct is minimized

over this partitioning. We must make sure that a block fits in

the available memory on node p. This leads to the optimization

problem:

min
β1,β2,...,β#p

wct(β1, β2, . . . , β#p),

subject to the equality constraint
∑#p

p=1 βp = n and the

p inequality constraints 8nβp ≤ Mp, if Mp is the amount of

memory (bytes) available on node p.

103

If

• the amount of work varies with time

• we share the processors with other users

• processors crash (#p changes)

we may have to rebalance; dynamic load balancing.

Even if the processors are identical (and with equal amount of

memory) we may have to compute a more complicated parti-

tioning. Suppose that A is upper triangular (zeros below the

diagonal). (We would not use an iterative method to compute

an eigenvector in this case.) The triangular matrix is easy to

partition, it is worse if A is a general sparse matrix (many ele-

ments are zero).

Some matrices require a change of algorithm as well. Suppose

that A is symmetric, A = AT and that we store A in a compact

way (only one triangle).

Say, A = UT + D + U (UpperT+ Diagonal + Upper).

If we store U and D by rows it is easy to compute Ux + Dx

using our row-oriented algorithm. To compute UTx requires a

column-oriented approach (if U is partitioned by rows, UT will

be partitioned by columns, and a column-oriented algorithm

seems reasonable). So the program is a combination of a row

and a column algorithm.

104

A few words about communication

In our program we had the loop:

for j = 1 to #p− 1

send xsegment to the next processor

compute segment

receive xsegment from the previous processor

end

Suppose #p = 2 and that we can transfer data from memory

(from x1 on processor one to x1 on processor two, from x2 on

processor two to x2 on processor one).

x

CPU 1 CPU 2

x

NODE 1 NODE 2

Memory Memory

There are several problems with this type of communication,

e.g.:

• if CPU 1 has been delayed it may be using x2 when CPU 2

is writing in it

• several CPUs may try to write to the same memory location

(in a more general setting)

• CPU 1 may try to use data before CPU 2 has written it

105

So, a few things we would like to able to do:

• wait for a message until we are ready to take care of it

• do other work while waiting (to check now and then)

• find out which processor has sent the message

• have identities of messages (one CPU could send several; how

do we distinguish between them)

• see how large the message is before unpacking it

• send to a group of CPUs (broadcast)

An obvious way to solve the first problem is to use synchronisa-

tion. Suppose CPU 1 is delayed. CPU 2 will send a “ready to

send”-message to CPU 1 but it will not start sending data until

CPU 1 has sent a “ready to receive”-message.

This can cause problems. Suppose we have a program where

both CPUs make a send and then a receive. If the two CPUs

make sends to each other the CPUs will “hang”. Each CPU is

waiting for the other CPU to give a “ready to receive”-message.

We have what is known as a deadlock.

One way to avoid this situation is to use a buffer. When CPU

1 calls the send routine the system copies the array to a tem-

porary location, a buffer. CPU 1 can continue executing and

CPU 2 can read from the buffer (using the receive call) when it

is ready. The drawback is that we need extra memory and an

extra copy operation.

Suppose now that CPU 1 lies ahead and calls receive before

CPU 2 has sent. We could then use a blocking receive that

waits until the messages is available (this could involve synchro-

nised or buffered communication). An alternative is to use a

nonblocking receive. So the receive asks: is there a message? If

not, the CPU could continue working and ask again later.

106

POSIX Threads (pthreads)

(POSIX: Portable Operating System Interface, A set of IEEE

standards designed to provide application portability between

Unix variants. IEEE: Institute of Electrical and Electronics En-

gineers, Inc. The world’s largest technical professional society,

based in the USA.)

Unix process creation (and context switching) is rather slow and

different processes do not share much (if any) information (i.e.

they may take up a lot of space).

A thread is like a “small” process. It originates from a pro-

cess and is a part of that process. All the threads share global

variables, files, code, PID etc. but they have their individual

stacks and program counters.

When the process has started, one thread, the master thread, is

running. Using routines from the pthreads library we can start

more threads.

If we we have a shared memory parallel computer each thread

may run on its own processor, but threads are a convenient pro-

gramming tool on a uniprocessor as well.

In the example below a dot product,
∑n

i=1 aibi, will be computed

in parallel. Each thread will compute part of the sum. We could,

however, have heterogeneous tasks (the threads do not have do

do the same thing).

We compile by:

gcc -std=c99 prog.c -lpthread

107

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>

// global shared variables
#define VEC_LEN 400
#define N_THREADS 4
double a[VEC_LEN], b[VEC_LEN], sum;
pthread_mutex_t mutexsum;

void *dotprod(void *restrict arg) // the slave
{
int i, start, end, i_am, len;
double mysum;

// typecasts, need both, see www for details
i_am = (int) (long) arg;
len = VEC_LEN / N_THREADS; // assume N_THREADS
start = i_am * len; // divides VEC_LEN
end = start + len;

mysum = 0.0; // local sum
for (i = start; i < end; i++)

mysum += a[i] * b[i];

pthread_mutex_lock(&mutexsum); // critical section
sum += mysum; // update global sum

pthread_mutex_unlock(&mutexsum); // with local sum

// terminate the thread, NULL is the null-pointer
pthread_exit(NULL); // not really needed
return NULL; // to silence splint

}
int main()
{
pthread_t thread_id[N_THREADS];
int i, ret;

108

printf("sizeof(void *restrict) = %d\n",
sizeof(void *restrict)); // to be sure

printf("sizeof(long) = %d\n", sizeof(long));

for (i = 0; i < VEC_LEN; i++) {
a[i] = 1.0; // initialize
b[i] = a[i];

}
sum = 0.0; // global sum, NOTE declared global

// Initialize the mutex (mutual exclusion lock).
pthread_mutex_init(&mutexsum, NULL);

// Create threads to perform the dotproduct
// NUll implies default properties.

for(i = 0; i < N_THREADS; i++)
if(ret = pthread_create(&thread_id[i], NULL,

dotprod, (void *) (long) i)){
printf ("Error in thread create\n");
exit(1);

}

// Wait for the other threads. If the main thread
// exits all the slave threads will exit as well.

for(i = 0; i < N_THREADS; i++)
if(ret = pthread_join(thread_id[i], NULL)) {

printf ("Error in thread join %d \n", ret);
exit(1);

}

printf ("sum = %f\n", sum);
pthread_mutex_destroy(&mutexsum);
return 0;

}

109

This is what the run looks like. Since the threads have the same

PID we must give a special option to the ps-command to see

them.

% a.out
sizeof(void *restrict) = 8
sizeof(long) = 8
sum = 400.000000
...

% ps -felL | grep thomas | grep a.out (edited)
UID PID PPID LWP NLWP CMD
thomas 15483 27174 15483 5 a.out <-- master
thomas 15483 27174 15484 5 a.out
thomas 15483 27174 15485 5 a.out
thomas 15483 27174 15486 5 a.out
thomas 15483 27174 15487 5 a.out

LWP id. of light weight process (thread).

NLWP number of lwps in the process.

Note that the PID is the same.

If you use top and press H you well see the individual threads

as well.

110

Race conditions, deadlock etc.

When writing parallel programs it is important not to make

any assumptions about the order of execution of threads or pro-

cesses (e.g that a certain thread is the first to initialize a global

variable). If one makes such assumptions the program may fail

occasionally (if another thread would come first). When threads

compete for resources (e.g. shared memory) in this way we have

a race condition. It could even happen that threads deadlock

(deadlock is a situation where two or more processes are unable

to proceed because each is waiting for one of the others to do

something).

From the web: I’ve noticed that under LinuxThreads (a kernel-

level POSIX threads package for Linux) it’s possible for thread

B to be starved in a bit of code like the fragment at the end

of this message (not included). I interpreted this as a bug in

the mutex code, fixed it, and sent a patch to the author. He

replied by saying that the behavior I observed was correct, it

is perfectly OK for a thread to be starved by another thread

of equal priority, and that POSIX makes no guarantees about

mutex lock ordering. ... I wonder (1) if the behavior I observed

is within the standard and (2) if it is, what the f%ˆ& were the

POSIX people thinking? ...

Sorry, I’m just a bit aggravated by this.

Any info appreciated,

Bill Gribble

According to one answer it is within the standard.

When I taught the course 2002, Solaris pthreads behaved this

way, but this has changed in Solaris 9. Under Linux (2005) there

are no problems, so I will not say more about this subject.

111

Message Passing Software

Several packages available. The two most common are PVM

(Parallel Virtual Machine) and MPI (Message Passing

Interface).

The basic idea in these two packages is to start several processes

and let these processes communicate through explicit message

passing. This is done using a subroutine library (Fortran & C).

The subroutine library usually uses unix sockets (on a low level).

It is possible to run the packages on a shared memory machine in

which case the packages can communicate via the shared mem-

ory. This makes it possible to run the code on many different

systems.

call pvmfinitsend(PVMDEFAULT, bufid)
call pvmfpack(INTEGER4, n, 1, 1, info)
call pvmfpack(REAL8, x, n, 1, info)
call pvmfsend(tid, msgtag, info)

bufid = pvm_initsend(PvmDataDefault);
info = pvm_pkint(&n, 1, 1);
info = pvm_pkdouble(x, n, 1);
info = pvm_send(tid, msgtag);

call MPI_Send(x, n, MPI_DOUBLE_PRECISION, dest, &
tag, MPI_COMM_WORLD, err)

err = MPI_Send(x, n, MPI_DOUBLE, dest,
tag, MPI_COMM_WORLD);

In MPI one has to work a bit more to send a message consisting

of several variables. In PVM it is possible to start processes

dynamically, and to run several different a.out-files. In MPI

the processes must be started using a special unix-script and

only one a.out is allowed (at least in MPI version 1).

112

PVM is available in one distribution, pvm3.4.4, (see the home

page). (Al Geist, Adam Beguelin, Jack Dongarra, Weicheng

Jiang, Robert Manchek, Vaidy Sunderam.) Free book available

on the net (PostScript & HTML).

Some of the systems PVM runs on (this is an old list; systems

have been added):

AFX8, Alliant FX/8, ALPHA, DEC Alpha/OSF-1, ALPHAMP, DEC Alpha/OSF-1 /

using shared memory, APOLLO, HP 300 running Domain/OS, ATT, AT&T/NCR 3600

running SysVR4, BAL, Sequent Balance, BFLY, BBN Butterfly TC2000, BSD386,

80[345]86 running BSDI or BSD386, CM2, Thinking Machines CM-2 Sun front-end,

CM5, Thinking Machines CM-5, CNVX, Convex using IEEE floating-point, CNVXN,

Convex using native f.p., CRAY, Cray, CRAY2, Cray-2, CRAYSMP, Cray S-MP,

CSPP, Convex Exemplar, DGAV, Data General Aviion, E88K, Encore 88000, FREEBSD,

80[345]86 running FreeBSD, HP300, HP 9000 68000 cpu, HPPA, HP 9000 PA-Risc,

HPPAMP, HP 9000 PA-Risc / shared memory transport, KSR1, Kendall Square,

I860, Intel RX Hypercube, IPSC2, Intel IPSC/2, LINUX, 80[345]86 running Linux,

M88K, Motorola M88100 running Real/IX, MASPAR, Maspar, MIPS, Mips, NETB-

SDAMIGA, Amiga running NetBSD, NETBSDHP300, HP 300 running NetBSD,

NETBSDI386, 80[345]86 running NetBSD, NETBSDMAC68K, Macintosh running

NetBSD, NETBSDPMAX, DEC Pmax running NetBSD, NETBSDSPARC, Sparc run-

ning NetBSD, NETBSDSUN3, SUN 3 running NetBSD, NEXT, NeXT, PGON, Intel

Paragon, PMAX, DEC/Mips arch (3100, 5000, etc.), RS6K, IBM/RS6000, RS6KMP,

IBM SMP / shared memory transport, RT, IBM/RT, SCO, 80[345]86 running SCO

Unix, SGI, Silicon Graphics IRIS, SGI5, Silicon Graphics IRIS running OS ≥ 5.0,

SGI64, Silicon Graphics IRIS running OS ≥ 6.0, SGIMP, Silicon Graphics IRIS / OS

5.x / using shared memory, SGIMP64, Silicon Graphics IRIS / OS 6.x / using shared

memory, SP2MPI, IBM SP-2 / using MPI, SUN3, Sun 3, SUN4, Sun 4, 4c, sparc,

etc., SUN4SOL2, Sun 4 running Solaris 2.x, SUNMP, Sun 4 / using shared memory

/ Solaris 2.x, SX3, NEC SX-3, SYMM, Sequent Symmetry, TITN, Stardent Titan,

U370, IBM 3090 running AIX, UTS2, Amdahl running UTS, UVAX, DEC/Microvax,

UXPM, Fujitsu running UXP/M, VCM2, Thinking Machines CM-2 Vax front-end,

X86SOL2, 80[345]86 running Solaris 2.x.

113

PVM can be run in several different ways. Here we add machines

to the virtual machine by using the PVM-console:

pvm> conf
1 host, 1 data format

HOST DTID ARCH SPEED
ries.math.chalmers.se 40000 SUN4SOL2 1000

pvm> add fibonacci
1 successful

HOST DTID
fibonacci 80000

pvm> add fourier
1 successful

HOST DTID
fourier c0000

pvm> add pom.unicc
1 successful

HOST DTID
pom.unicc 100000

pvm> conf
4 hosts, 1 data format

HOST DTID ARCH SPEED
ries.math.chalmers.se 40000 SUN4SOL2 1000

fibonacci 80000 SUN4SOL2 1000
fourier c0000 SUN4SOL2 1000

pom.unicc 100000 SUNMP 1000
pvm> help
help - Print helpful information about a command
Syntax: help [command]
Commands are:
add - Add hosts to virtual machine
alias - Define/list command aliases
conf - List virtual machine configuration
delete - Delete hosts from virtual machine
etc.

pvm> halt

114

It is possible to add machines that are far away and of different

architectures. The add command start a pvmd on each machine

(pvmd pvm-daemon). The pvmds relay messages between hosts.

The PVM-versions that are supplied by the vendors are based

on the public domain (pd) version.

Common to write master/slave-programs (two separate main-

programs). Here is the beginning of a master:

program master
#include "fpvm3.h"
...
call pvmfmytid (mytid) ! Enroll program in pvm
print*, ’How many slaves’
read*, nslaves

name_of_slave = ’slave’ ! pvmd looks in a spec. dir.
arch = ’*’ ! any will do
call pvmfspawn (name_of_slave, PVMDEFAULT, arch,

+ nslaves, tids, numt)

The beginning of the slave may look like:

program slave
#include "fpvm3.h"
...
call pvmfmytid (mytid) ! Enroll program in pvm
call pvmfparent (master) ! Get the master’s task id.

* Receive data from master.
call pvmfrecv (master, MATCH_ANYTHING, info)
call pvmfunpack (INTEGER4, command, 1, 1, info)

There are several pd-versions of MPI, we are using MPICH2

from Argonne National Lab.

Here comes a simple MPI-program.

115

#include <stdio.h>
#include "mpi.h" /* Important */

int main(int argc, char *argv[])
{
int message, length, source, dest, tag;
int n_procs; /* number of processes */
int my_rank; /* 0, ..., n_procs-1 */
MPI_Status status;

MPI_Init(&argc, &argv); /* Start up MPI */

/* Find out the number of processes and my rank*/
MPI_Comm_size(MPI_COMM_WORLD, &n_procs);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

tag = 1;
length = 1; /* Length of message */

if (my_rank == 0) { /* I’m the master process */
printf("Number of processes = %d\n", n_procs);
dest = 1; /* Send to the other process*/
message = 1; /* Just send one int */

/* Send message to slave */
MPI_Send(&message, length, MPI_INT, dest,

tag, MPI_COMM_WORLD);
printf("After MPI_Send\n");

source = 1;
/* Receive message from slave. length is how much

room we have and NOT the length of the message*/
MPI_Recv(&message, length, MPI_INT, source, tag,

MPI_COMM_WORLD, &status);

printf("After MPI_Recv, message = %d\n", message);

116

} else { /* I’m the slave process */

source = 0;
/* Receive message from master*/
MPI_Recv(&message, length, MPI_INT, source, tag,

MPI_COMM_WORLD, &status);

dest = 0; /* Send to the other process*/
message++; /* Increase message */

/* Send message to master */
MPI_Send(&message, length, MPI_INT, dest,

tag, MPI_COMM_WORLD);
}

MPI_Finalize(); /* Shut down MPI */
return 0;

}

To run: read the MPI-assignment. Something like:

% mpicc simple.c
% mpiexec -n 2 ./a.out
Number of processes = 2
After MPI_Send
After MPI_Recv, message = 2

One can print in the slave as well, but it may not work in all

MPI-implementations and the order of the output is not

deterministic. It may be interleaved or buffered.

We may not be able to start processes from inside the program

(permitted in MPI 2.0 but may not be implemented).

117

Let us look at each call in some detail: Almost all the MPI-

routines in C are integer functions returning a status value. I

have ignored these values in the example program. In Fortran

there are subroutines instead. The status value is returned as

an extra integer parameter (the last one).

Start and stop MPI (it is possible to do non-MPI stuff before

Init and after Finalize). These routines must be called:

MPI_Init(&argc, &argv);
...

MPI_Finalize();

MPI_COMM_WORLDis a communicator, a group of processes.

The program can find out the number of processes by calling

MPI_Comm_size(note that & is necessary since we require a

return value).

MPI_Comm_size(MPI_COMM_WORLD, &n_procs);

Each process is numbered from 0 to n_procs-1. To find the

number (rank) we can use MPI_Comm_rank.

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

We need the rank when sending messages and to decide how the

work should be shared:

if (my_rank == 0) {
I’m the master

} elseif (my_rank == 1) {
...

118

The two most basic communication routines (there are many)

are:

MPI_Send(&message, length, MPI_INT, dest, tag,
MPI_COMM_WORLD);

MPI_Recv(&message, length, MPI_INT, source, tag,
MPI_COMM_WORLD, &status);

If the message is an array there should be no &.

Some other datatypes are MPI_FLOAT and MPI_DOUBLE.

The Fortran names are MPI_INTEGER, MPI_REAL and

MPI_DOUBLE_PRECISION.

Note that length is the number of elements of the specific type

(not the number of bytes).

length in MPI_Send is the number of elements we are

sending (the message-array may be longer). length in MPI_Recv
is amount of storage available to store the message.

If this value is less than the length of the message, the MPI-

system prints an error message telling us that the message has

been truncated.

dest is the rank of the receiving process. tag is a number of the

message that the programmer can use to keep track of messages

(0 ≤ tag ≤ at least 32767).

119

The same holds for MPI_Recv, with the difference that source
is the rank of the sender.

If we will accept a message from any sender we can use the

constant (from the header file) MPI_ANY_SOURCE.

If we accept any tag we can use MPI_ANY_TAG.
So, we can use tag and source to pick a specific message from

a queue of messages.

status is a so called structure (a record) consisting of at

least three members (MPI_SOURCE, MPI_TAG and MPI_ERROR
(some systems may have additional members).

We can do the following:

printf("status.MPI_SOURCE = %d\n", status.MPI_SOURCE);
printf("status.MPI_TAG = %d\n", status.MPI_TAG);
printf("status.MPI_ERROR = %d\n", status.MPI_ERROR);

To find out the actual length of the message we can do:

MPI_Get_count(&status, MPI_INT, &size);
printf("size = %d\n", size);

Here comes the simple program in Fortran.

120

program simple
implicit none
include "mpif.h"
integer message, length, source, dest, tag
integer my_rank, err
integer n_procs ! number of processes
integer status(MPI_STATUS_SIZE)

call MPI_Init(err) ! Start up MPI

! Find out the number of n_processes and my rank
call MPI_Comm_rank(MPI_COMM_WORLD, my_rank, err)
call MPI_Comm_size(MPI_COMM_WORLD, n_procs, err)

tag = 1
length = 1 ! Length of message

if (my_rank == 0) then ! I’m the master process
print*, "Number of processes = ", n_procs
dest = 1 ! Send to the other process
message = 1 ! Just send one integer

! Send message to slave
call MPI_Send(message, length, MPI_INTEGER, dest, &

tag, MPI_COMM_WORLD, err)
print*, "After MPI_Send"

source = 1
! Receive message from slave

call MPI_Recv(message, length, MPI_INTEGER, source,&
tag, MPI_COMM_WORLD, status, err)

print*, "After MPI_Recv, message = ", message

121

else ! I’m the slave process
source = 0

! Receive message from master
call MPI_Recv(message, length, MPI_INTEGER, source,&

tag, MPI_COMM_WORLD, status, err)

dest = 0 ! Send to the other process
message = message + 1 ! Increase message

! Send message to master
call MPI_Send(message, length, MPI_INTEGER, dest, &

tag, MPI_COMM_WORLD, err)
end if

call MPI_Finalize(err) ! Shut down MPI

end program simple

Note that the Fortran-routines are subroutines (not functions)

and that they have an extra parameter, err.

One problem in Fortran77 is that status, in MPI_Recv, is a

structure. The solution is: status(MPI_SOURCE), status(MPI_TAG)
and status(MPI_ERROR)contain, respectively, the source, tag

and error code of the received message.

To compile and run (one can add -O3 etc.):

mpif90 simple.f90
mpiexec -n 2 ./a.out

^C usually kills all the processes.

122

There are blocking and nonblocking point-to-point Send/Receive-

routines in MPI. The communication can be done in different

modes (buffered, synchronised, and a few more). The Send/Re-

ceive we have used are blocking, but we do not really know if

they are buffered or not (the standard leaves this open). This is

a very important question. Consider the following code:

...
integer, parameter :: MASTER = 0, SLAVE = 1
integer, parameter :: N_MAX = 10000
integer, dimension(N_MAX) :: vec = 1

call MPI_Init(err)
call MPI_Comm_rank(MPI_COMM_WORLD, my_rank, err)
call MPI_Comm_size(MPI_COMM_WORLD, n_procs, err)

msg_len = N_MAX; buf_len = N_MAX

if (my_rank == MASTER) then
send_to = SLAVE; tag = 1
call MPI_Send(vec, msg_len, MPI_INTEGER, &

send_to, tag, MPI_COMM_WORLD, err)

recv_from = SLAVE; tag = 2
call MPI_Recv(vec, buf_len, MPI_INTEGER, &

recv_from, tag, &
MPI_COMM_WORLD, status, err)

else
send_to = MASTER; tag = 2
call MPI_Send(vec, msg_len, MPI_INTEGER, &

send_to, tag, MPI_COMM_WORLD, err)

recv_from = MASTER; tag = 1
call MPI_Recv(vec, buf_len, MPI_INTEGER, &

recv_from, tag, &
MPI_COMM_WORLD, status, err)

end if
...

123

This code works (under MPICH2) when N_MAX = 1000, but it

hangs, it deadlocks, when N_MAX = 20000. One can suspect that

buffering is used for short messages but not for long ones. This

is usually the case in all MPI-implementations. Since the buffer

size is not standardized we cannot rely on buffering though.

There are several ways to fix the problem. One is to let the

master node do a Send followed by the Receive. The slave does

the opposite, a Receive followed by the Send.

master slave
call MPI_Send(...) call MPI_Recv(...)
call MPI_Recv(...) call MPI_Send(...)

Another way is to use the deadlock-free MPI_Sendrecv-routine.

The code in the example can then be written:

program dead_lock
include "mpif.h"

integer :: rec_from, snd_to, snd_tag, rec_tag, &
my_rank, err, n_procs, snd_len, buf_len

integer, dimension(MPI_STATUS_SIZE) :: status

integer, parameter :: MASTER = 0, SLAVE = 1
integer, parameter :: N_MAX = 100
integer, dimension(N_MAX) :: snd_buf, rec_buf

call MPI_Init(err)
call MPI_Comm_rank(MPI_COMM_WORLD, my_rank, err)
call MPI_Comm_size(MPI_COMM_WORLD, n_procs, err)

snd_len = N_MAX; buf_len = N_MAX

124

if (my_rank == MASTER) then
snd_buf = 10 ! init the array
snd_to = SLAVE; snd_tag = 1
rec_from = SLAVE; rec_tag = 2
call MPI_Sendrecv(snd_buf, snd_len, MPI_INTEGER, &

snd_to, snd_tag, rec_buf, buf_len, &
MPI_INTEGER, rec_from, rec_tag, &
MPI_COMM_WORLD, status, err)

print*, ’master, rec_buf(1:5) = ’, rec_buf(1:5)
else

snd_buf = 20 ! init the array
snd_to = MASTER; snd_tag = 2
rec_from = MASTER; rec_tag = 1

call MPI_Sendrecv(snd_buf, snd_len, MPI_INTEGER, &
snd_to, snd_tag, rec_buf, buf_len, &
MPI_INTEGER, rec_from, rec_tag, &
MPI_COMM_WORLD, status, err)

print*, ’slave, rec_buf(1:5) = ’, rec_buf(1:5)
end if

call MPI_Finalize(err)

end program dead_lock
% mpiexec -n 2 ./a.out
master, rec_buf(1:5) = 20 20 20 20 20
slave, rec_buf(1:5) = 10 10 10 10 10

Another situation which may cause a deadlock is having to sends

in a row. A silly example is when a send is missing:

master slave
... call MPI_Recv(...)

A blocking receive will wait forever (until we kill the processes).

125

Sending messages to many processes
There are broadcast operations in MPI, where one process can

send to all the others.

#include <stdio.h>
#include "mpi.h"
int main(int argc, char *argv[])
{
int message[10], length, root, my_rank;
int n_procs, j;

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &n_procs);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

length = 10;
root = 2; /* Note: the same for all. */

/* Need not be 2, of course. */
if (my_rank == 2) {

for (j = 0; j < length; j++)
message[j] = j;

/* Here is the broadcast. Note, no tag.*/
MPI_Bcast(message, length, MPI_INT, root,

MPI_COMM_WORLD);
} else {

/* The slaves have exactly the same call*/
MPI_Bcast(message, length, MPI_INT, root,

MPI_COMM_WORLD);

printf("%d: message[0..2] = %d %d %d\n",
my_rank, message[0], message[1],
message[2]);

}
MPI_Finalize();
return 0;

}
126

% mpiexec -n 4 ./a.out
0: message[0..2] = 0 1 2
1: message[0..2] = 0 1 2
3: message[0..2] = 0 1 2

Why should we use a broadcast instead of several MPI_Send?
The answer is that it may be possible to implement the broadcast

in a more efficient manner:

timestep 0: 0 -> 1 (-> means send to)

timestep 1: 0 -> 2, 1 -> 3

timestep 2: 0 -> 4, 1 -> 5, 2 -> 6, 3 -> 7

etc.

So, provided we have a network topology that supports parallel

sends we can decrease the number of send-steps significantly.

127

There are other global communication routines.

Let us compute an integral by dividing the interval in #p pieces:
∫ b

a

f(x)dx =

∫ a+h

a

f(x)dx+

∫ a+2h

a+h

f(x)dx+· · ·+
∫ b

a+(#p−1)h

f(x)dx

where h = b−a
#p

.

Each process computes its own part, and the master has to add

all the parts together. Adding parts together this way is called

a reduction.

We will use the trapezoidal method (we would not use that in a

real application).

#include <stdio.h>
#include <math.h>
#include "mpi.h"

/* Note */
#define MASTER 0

/* Prototypes */
double trapez(double, double, int);
double f(double);

int main(int argc, char *argv[])
{
int n_procs, my_rank, msg_len;
double a, b, interval, I, my_int, message[2];

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &n_procs);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
if (my_rank == MASTER) {

a = 0.0;
b = 4.0; /* or read some values */

128

/* compute the length of the subinterval*/
interval = (b - a) / n_procs;
message[0] = a; /* left endpoint */
message[1] = interval;

}

/* This code is written in SIMD-form*/
msg_len = 2;
MPI_Bcast(message, msg_len, MPI_DOUBLE, MASTER,

MPI_COMM_WORLD);

/* unpack the message */
a = message[0];
interval = message[1];

/* compute my endpoints */
a = a + my_rank * interval;
b = a + interval;

/* compute my part of the integral*/
my_int = trapez(a, a + interval, 100);
/* my_int is my part of the integral.

All parts are accumulated in I, but only in
the master process.

*/

msg_len = 1;
MPI_Reduce(&my_int, &I, msg_len, MPI_DOUBLE,

MPI_SUM, MASTER, MPI_COMM_WORLD);

if (my_rank == MASTER)
printf("The integral = %e\n", I);

MPI_Finalize();
return 0;

}

129

double f(double x)
{ /* The integrand */
return exp(-x * cos(x));

}

/* An extremely primitive quadrature method.
Approximate integral from a to b of f(x) dx.
We integrate over [a, b] which is different
from the [a, b] in the main program.

*/

double trapez(double a, double b, int n)
{
int k;
double I, h;

h = (b - a) / n;

I = 0.5 * (f(a) + f(b));
for (k = 1; k < n; k++) {

a += h;
I += f(a);

}

return h * I;
}

130

To get good speedup the function should require a huge amount

of cputime to evaluate.

There are several operators (not only MPI_SUM) that can be used

together with MPI_Reduce.

MPI_MAX return the maximum

MPI_MIN return the minimum

MPI_SUM return the sum

MPI_PROD return the product

MPI_LAND return the logical and

MPI_BAND return the bitwise and

MPI_LOR return the logical or

MPI_BOR return the bitwise of

MPI_LXOR return the logical exclusive or

MPI_BXOR return the bitwise exclusive or

MPI_MINLOC return the minimum and the location (actually, the

value of the second element of the structure where

the minimum of the first is found)

MPI_MAXLOC return the maximum and the location

If all the processes need the result (I) we could do a broadcast

afterwards, but there is a more efficient routine, MPI_Allreduce.
See the web for details (under Documentation, MPI-routines).

The MPI_Allreducemay be performed in an efficient way.

Suppose we have eight processes, 0, ..., 7. | denotes a split.

0 1 2 3 | 4 5 6 7 0<->4, 1<->5 etc
0 1 | 2 3 4 5 | 6 7 0<->2 etc

0 | 1 2 | 3 4 | 5 6 | 7 0<->1 etc

Each process accumulates its own sum (and sends it on):

s0 = x[0] + x[4], s2 = x[2] + x[6], ...
s0 = s0 + s2 = (x[0] + x[4] + x[2] + x[6])
s0 = s0 + s1 = x[0] + ... + x[7]

131

A common operation is to gather, MPI_Gather (bring to one

process) sets of data. MPI_Scatter is the reverse of gather, it

distributes pieces of a vector. See the manual for both of these.

1

Root process

0

2

3

Root process

0

1

2

3

MPI_GatherMPI_Scatter

There is also an MPI_Allgather that gathers pieces to a long

vector (as gather) but where each process gets a copy of the long

vector. Another “All”-routine is MPI_Allreduceas we just saw.

Now for some routines which are practical when we would like

to divide the processes into subsets.

132

So far we have only used one communicator containing all the

processes. Sometimes it is useful to create subsets of processes,

groups, e.g. for performing a brodacast within this subset. A

group is a ordered collection of processes with ranks from zero

to the number of processes minus one.

Assume we have started nine processes and we want to create

a communicator, My_Comm, corresponding to ranks 0, 4 and 8.

Then all processes (and not just the ones forming the new com-

municator) should do something like this (once): In Fortran90:

integer :: new_group, world_group, err, My_Comm
integer, dimension(3) :: ranks

call MPI_Init(err)
! more code ...

ranks = (/ 0, 4, 8 /) ! the subset
! fetch the group, world_group, corresponding
! to MPI_COMM_WORLD
call MPI_Comm_group(MPI_COMM_WORLD, world_group, err)

! create the new group from the (old) ranks in
! the old group, world_group
! size(ranks) = 3, is the number of ranks in subset
call MPI_Group_incl(world_group, size(ranks), &

ranks, new_group, err)

! create the new communicator, My_Comm, from new_group
call MPI_Comm_create(MPI_COMM_WORLD, new_group, &

My_Comm, err)

Groups and communicators are opaque objects, we do not know

the internal representation in the MPI-system. Think of

world_group (an integer) as a handle to the information.

One can create several communicators storing them as elements

in an integer array, if convenient.

133

MPI_Group new_group, world_group;
MPI_Comm My_Comm;
int ranks[] = {0, 4, 8};

MPI_Init(&argc, &argv);
// more code ...

MPI_Comm_group(MPI_COMM_WORLD, &world_group);
MPI_Group_incl(world_group, 3, ranks, &new_group);
MPI_Comm_create(MPI_COMM_WORLD, new_group, &My_Comm);

Important: note that the old ranks 0, 4, 8 in MPI_COMM_WORLD
correspond to the new ranks 0, 1, 2 in My_Comm. Note also that

only processes belonging to My_Commmay take part in the com-

munication if the communicator is My_Comm. If, for example, the

process with rank 7 in MPI_COMM_WORLDparticipates, the MPI-

system will give an error message and halt the program.

Suppose we would like to create several groups (row-groups for a

rectangular mesh, for example), there is a more convenient rou-

tine, MPI_Comm_split. Here are a few examples, first a simple

one, where we create three new communicators (with the same

name), based on three subsets of ranks.

program Comm_split_1
implicit none
include "mpif.h"
integer :: err, My_comm, rank, my_new_rank, &

group, gr_size

call MPI_Init(err)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, err)

if (any(rank == (/ 0, 5 /))) &
call MPI_Comm_split(MPI_COMM_WORLD, 1, 0, &

My_comm, err)

134

Ranks with same color (number 1 in this call) are grouped to-

gether. 0 is the key, and it is used to order new ranks in case

we have several calls with the same colour.

if (any(rank == (/ 1, 3, 7 /))) &
call MPI_Comm_split(MPI_COMM_WORLD, 2, 0, &

My_comm, err)

if (any(rank == (/ 2, 4, 6, 8 /))) &
call MPI_Comm_split(MPI_COMM_WORLD, 3, 0, &

My_comm, err)

! Not necessary, just for pedagogical reasons
call MPI_Comm_group (My_comm, group, err) ! group?
call MPI_Group_size (group, gr_size, err) ! size?
call MPI_Comm_rank (My_comm, my_new_rank, err)
print*, ’rank, new_rank, size ’, &

rank, my_new_rank, gr_size

call MPI_Finalize(err)
end

% mpif90 Comm_split1.f90
% mpiexec -n 9 ./a.out | sort -n NOTE: sort
rank, new_rank, size 0 0 2
rank, new_rank, size 1 0 3
rank, new_rank, size 2 0 4
rank, new_rank, size 3 1 3
rank, new_rank, size 4 1 4
rank, new_rank, size 5 1 2
rank, new_rank, size 6 2 4
rank, new_rank, size 7 2 3
rank, new_rank, size 8 3 4

The third argument (the key) to MPI_Comm_split is unused in

the above example but can be used to order the ranks in case

we have several calls with the same color.

135

if (any(rank == (/ 2, 4 /))) &
call MPI_Comm_split(MPI_COMM_WORLD, 3, 1, &

My_comm, err) ! ^ NOTE

if (any(rank == (/ 6, 8 /))) &
call MPI_Comm_split(MPI_COMM_WORLD, 3, 0, &

My_comm, err) ! ^ NOTE

gives the order 6, 8, 2, 4 (the new ranks are 0, 1, 2, 3).

Let us use MPI_Comm_splitto create communicators suitable for

a rectangular grid with four rows and five columns. We need a

communicator for each row. Ranks range from 0 to 4·5−1 = 19.

floor(rank / 5)gives the values

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

producing four subsets (the rows). Here is the C-code:

...
MPI_Comm My_comm;
int my_rank, my_row, gr_size, my_new_rank;
MPI_Group group;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

my_row = my_rank / 5; // integer division
MPI_Comm_split(MPI_COMM_WORLD, my_row, 0, &My_comm);

// For pedagogigal reasons
MPI_Comm_group (My_comm, &group);
MPI_Group_size (group, &gr_size);
MPI_Comm_rank (My_comm, &my_new_rank);
printf("rank, new_rank, size %02d, %3d, %3d\n",

my_rank, my_new_rank, gr_size);
...

and here is the run

136

% mpicc Comm_split3.c
% mpiexec -n 20 ./a.out | sort -n
rank, new_rank, size 00, 0, 5
rank, new_rank, size 01, 1, 5
rank, new_rank, size 02, 2, 5
rank, new_rank, size 03, 3, 5
rank, new_rank, size 04, 4, 5
rank, new_rank, size 05, 0, 5
rank, new_rank, size 06, 1, 5
etc.

rank, new_rank, size 18, 3, 5
rank, new_rank, size 19, 4, 5

Now for an example with two rows and columns.

...
MPI_Comm My_comm;
int my_rank, my_row, my_new_rank, data[5];

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

for(int k = 0; k < 5; k++)
data[k] = 10 * my_rank + k;

my_row = my_rank / 2; // integer division
MPI_Comm_split(MPI_COMM_WORLD, my_row, 0, &My_comm);

// 0 is the root in My_comm
MPI_Bcast(data, 5, MPI_INT, 0, My_comm);

// Not necessary
MPI_Comm_rank(My_comm, &my_new_rank);
printf("%d, %d: %3d %3d %3d %3d %3d\n", my_rank,

my_new_rank, data[0], data[1], data[2],
data[3], data[4]);

...

137

% mpicc -std=c99 Comm_split4.c
% mpiexec -n 4 ./a.out
0, 0: 0 1 2 3 4 my_rank = 0 bcasting
2, 0: 20 21 22 23 24 my_rank = 2 bcasting
1, 1: 0 1 2 3 4 my_rank = 0 bcasting
3, 1: 20 21 22 23 24 my_rank = 2 bcasting

Let us continue with something related, topologies, being able

to index a process using row- and column indices.

...
MPI_Comm Grid_comm;
int my_rank, my_new_rank, coords[2];
int grid_sz[] = {3, 3}; // 3 x 3-grid
int wrap[] = {0, 1}; // wrap around?
int reorder = 0; // reorder for efficiency?

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
// Create Grid_comm
MPI_Cart_create(MPI_COMM_WORLD, 2, grid_sz,

wrap, reorder, &Grid_comm);

MPI_Comm_rank(Grid_comm, &my_new_rank);
// my_new_rank -> coords
MPI_Cart_coords(Grid_comm, my_new_rank, 2, coords);
printf(

"rank, new_rank, coords: %3d, %3d, (%1d, %1d)\n",
my_rank, my_new_rank, coords[0], coords[1]);

MPI_Barrier(Grid_comm); // wait for printf
if (my_rank == 0) {

coords[0] = 1; coords[1] = 2;
// coords -> my_new_rank
MPI_Cart_rank(Grid_comm, coords, &my_new_rank);
printf("new_rank, coords: %3d, (%2d, %2d)\n",

my_new_rank, coords[0], coords[1]);

138

// coords[1] = 3; is OK since wrap[1] = 1;
coords[1] = 3;
MPI_Cart_rank(Grid_comm, coords, &my_new_rank);
printf("new_rank, coords: %3d, (%2d, %2d)\n",

my_new_rank, coords[0], coords[1]);

coords[1] = -2;
MPI_Cart_rank(Grid_comm, coords, &my_new_rank);
printf("new_rank, coords: %3d, (%2d, %2d)\n",

my_new_rank, coords[0], coords[1]);
}

...

% mpicc -std=c99 Comm_grid.c
% mpiexec -n 9 ./a.out
rank, new_rank, coords: 0, 0, (0, 0)
rank, new_rank, coords: 1, 1, (0, 1)
rank, new_rank, coords: 2, 2, (0, 2)
rank, new_rank, coords: 4, 4, (1, 1)
rank, new_rank, coords: 8, 8, (2, 2)
rank, new_rank, coords: 6, 6, (2, 0)
rank, new_rank, coords: 7, 7, (2, 1)
rank, new_rank, coords: 5, 5, (1, 2)
rank, new_rank, coords: 3, 3, (1, 0)
new_rank, coords: 5, (1, 2)
new_rank, coords: 3, (1, 3)
new_rank, coords: 4, (1, -2)

The reorder-parameter is ignored in MPICH2.

We would now like to partition this grid into subgrids

corresponding to rows (and columns).

The function MPI_Cart_subdoes that for us.

139

...
MPI_Comm Grid_comm, Row_comm;
int my_rank, grid_rank, row_rank, coords[2], coordsr;
int grid_sz[] = {3, 3}; // 3 x 3-grid
int wrap[] = {0, 1}; // wrap around?
int reorder = 0; // OK to reorder
int free_coord[] = {0, 1}; // lock rows

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
MPI_Cart_create(MPI_COMM_WORLD, 2, grid_sz,

wrap, reorder, &Grid_comm);

// Create row communicator
MPI_Cart_sub(Grid_comm, free_coord, &Row_comm);

// Not necessary
MPI_Comm_rank(Grid_comm, &grid_rank);
MPI_Comm_rank(Row_comm, &row_rank);
MPI_Cart_coords(Grid_comm, grid_rank, 2, coords);
MPI_Cart_coords(Row_comm, row_rank, 1, &coordsr);
printf(

"rank, grid, row, coords: %3d, %3d, %d, (%1d, %1d),
my_rank, grid_rank, row_rank, coords[0], coords[1],

coordsr);
...
% mpicc Comm_grid_sub.c
% mpiexec -n 9 ./a.out | sort -n
rank, grid, row, coords: 0, 0, 0, (0, 0), 0
rank, grid, row, coords: 1, 1, 1, (0, 1), 1
rank, grid, row, coords: 2, 2, 2, (0, 2), 2
rank, grid, row, coords: 3, 3, 0, (1, 0), 0
rank, grid, row, coords: 4, 4, 1, (1, 1), 1
rank, grid, row, coords: 5, 5, 2, (1, 2), 2
rank, grid, row, coords: 6, 6, 0, (2, 0), 0
rank, grid, row, coords: 7, 7, 1, (2, 1), 1
rank, grid, row, coords: 8, 8, 2, (2, 2), 2

140

A page about distributed Gaussian
elimination

In standard GE we take linear combinations of rows to zero ele-

ments in the pivot columns. We end up with a triangular matrix.

How should we distribute the matrix if we are using MPI?

The obvious way is to partition the rows exactly as in our power

method (a row distribution). This leads to poor load balancing,

since as soon as the first block has been triangularized processor

0 will be idle.

After two elimination steps we have the picture (x is nonzero

and the block size is 2):

x x x x x x x x proc 0
0 x x x x x x x proc 0
0 0 x x x x x x proc 1
0 0 x x x x x x proc 1
0 0 x x x x x x proc 2
0 0 x x x x x x proc 2
0 0 x x x x x x proc 3
0 0 x x x x x x proc 3

Another alternative is to use a cyclic row distribution. Suppose

we have four processors, then processor 0 stores rows 1, 5, 9, 13,

... Processor 2 stores rows 2, 6, 10 etc. This leads to a good

balance, but makes it impossible to use BLAS2 and 3 routines

(since it is vector oriented).

There are a few other distributions to consider, but we skip

the details since they require a more thorough knowledge about

algorithms for GE.

141

One word about Scalapack

ScaLAPACK (Scalable Linear Algebra PACKage) is a distributed

and parallel version of Lapack. ScaLAPACK uses BLAS on one

processor and distributed-memory forms of BLAS on several

(PBLAS, Parallel BLAS and BLACS, C for Communication).

BLACS uses PVM or MPI.

Scalapack uses a block cyclic distribution of (dense) matrices.

Suppose we have processors numbered 0, 1, 2 and 3 and a block

size of 32. This figure shows a matrix of order 8 · 32.
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3

It turns out that this layout gives a good opportunity for par-

allelism, good load balancing and the possibility to use BLAS2

and BLAS3.

Doing a Cholesky factorization on the Sun using MPI:

n = 4000
block size = 32

#CPUs = 4
time = 27.5
rate = 765 Mflops

The uniprocessor Lapack routine takes 145s.

142

Some other things MPI can do

• Suppose you would like to send an int, a double array, and

int array etc. in the same message. One way is to pack

things into the message yourself. Another way is to use

MPI_Pack/MPI_Unpack or (more complicated) to create a

new MPI datatype (almost like a C-structure).

• There is some support for measuring performance.

• It is possible to control how a message is passed from one

process to another. Do the processes synchronise or is a

buffer used, for example.

• There are more routines for collective communication.

In MPI-2.0 there are several new features, some of these are:

• Dynamic process creation.

• One-sided communication, a process can directly access mem-

ory of another process (similar to shared memory model).

• Parallel I/O, allows several processes to access a file in a

co-ordinated way.

143

Matlab and parallel computing

Two major options.

1. Threads & shared memory by using the parallel capabili-

ties of the underlying numerical libraries (usually ACML or

MKL).

2. Message passing by using the “Distributed Computing Tool-

box” (a large toolbox, the User’s Guide is 529 pages).

Threads can be switched on in two ways. From the GUI: Prefer-

ences/General/Multithreading or by using maxNumCompThreads.
Here is a small example:

T = [];
for thr = 1:4
maxNumCompThreads(thr); % set #threads
j = 1;
for n = [800 1600 3200]

A = randn(n);
B = randn(n);
t = clock;
C = A * B;

T(thr, j) = etime(clock, t);
j = j + 1;

end
end

We tested solving linear systems and computing eigenvalues as

well. Here are the times using one to four threads:

n C = A * B x = A \ b l = eig(A)
1 2 3 4 1 2 3 4 1 2 3 4

800 0.3 0.2 0.1 0.1 0.2 0.1 0.1 0.1 3.3 2.5 2.4 2.3

1600 2.1 1.1 0.8 0.6 1.1 0.7 0.6 0.5 20 12 12 12

3200 17.0 8.5 6.0 4.6 7.9 4.8 4.0 3.5 120 87 81 80

144

So, using several threads can be an option if we have a large

problem. We get a better speedup for the multiplication,

than for eig, which seems reasonable.

This method can be used to speed up the computation of

elementary functions as well.

According to MathWorks:

maxNumCompThreadswill be removed in a future version. You

can set the -singleCompThreadoption when starting MATLAB

to limit MATLAB to a single computational thread. By default,

MATLAB makes use of the multithreading capabilities of the

computer on which it is running.

Matlab R2011b (and later) has support for Nvidia’s CUDA (Com-

pute Unified Device Architecture), executing code on the GPU.

We cannot test this on the math-machines:

>> g = gpuArray(rand(10, 1, ’single’));
Error using gpuArray (line 28)
No device supporting CUDA was found.

In the Matlab-help it is stated:

The following are required for using the GPU with MATLAB:

NVIDIA CUDA-enabled device with compute capability of 1.3

or greater. The latest NVIDIA CUDA device driver.

The GeForce 9500 GT (in the math-machines) has compute

capability 1.1 (use the Matlab-command gpuDevice to find out,

for example), and the latest driver is not installed.

A short section on using CUDA from C will come at the end of

the course.

145

Please see the separate Beamer-file, OpenMP.

146

