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1 Introduction

This chapter is an overview of how to get good performance from a com-
puter system. We will concentrate on systems having one CPU, but most
of this chapter is applicable to parallel systems as well. To get maximum
performance from a parallel code it is important to tune the code running
on each CPU. The goal of code optimization is usually to get good float-
ing point performance and that is the focus of this chapter. There will be
no discussion of applications from graphics, audio or video, or details about
the special operations available in some CPUs for such applications. We avoid
discussing specific hardware, compilers and tuned non-portable I/O-libraries,
so the reader who is interested in maximum performance should study the
tuning guides available for the specific systems and languages, see for ex-
ample [4,10,9]. These comprehensive guides, often spanning several hundred
pages, can dig deeper and discuss more tuning tips than what is possible in
these thirty pages. For an example of a more technical tuning guide (closer to
the hardware) see [24]. A general optimization book, also dealing with par-
allel programs, is [13]. Newer is [30] which deals with how to write scientific
software. A delightful book about algorithms in general is [5].

Most computational codes are written in some dialect of Fortran or C, and
this chapter contains examples from both language groups, but the emphasis
will be on Fortran. Matlab, C++, and Java are mentioned. A few basic tun-
ing guidelines, together with illustrating examples, will be presented. Many
compilers have become so good at optimizing code so it is hard to give short
and working tuning-examples. We have left out many of the simple tuning
strategies which most compilers will take care of without any help from the
programmer.

Tuning can have different starting points. A large and old code which has
to be optimized, such as a research- or industrial code which is run more
or less continuously through the years. Researchers, graduate students and
engineers add new modules to the code, but data structures and programming
languages are fixed. Even a slight speedup would be of use, since the code is
run on a daily basis. The other extreme is when a task is to be done once
or a few times. In such a case it may be optimal to spend more computer
time instead programmer time; not all code must consist of highly optimized
Fortran. Tools like awk, sed [12] or perl [36] are very capable and time saving
and so are powerful systems like Matlab, <http://www.mathworks.com/>,
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Maple, <http://www.maplesoft.com/> and Mathematica, <http://www.

wri.com/>. By “misusing” these systems it is easy to produce very slow code.
Using an explicit for-loop for summing the elements of an array in Matlab
instead of using the built-in sum-function is hundreds of times slower. The
reason is that the loop is interpreted and the function consists of compiled
C-code. Matlab 6.5, and later version, can increase the speed by using a
just-in-time-accelerator [26].

Yet another another scenario would be a new project, where language and
data structures have to be chosen. It may be necessary to decide on some
parallel system such as MPI or OpenMP as well. When making these decisions
the construction of a benchmark is probably time well spent. The construction
of the benchmark may not be so time consuming as the 90/10-rule often
applies: “90% of the time is spent in 10% of the code.” So perhaps it is possible
to code and test a simplified version of the computational kernel using the
different languages and data structures which are under consideration. A
common solution is to use Fortran for the computational part and C/C++

for computer graphics and the interface to the operating system.

1.1 The optimization process

When it has been decided that the code should be optimized there are several
options available. Very important is to use an efficient algorithm, of course.
Assuming that is the case, the most obvious is to check the optimization
options of the compiler. Unoptimized code is very slow and optimization
can give large speedups, a factor of ten in some cases. See the case studies
in this book for examples. The tuning guide or the manual page for the
compiler should be consulted for finding suitable options. Compilers contain
bugs like all non-trivial programs, so the result of the computation must be
checked after optimization. This is true for all tuning, of course. Optimization
may change the order of execution and can thereby reveal bugs in ones own
program as well. If aggressive optimization has been switched on the result
may not be bit-wise identical to what is produced by the unoptimized version,
since the order of floating point operations may have changed, roundoff differs
etc. Switching on all possible optimization options can occasionally generate
slower code. If other hardware and/or compilers are available one may try to
switch. Compilers do vary in quality as does the sophistication of hardware.

The optimization steps following hereafter require more work. Disks are
very slow devices as compared to the CPU, so excessive disk usage will give
poor performance. Tuning I/O and reducing the use of virtual memory (sim-
ulating a larger memory using disk) are important steps.

Several numerical packages use routines optimized for CISC-systems. Lin-
ear solvers have been fetched from LINPACK [11] and eigenvalue-solvers from
EISPACK [14]. The Linpack-routines are based on vector operations which
give poor performance on most modern computers. The LAPACK-solvers [3]
are based on matrix-matrix-operations (when possible) which give much
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better performance on modern systems. Replacing a LINPACK/EISPACK-
routine by the corresponding LAPACK-routine is usually a straightforward
operation. Specially tuned platform-specific numerical libraries may be avail-
able. These libraries also contain the BLAS-routines for basic matrix opera-
tions such as matrix multiply (there are more details about BLAS on page 25).
There may be solvers for sparse linear systems, FFT-routines etc. LAPACK

and BLAS are standard libraries and give no problems with portability.
Some of these platform-specific packages are: IBM’s Engineering and Scien-
tific Subroutine Library (ESSL) <http://www.redbooks.ibm.com/>, SGI’s
Scientific and Mathematical Library (complib.sgimath) <http://techpubs.

sgi.com/>, the Sun Performance Library (Sunperf) <http://docs.sun.

com/>, HP’s MLIB <http://devresource.hp.com/>, Intel’s Performance
Libraries <http://developer.intel.com/> and AMD’s ACML <http:

//developer.amd.com/cpu/libraries/acml/>.
The next step requires rewriting of the code, usually critical loops. The

task of finding these bottlenecks in the code and measuring performance are
discussed in the chapter dealing with programming tools. Tuning loops has
several disadvantages:

• The code becomes less readable and it is easy to introduce bugs.
• Detailed knowledge about the system, such as cache configuration, is

often necessary.
• What is optimal for one system need not be optimal for another; faster on

one machine may actually be slower on another. This leads to problems
with portability.

• Code tuning is not a very deterministic business. The combination of
tuning and the optimization done by the compiler may give an unexpected
result.

• The computing environment is not static; compilers become better and
there will be faster hardware of a different construction. The new system
may require different (or no) tuning.

Despite all these complications, code tuning can be very rewarding. It is,
however, important to restrict the tuning effort to important loops (the others
are not worth the effort).

The goal of the tuning effort is to keep the FPUs (Floating Point Unit(s))
busy. This means that the memory hierarchy and parallel capabilities of the
system must be used in a proper manner. Memory is arranged in a hierarchy.
The CPU contains registers after which comes a sequence of cache memo-
ries then main memory and finally disks. Distancing us from the CPU, the
memories become larger and slower. The access times of registers and disks
differ by several orders of magnitude. The same is true for the storage capac-
ities. So in order to get good performance data must be “close” to the CPU

and communication with slower parts must be avoided as much as possible.
Locality of reference is the key phrase. Data which has been fetched to the
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L1-cache should be re-used, if possible and memory should be accessed in
byte order. The programmer has a large influence over how memory is used,
and it is often possible to help the compiler to produce more efficient code.

Modern CPUs are superscalar, so they can start several instructions per
clock cycle and using pipelining the CPU works on (some) individual instruc-
tions in parallel as well. See the chapter on computer architecture for details.
The instructions must be arranged so that parallel computation is feasible,
and this is where we may help the compiler doing a better job.

The tuning advice on the following pages may or may not give a speedup.
The outcome is too dependent on the actual piece of code, hardware, pro-
gramming language and compiler. One is probably more likely to make an
impact on a program written in C than in Fortran. It is easier to improve
on the job of a poor compiler; some compilers are so good that it is almost
impossible to get an improvement. A code tuner must be willing to use trial
and error.

The code examples on the following pages have been run on a fair number
of different systems (hardware and compilers). The results have been included
to give the reader an idea of the improvements that can be expected. It should
be kept in mind that there are significant differences between systems and
that compilers and hardware improve with time. The author had to scrap
some old favourite examples since the new compilers could cope without any
external tuning help.

2 C versus Fortran

The two dominating languages for high performance numerical computation
are Fortran 90 (plus older dialects) and C/C++. Fortran is more adapted to
numerical computations and provides complex numbers and array operations.
C/C++ has support for more advanced data structures and is almost the only
choice when it comes to low level UNIX programming. C++ supports object
oriented programming. There are some excellent Fortran compilers due to
the competition between manufacturers and the design of the language. It is
harder to generate fast code from C/C++ and it is easy to write inefficient
programs in C++. The difference in performance between C and Fortran can
be illustrated by the following simple add-routine; here is the C-version.

void add(double a[], double b[], double c[], int n)

{

int k;

for(k = 0; k < n; k++)

c[k] = a[k] + 2.0 * b[k];

}

The analogous subroutine was written in Fortran 90 (disregarding the fact
that Fortran 90 can perform array operations). The length of the vectors, n,
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was chosen such that the three vectors would fit in the L1-cache, all at the
same time. This way we could concentrate on CPU-performance not having
to worry about the bandwidth of the memory system. On the two systems
tested the Fortran 90 routine was twice as fast (the routine was called many
times to give accurate timings). This is a reasonable rule of thumb as well, at
least when it comes to numerical computations. The example is from 2005,
but I have kept it for the pedagogical value.

One reason Fortran is faster is that the compiler can make several as-
sumptions about the code and it can therefore apply more optimization. In
particular, it may disregard so-called aliasing (overlap of arrays or pointers).
If two arguments to a procedure overlap (partially or completely) it is ille-
gal for the procedure to change the overlapping elements (see the Fortran 95
standard [25]; a more easily accessible source is [29]).

Since the iterations in the our loop are independent from each other, the
compiler may produce code that works on several iterations in parallel.

c(1) = a(1) + 2.0 * b(1)

c(2) = a(2) + 2.0 * b(2) ! c(2) does not depend on c(1) etc.

The functional units for addition and multiplication are pipelined which im-
plies that the compiler can produce code such that c(1), c(2) etc. can be
worked on simultaneously. In Fortran, the computation of c(2) does not have
to wait for c(1) to be available. This situation changes completely if we make
the illegal call, (in Fortran),

call add(a, c, c(2), n-1)

Let us write out the first few iterations to see why (recall that c(2) is passed
as the address to c(2)):

c(2) = a(1) + 2.0 * c(1) ! b and c overlap

c(3) = a(2) + 2.0 * c(2) ! c(3) depends on c(2)

c(4) = a(3) + 2.0 * c(3) ! c(4) depends on c(3)

We have introduced a data dependency. Several systems will give us the
wrong answer in this case, at least if we ask for full optimization, since the
compiler still assumes there is no overlap.

This does not mean that we cannot have a loop like:

do k = 1, n - 1

c(k + 1) = a(k) + 2.0 * c(k)

end do

If this is what we need, we have to write a new subroutine (and we should
not expect a very good performance, due to the data dependency). What it
means is that we are not allowed to “fool” the compiler into thinking that
the arrays are independent when they are not.
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In C, aliased pointers and arrays are allowed which means that it is harder
for a C-compiler to produce efficient code. Some systems provide for directives
(put in the code) or compiler options which inform the compiler that variables
are not aliased. This may allow the compiler to generate more efficient code.

3 A word on Java

Java is an object oriented language developed by Sun Microsystems in the
early 1990’s (publicly available in 1995). It is probably fair to say that Java is
not primarily used for HPC although there are activities in that area, see e.g.
<http://math.nist.gov/javanumerics> and <http://www.oonumerics.

org/oon>.
In the author’s view Java has problems with execution time, memory

usage and support for numerical computing. The small example below has
been included to show the nature of these problems. Java has advantages as
well, one being the portability.

Suppose we would like to compute an inner product between the dou-
ble precision complex vectors x and y. We have compared codes written in
Fortran 90, C++ and Java. Complex is a built-in data type in Fortran 90.
Here is the loop:

do j = 1, n ! Fortran90

s = s + conjg(x(j)) * y(j)

end do

The C++ standard library has support for complex data and the loop may
look like:

for (int j = 0; j < n; j++) // C++

s += conj(x[j]) * y[j];

Since C++ (and Fortran 90) supports overloading of operators it is possible
to write * for complex multiplication, etc. This is not supported in Java so a
code may look like:

for (int j = 0; j < n; j++) // Java 1

s = s.add(x[j].conj().mul(y[j]));

The lack of overloading can lead to hard-to-read code. Complex numbers are
not available in the standard Java library. We used JavaComplex.tgz from
Netlib (http://www.netlib.org/java/) in this test.

It is well-known [38] that working with many small objects may cause
severe performance degradation. This is obvious when we compare the object
oriented code (Java 1) to one using separate arrays for real- and imaginary
parts (Java 2 below). In this code we have inlined (see page 28 for details)
add, mul and conj as well. The major performance bottleneck in the complex
code should not be due to the many calls of add etc. since the Java HotSpot
Virtual Machine can perform inlining (see [1] or Appendix B in [38]).
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for (int j = 0; j < n; j++) { // Java 2

s_re = s_re + x_re[j] * y_re[j] + x_im[j] * y_im[j];

s_im = s_im + x_re[j] * y_im[j] - x_im[j] * y_re[j];

}

We tested the codes on two 900 MHz systems using the latest Java versions
available (the Sun Microsystem Java HotSpot Server VM 1.5.0 on System
1 and the 64-bit version 1.4.2 on System 2). “small n” in the table uses
n = 103 calling the inner product routines 105 times. “large n” takes n = 105

and making 103 calls (so the number of floating point operations stays the
same). Note the poor performance of Java 1 as compared to Fortran90 and

Table 1. A complex benchmark.

System 1 System 2

small n large n small n large n

Fortran 90 0.43 s 0.53 s 0.68 s 0.69 s

C++ 0.46 s 0.53 s 0.60 s 2.59 s

Java 1 18.1 s 25.1 s 23.0 s 29.5 s

Java 2 1.8 s 4.8 s 1.3 s 3.0 s

C++ and the huge speedup when using separate arrays in Java 2. One reason
Java is slower than Fortran 90 and C++ is that Java checks so that array
subscripts are within bounds. A large n gives an increased number of cache
misses leading to longer execution times.

In Java it is not possible to create an array of complex objects, but only
an array of references (pointers) to complex objects. Pointers are a useful tool
when dealing with sparse matrices, for example, but if we are dealing with
dense arrays we probably would like to create an array of complex numbers
(objects). This is possible in Fortran90 and C++.

On System 1, a reference requires four bytes and on System 2 eight bytes.
There is an overhead for each complex object as well. System 1 requires
eight bytes extra (apart from the sixteen bytes for the real- and imaginary
parts) and System 2 sixteen bytes. So, a complex array of n elements requires
n · (4 + 8 + 16) bytes and n · (8 + 16 + 16) respectively. Fortran 90 and C++

require n · 16 bytes; this is the case for the arrays in Java 2 as well. This is
pretty bad news when using the 64-bit system, the memory requirements are
more than doubled. This is not a big deal in the benchmark, but it could
be a major problem in some applications. The storage overhead is partly
responsible for the poor performance, as well. More bytes must pass through
the memory hierarchy.

One advantage with Java is the portability of the compiled code (the
byte code). Java is available on some cell phones, as well, and just for fun,
the author implemented a Linpack code and a QL-code for computing all the
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eigenvalues of a real symmetric matrix. Computing all the eigenvalues of a
97×97-matrix (the largest that would fit in memory) took three minutes. Not
HPC, but rather impressive for such a small device. This author’s telephone
has no support for floating point and he used [28].

4 Tuning Matlab programs

Since Matlab is a common tool for numerical computations, we have included
some tuning tips. See the Matlab documentation for more information. The
timings below are for Matlab version 7.5. Computation should be done using
the built-in compiled routines. This means that one should try to work on the
matrix/vector-level (vectorizing the code), rather than using operations on
an element-level. Nested for-loops working on the element-level in matrices
can take quite some time, since the Matlab-language is interpreted. As was
mentioned in the introduction Matlab 6.5 and later versions can increase the
speed by using a JIT-accelerator [26] so working on element level is not quite
so bad as it used to be. It usually pays to vectorize the code though.

The other important factor is to use the dynamic memory allocation fea-
tures in an efficient way. If an element of an array does not exist and we
assign a value to this element, the dimensions of the array will be enlarged to
accommodate the new element. It is much more efficient to preallocate the
necessary memory.

Here come a few examples. The first shows the influence of the JIT-
accelerator, and that one has to be careful when using certain constructions.

n = 1e6;

row_vector = rand(1, n);

s = 0;

for an_element = row_vector % not accelerated

s = s + an_element;

end

s = 0;

for k = 1:n % accelerated

s = s + row_vector(k);

end

sum(row_vector) % built-in

The first loop takes 2.4 s, the second takes 0.04 s and the built-in sum needs
0.01 s.

Suppose A does not exist when we run the following loop. In each itera-
tion we add a column, having n = 2500 eleemnts, to the matrix (in a real
application we would have different arrays x). Allocating more memory this
way is very time consuming, and the run takes 145 seconds.
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for k = 1:n

A(:, k) = x;

end

If we put the statement, A = zeros(n);, before the loop we have preallocated
the required memory for the matrix A and the time for the loops goes down
to less than 0.1 s.

Parentheses can be used to change the order of evaluation. This is very
important in certain situations. In this example W is a 8000 × 15-matrix and
x is a column vector having 8000 elements.

y = W * W’ * x; y = W * (W’ * x);

The left form takes 5.9 s and the right takes less than 0.001 s. In the left case
a temporary 8000 × 8000-matrix is formed which is then multiplied by the
vector. In the right version only the temporary vector, (W’ * x), is formed.
For large n the temporary matrix, W * W’, can easily consume the available
memory.

5 Basic arithmetic and elementary functions

There is a standard for floating point arithmetic [22,21,15], which covers
storage formats, basic arithmetic (+, -, *, /, sqrt) rounding, exceptions
and some other topics. Single precision uses 32 bits and double precision 64
bits as shown in Tab. 2 (subnormal is a synonym for denormalized). Most
modern computers adhere to this standard although there are exceptions
(some CRAY computers, for example).

Table 2. Floating point numbers, approximate ranges.

Type min min max bits in

denormalized normalized mantissa

IEEE 32 bit 1.4 · 10−45 1.2 · 10−38 3.4 · 1038 24

IEEE 64 bit 4.9 · 10−324 2.2 · 10−308 1.8 · 10308 53

It is common that the FPU (Floating Point Unit) can perform an addi-
tion and a multiplication in parallel. An operation like a+b*c can often be
performed with one round-off and the combined multiply-add is often called
MADD or FMA. There are machines having multiple FPUs, so the CPU

may be able to execute two FMAs in parallel, for example. Most systems
have pipelines for addition and multiplication, so provided we can get the
operands to the FPU in time, a sum and a product can be produced every
clock cycle. Note that we cannot expect to get two sums (or two products)
per clock cycle (unless the machine has several FPUs). Division is not usually
pipelined and may require around twenty clock cycles.



12 Thomas Ericsson

Using single- instead of double precision can give better performance, as
fewer bytes must pass through the memory system. The arithmetic may not
be done more quickly since several systems will use double precision for the
computation regardless.

The efficiency of FPUs differ, and this is very noticeable when it comes
to gradual underflow (the handling of denormalized numbers). See [21,15] for
details. Consider the following Matlab-example (tic/toc takes the time):

>> A = rand(1000); B = A; % random matrices with elements

>> tic; C = A * B; toc % in (0, 1).

Elapsed time 0.780702 s. % time for the multiplication

>> A = 1e-320 * A; % denormalized numbers in A

>> tic; C = A * B; toc

Elapsed time 43.227665 s. % time for the multiplication

In this particular machine denormalized numbers are handled in software,
which explains the enormous amount of time used for the second multiplica-
tion. Note that this is not Matlab’s fault, it is a consequence of the design
of the computer. It is usually possible to turn off the handling of denormal-
ized numbers when compiling a program but this leads to abrupt underflow
(instead of gradual underflow). There exist CPUs that handle denormalized
numbers in hardware. Denormalized numbers are usually quite rare, but there
are a few occasions when they are common, so the Matlab-example is a bit
extreme.

For better performance one can sometimes replace a division by a multi-
plication. Suppose, for example, that v is an array having n elements, and that
norm is the length of the vector. The normalized vector can be computed by v

/ norm requiring n divisions. A faster alternative is to compute v * (1.0 /

norm) which requires one division and n multiplications. Changing divisions
to multiplications this way may give slightly different results. There are a few
cases where there can be major differences. For example, (d denotes double
precision exponent): v(j)/1d-320, with v(j)=1d-100, becomes 1d220, but
v(j) * (1d0/1d-320) becomes Inf, since 1d-320 is a denormalized number
and 1d0/1d-320 overflows giving an Inf. Another example is given by a/b/c

which can written as a/(b*c) which is faster. Say that all three numbers are
roughly 1d200, then the first form will give something like 1d-200 but the
other will give zero, since b*c will overflow.

An increasing number of CPUs have SIMD-capabilities (Single Instruc-
tion Multiple Data) making it possible for the CPU to work on short vectors
in parallel. Two, of several, such technologies are the SSE-family [23,7,2]
(Streaming SIMD Extensions) and AltiVec [33,34]. The data types and op-
erations supported by the technologies vary.

To make use of the SIMD-assembly instructions special compiler options
may have to be used. Speedup varies, from no speedup, or even a slow-
down, to perhaps a factor of two or more. The actual speedup depends, as all
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optimization, on the application, data types, compiler and hardware so the
resulting performance is not easy to predict.

Integer multiplication and multiply-add are often (but not always) slower
(by a factor of two to five, perhaps) than their floating point equivalents.
Changing four byte integers to single precision floating point seems natural,
but proper care must be taken. The overflow properties are different and the
floating point number has fewer bits in the mantissa (using double precision
is an option of course). If, for example, k = 1234567 is a four-byte integer,
then k * k will give integer overflow and the result will probably print as
-557712591. In single precision we get an approximation, 1.524155679e12,
of the exact value, 1524155677489. If we let k = 12345 the square will be
computed correctly, 152399025, using integers but the single precision value
comes out as the approximate 152399024.

The author has seen a few programs where the computation of elementary

functions require almost half of the execution time. In one extreme example
(antenna design) the total runtime was three CPU-weeks and trigonometric
functions accounted for one week. Elementary functions (with the exception
of sqrt which may be implemented in hardware) are often coded in C and
the routines usually reside in the mathematics library (libm). A function is
typically evaluated in three steps. Let us take the computation of sinx as ex-
ample. It is usually hard to approximate a function on a large interval, so the
first step is argument reduction. In the sine-case this is done by subtracting
a suitable integer multiple of π/2 from x giving us the reduced value r. Using
standard trigonometric identities we see that it is sufficient to know sin r on
the interval r ∈ [0, π/2]. It is even possible to approximate sin r on [0, π/4]
if the cosine function is used, since sin(π/2 − r) = cos r. The second step
consists of approximating the function by a high-degree minimax-polynomial
(or a rational approximation for some functions) on this short interval. For
functions like expx it is necessary to transform the reduced value, exp r, back
to the original expx.

This has some implications. Computing elementary functions may take
much more time than a few multiplications and additions. Since argument
reduction is not always needed, different arguments require different amounts
time (a factor of twenty in time is not impossible).

The computation of elementary functions is not covered by the IEEE-
standard and the quality of implementations do differ. The author has used
systems where a computed sine-value may have all digits wrong, and on some
machines it is possible that sin x > 107 for some large x. Some implemen-
tations return a good approximation to sin(fl(x)) where fl(x) is the closest
machine number to x (but note that x and fl(x) may be very far apart in
absolute terms).

Some systems have faster but less accurate versions of the elementary
functions, see for example the MASS library in [4]. It is common with vector
versions of the elementary functions. These procedures take an array of argu-
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ments and return an array of results. These procedures may be substantially
faster than using the standard calls.

The author has seen a few instances where it has been possible to decrease
the number of function references by using trigonometric identities and tables
containing a few precomputed values.

It is important to move constant function references from loops. This is
something that most compilers will do when it comes to simple arithmetic
expressions.

do k = 1, 1000000

x(k) = (2.0 * pi + 3.0) * y(k)

end do

do k = 1, 1000000

x(k) = exp(2.0) * y(k)

end do

In the first example 2.0 * pi + 3.0will be evaluated once and re-used in the
loop. In the second example one compiler computes exp(2.0) once and stores
the computed value in a register. Another compiler recomputes exp(2.0) in
every iteration. If we replace exp by a function of our own construction,
f say, a compiler must recompute f(2.0), even though the argument is
constant. This is because the function could have side-effects (performing
I/O, changing parameters or global variables, for example). This is considered
bad programming practice, and in Fortran 95 it is possible to assert that a
procedure has no side-effects by using the PURE keyword [29]. Using PURE, an
interface block and full optimization some, but not all, compilers the author
tested would compute f(2.0) once.

6 Using disk

Disk is used when performing I/O but also in connection with virtual memory.
Since disks are very slow in comparison to the CPU, it is essential to use
them sparingly and in an efficient way. We start with a section on paging
after which come some tuning recommendations for I/O.

6.1 Virtual memory and paging

Virtual memory makes it possible for programs to use more memory than
what is available physically in the computer. The larger memory is simulated
using disk. Virtual memory is divided into pages, perhaps 4 or 8 kbyte, each.
Moving pages between disk and physical memory is known as paging. Some
paging is natural and does no harm, but excessive paging, so-called thrashing,
can bring a program to a standstill. Having large data structures where some
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parts are used infrequently is a useful application of virtual memory. The
unused parts will be paged out on disk and paged in only occasionally.

Having large data structures where all parts are accessed frequently will
lead to severe problems, as is shown in the following Matlab-example. The
test-rogram was run on a machine with only 64 Mbyte memory, in order to
show the effects of paging very clearly.

Note that m ∗ n2 is constant so the number of additions are the same in
all three cases. Note also that 91.6 Mbyte is much larger than the size of the
physical memory. Not all the 64 Mbyte in physical memory is available for
storing matrices either, since the operating system, Matlab etc. takes up a
whole lot of space.

>> type test % list the program

clear A B C % remove the matrices

tic % start timer

for k = 1:m % repeat m times

A = ones(n); % n x n-matrix of ones

B = ones(n); % all are 64-bit numbers

C = A + B;

end

toc % stop timer

% Run three test cases

>> n = 500; m = 16; test % 5.7 Mbyte for A, B and C

elapsed_time = 1.1287 % roughly ONE SECOND

>> n = 1000; m = 4; test % 22.9 Mbyte

elapsed_time = 1.1234 % roughly the same as above

>> n = 2000; m = 1; test % 91.6 Mbyte

elapsed_time = 187.9 % more than THREE MINUTES

There are several tools that can be used to find out if the program is
making excessive use of virtual memory. If the computer is standing on your
own desk and paging is done to the local disk, you can listen for noise from
the disk. A disk that never rests is usually a sure sign of paging (provided
no other I/O is taking place, of course). A common tool is vmstat (virtual
memory statistics). It was run in another window in parallel with Matlab
session, and the table below shows an edited version of the printout. Each
line represents the activity over the previous second (vmstat p prints the
average over the p previous seconds).

% vmstat 1 (edited)

page cpu

pi po us sy id

0 0 0 0 100



16 Thomas Ericsson

0 0 0 0 100

352 128 0 0 100 <-- third test is run

616 304 0 6 94

608 384 0 2 98

712 256 0 2 98 etc. for over three minutes.

pi = kilobytes paged in / second

po = kilobytes paged out / second

We see that pi and po go up when the third test run is made. us stands for
user time (time spent doing the computations in Matlab), sy is system time
(executing operating-system routines on behalf of Matlab) and id is doing
nothing. The system is essentially spending all time waiting for disk, so this
example is somewhat extreme. Also the time depends on the speed of the disk
and how it is connected to the machine (is it a local disk or a disk connected
through a network). Many systems have fast and large local disks that can
be used for paging and for storing scratch files.

6.2 Input-output, I/O

It is often necessary to use files to store large data sets, temporarily or for
later use. The following part shows a few different ways this can be done
in Fortran. The most space- and time-consuming is to use formatted I/O,
and writing one number per line. Numbers must be converted from binary
format to text format which requires many calls of the routines in the I/O-
library. A further disadvantage is that the conversion may introduce rounding
errors. Advantages are the portability (to other systems) and that it makes
debugging easier, since it is easy to inspect the contents of a formatted file.

When performance is important unformatted files are the only choice.
It is also important to group data in fairly large records, instead of writing
separate numbers.

Suppose we need to store 5 ·106 double precision numbers in a file. Tab. 3
shows the performance using a few different methods. A local disk was used
for the tests. 10 is the unit of the file (different tests may require different
open-statements).

Table 3. Comparison between different I/O.

Test Statement time (s) size (Mbyte)

1 write(10, ’(1pe23.16)’) x(k) 29.4 114.4

2 write(10) x(k) 19.5 76.3

3 write(10) (vec(j), j = 1, 10000) 0.1 38.2

4 write(10) vec(1:10000) 0.1 38.2

5 write(10, rec = k) vec 0.3 38.1
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In the first test we use formatted writing with 23 characters per number
and one number per line. k in x(k) is the loop index (going from 1 to 5000000).
The file size can be computed as follows:

5 · 106

︸ ︷︷ ︸

# of numbers

· (23 + 1)
︸ ︷︷ ︸

characters + newline

/ 220

︸︷︷︸

Mbyte

≈ 114.4

The ls-command can be used to find the size as well, of course.
The second test shows how unformatted writing behaves. Each number re-

quires eight bytes, but each record (number in this case) requires a header and
a trailer, each requiring four bytes, making a total of 5 ·106 · (8+4+4)/220 ≈

76.3. It is obviously better to have larger records.

In case three to five we write the file using 500 records each consisting of
10000 numbers. So the statements in the table are repeated for k = 1, 500.
Note the difference in speed. The size of the file is given by 500 · (8 · 10000 +
4 + 4)/220 ≈ 38.2 In case five vec has 10000 elements. The implied do loop,
case three, may be slower on some systems.

Operating system I/O-buffers are typically sized as a power of two. By
using a record length which is adapted to this length (do not forget possible
headers and trailers) we may get further improvement (see the tuning guides
for the different systems for details). So 10000 is not necessarily optimal.
Having very large records cause problems for some systems. If A is an enor-
mous matrix, it is probably unwise to write the whole matrix in one record,
write(10) A. Writing in chunks is safer, perhaps one column at a time, so
something like:

do k = 1, n

write(10) A(:, k)

end do

Most systems have commands such as iostat or dkstat which can pro-
vide I/O-statistics.

One important disadvantage with binary files is that they may not be
portable between different systems, even if all the systems involved follow
the IEEE-standard for floating point. The structures of the files may differ
(the interpretation of record delimiters, for example) and the byte order can
be different, little-endian or big-endian (the terms come from J. Swift’s “Gul-
liver’s Travels” [19] via [8]). In big-endian machines the most significant byte
has the lowest address (“big-end-first”). The Intel processors are little-endian
(“little-end-first”) for example.

In the following example we opened a binary file and executed the follow-
ing write-statement on a big-endian machine. The number 10 is the unit, and
1.0d300 is the double precision constant 10300 etc. using the notation from
Fortran 77.

write(10) -1.0d-300, -1.0d0, 0.0d0, 1.0d0, 1.0d300
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When we read the file on a little-endian system we got the following values
(and no warning):

2.11238712E+125 3.04497598E-319 0.

3.03865194E-319 -1.35864115E-171

Even if both systems use the same byte order care should be taken, as the
file layout may differ.

There are libraries for machine-independent formats, such as NetCDF
(Network Common Data Form) [32]. The web-page in the above reference
contains links to other such formats as well.

7 Memory locality and caches

As we said in the introduction, it is essential to keep data close to the CPU.
This implies that one should try to minimize the number of accesses to main
memory, and once data has been brought into registers or the L1 cache it
should be re-used, if possible. The following examples show some different
techniques.

7.1 The function of caches.

We start this section with a simple cache example. The algorithm is very slow
and primitive, but the plots are informative.

We have a matrix (a table), in Fortran, with four integers per column and
a varying number of columns (the table size). The first integer in each column
is a key and we search sequentially through the table to find a particular key.
In this example it is always the last column that matches. We repeat the
search 99 times after which we add a column to the table and start over.
For each table size we have computed the time for the search divided by
the number of columns. A first guess may be that this time should be fairly
constant, independent of table size. This is not the case, however, since we will
not have equal access time to all keys in the table. In Fig. 1 we have plotted
time/table size scaled so that the minimum quotient is one. The shape of the
curve depends very much on the particular system, of course.

Suppose the table size is such that the whole table fits into the L1 data
cache. The first time we search the table we will get cache misses for all
the columns, but the table will reside in the cache when we perform the
remaining 99 searches. When we add columns to the table, there will come a
point when the whole table cannot fit into the cache. This means that we will
get some cache misses in every one of the remaining 99 searches. The time
will increase with the number of misses (the number of columns). The worst
that can happen is that we get a cache miss for every column in the table.
In this case the time curve will flatten out, because things cannot be worse
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Fig. 1. Behaviour of the L1 cache.

(although for large enough tables the L2 cache will play a role as well). The
increase in time for small tables is partly due to loop overhead.

To understand the details of the figure, we can think of one column of
the table as an L1 cache line. The reason is that Fortran stores matrices by
columns, so a column of four, four byte, integers requires 32 consecutive bytes
in memory and an L1 cache line on this particular system consists of 32 bytes
as well (this is the reason we chose four integers per column). (Note that C
stores matrices by row.) The L1 data cache is two-way set-associative and
consists of two sets with 512 lines each. The replacement policy is LRU (Least
Recently Used). This means that the cache will be full when the table consists
of 1024 columns. So we expect the time to increase when the table has 1025
columns or more. The curve flattens out again, when we get a cache miss for
every column. This happens when the table has 1536 columns (3 · 512). We
urge the reader to think through the smaller example with twelve columns
in the table and a cache holding two sets of four lines each.

Fig. 2 shows what happens when we increase the number of columns. The
leftmost dip can be recognised as Fig. 1 but on a different scale. On the tested
machine, the L2-cache has two sets of 4096 lines, each with a length of 132
bytes. We can make roughly the same analyzis as for the L1 cache (the L2

cache stores code as well).

Using a performance tool, specific to the particular system, the author
has come to the conclusion that the middle bump is due to “way prediction”
(the hardware starts to mispredict which L2-set to put the cache line in).

Notice that the fastest and slowest case differ by a factor of 9.5. Sequential
search is not a good choice when the tables are so large, so in this case we
should change algorithm and data structure to speed things up. One way to
increase performance even if we keep the sequential search is to used so-called
blocking. Suppose we are given a set of keys, instead of one key at a time.
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Fig. 2. Performance for large tables.

Using the first key we search in as much of the table as fits into the L1 cache.
This will still give us cache misses. However, we then perform the search for
the other keys in the set, but we search only in the part of the table that
resides in cache (giving no additional cache misses). We repeat the search
with the remaining keys (some may have been found) of the next block of the
table that fits into cache. This procedure is iterated until all the keys have
been found. Blocking is an efficient technique for data re-use and it is used
in many matrix algorithms.

7.2 More data re-use; loop fusion.

Blocking is one of several methods to accomplish data re-use. In the following
min/max-computation we merge loops instead.

v_min = v(1)

do k = 2, n ! min computation

if ( v(k) < v_min ) v_min = v(k) ! fetch v(k)

end do

v_max = v(1)

do k = 2, n ! max computation

if ( v(k) > v_max ) v_max = v(k) ! fetch v(k) again

end do

It is better to merge the loops into one loop (loop fusion), since we can
re-use v(k). There will also be less overhead for the loop. A suitable loop
body is given by:
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if ( v(k) < v_min ) then ! v(k) is fetched here

v_min = v(k)

elseif ( v(k) > v_max ) then ! and re-used here

v_max = v(k)

end if

but on some systems the following is faster

vk = v(k) ! optional

if(v_min < vk) v_min = vk ! can use v(k) instead

if(v_max > vk) v_max = vk

or

vk = v(k)

v_min = min(v_min, vk)

v_max = max(v_max, vk)

In some situations the opposite, loop splitting, may be an advantage. If
we have put too many statements referring to unrelated arrays in one loop,
loop splitting may result in better cache usage.

7.3 The importance of small strides.

In the two previous examples we have looked at the importance of data re-
use. In some cases data cannot be re-used, but it is still important to use the
caches in an efficient manner. Locality of reference is the key phrase.

Suppose that v is an array and that we have to operate on its elements
once, and that we can choose the order of access. One way to bring down the
number of references to main memory is to access the elements in v using
stride one, v(1), v(2), v(3),.... The stride is distance between successive
elements. In a more general setting we say that, v(k+j*m), accesses the ele-
ments with stride m if k is constant and we loop over j = 1, 2, .... Stride
one is good since when v(j) is needed (and does not already reside in cache),
a whole cache line is fetched from memory and not just the single variable.
This means that v(j+1) often can be found in the cache-system and the ac-
cess to main memory is avoided (see the chapter on computer architecture
for details). Cache lines have a limited length, so if we use a large stride, the
next variable will not be in the same cache lines as v(j).

Suppose we have to compute the sum of all the elements in a square matrix
of order n. Here are two alternatives (row and col are of type integer):

s = 0.0 s = 0.0

do row = 1, n do col = 1, n

do col = 1, n do row = 1, n

s = s + A(row, col) s = s + A(row, col)

end do end do

end do end do



22 Thomas Ericsson

The alternative to the right will be faster, since we are accessing the elements
in A using stride one (note the different order of the loops). As was discussed
in the first example, Fortran stores matrices by column (so A(row+1, col)

follows A(row, col) in memory). The left alternative is using stride n since
A(row, col+1) and A(row, col) are one column apart.

Some compilers can switch loop order (loop interchange) provided we turn
on enough optimization. We should make certain that the right loop order is
used, wrong order can be slower by a large factor, five to fifteen, perhaps; it
depends very much on compiler, hardware and the value of n.

In C, matrices are stored by row, so the leftmost alternative will be the
faster.

Tab. 4 shows how this program performs on three different systems. We
have turned on full optimization on the compilers, and the first two Fortran
compilers can switch loop order, the third cannot. Notice the difference be-
tween Fortran and C.

Table 4. The importance of loop order.

System 1 System 2 System 3

C Fortran 90 C Fortran 90 C Fortran 90

By row 0.12 s 0.093 s 0.36 s 0.31 s 0.87 s 2.9 s

By column 1.32 s 0.093 s 1.08 s 0.31 s 3.69 s 0.68 s

7.4 Blocking and large strides.

Sometimes loop interchange is of no use. Suppose we would like to compute
the following sum:

s = 0.0

do row = 1, n

do col = 1, n

s = s + A(row, col) * B(col, row)

end do

end do

In this case we have good locality for B but not for A. Loop interchange will
not improve things. As we saw in the first example, blocking is good for data
re-use, but it can also be used in connection with large strides.

Let us partition A and B in square sub-matrices each having the same
order, the block size. In a real application the dimensions of A and B may
not be divisible by the block size in which case some cleanup code may be
necessary. The idea is to treat pairs of blocks, one in A and one in B such that
we can use the data which has been fetched to the L1 data cache.



Performance engineering 23

In Fig. 3 we have zoomed in on a pair of sub-matrices, block (j, k) in A

and block (k, j) in B, say.

cache line

block size

block (k, j) inblock (j, k) in A  B

Fig. 3. Blocking.

Let us assume that each cache line consists of four double precision num-
bers. When we fetch the (1, 1)-element of the B-block we will get four num-
bers (assuming that the number in questions is the first in its cache line).
The cache line has been marked with a grey pattern. When the corresponding
A-element is accessed a cache line is fetched (a grey column). For the next
iteration, the (2, 1)-element of the B-block is already in cache but the (1,
2)-element of the A-block has to fetched from main memory (it will not be in
cache, since we are accessing A by row). It continues this way until we have
processed the first column of the B-block. When we access the (1, 2)-element
(filled with black), in B, the corresponding (2, 1)-element (filled with black)
of the A-block is already in cache.

It is essential that the block size is not too large. For this blocking tech-
nique to succeed we must be able to hold all the grey elements in A in cache
(until they have been used). If n is large and we run through the first column
of B we will not be able to store the first four rows of A in the cache so when
we start with the second column of B the elements in the second row of A
must be fetched again.

The Fortran code may look like this (note that using the min-statements
this works even if n is not divisible by the block size).
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! first_row = the first row in a block etc.

s = 0.0

do first_row = 1, n, block_size

last_row = min(first_row + block_size - 1, n)

do first_col = 1, n, block_size

last_col = min(first_col + block_size - 1, n)

do row = first_row, last_row ! sum one block

do col = first_col, last_col

s = s + A(row, col) * B(col, row)

end do

end do

end do

end do

Fig. 4 shows two testruns. The left plot comes from a machine with a
cache system of simpler design, while the right system has more advanced
hardware and larger caches. The order of the matrices were 2000. The solid
lines shows the scaled time (time divided by the minimum time) as a function
of block size. The dashed horizontal lines show how the unblocked algorithms
behave (they are independent of block size, of course). Note the speedups (4.5
and 7.2). In the left image the time increases rapidly above a certain block
size. This particular block size depends on n (for small n it moves to the
right).
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Fig. 4. How blocking performs on two systems. A solid line shows the time as a
function of block size, and a dashed line shows the time using no blocking.

7.5 The TLB.

The TLB (Translation Lookaside Buffer) is used for virtual to physical ad-
dress translation (see the chapter on computer architecture, or <http:
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//www.wikipedia.org/> for details). Since a TLB-miss can be quite time-
consuming it is important to reuse the data in this cache as well. This is
the approach taken in the very fast GotoBLAS-routines [17]. These routines
are hand-optimized assembly routines and coding like this is done only by
very few [18]. Still, using C or Fortran 90 one will decrease the number of
TLB-misses by programming for locality of reference.

PAPI (Performance Application Programming Interface, <http://icl.

cs.utk.edu/papi/>) gives access to the hardware performance counters on
modern CPUs. This makes it possible to see how blocking and other tech-
niques affect the number of cache and TLB-misses. Tab. 5 shows the number
of cache and TLB misses for the example in the previous section. The times
are in seconds and the number of misses should be multiplied by 106. The
numbers in the top row are the blocksizes, where “nb” means that no blocking
(i.e the original routine) was used.

Table 5. Cache and TLB misses.

nb 16 32 64 128

time: 10.2 3.4 2.5 2.2 3.1

L1-misses: 309 160 211 177 252

L2-misses: 295 68 47 34 26

TLB-misses: 1066 102 64 103 262

8 More on the BLAS.

BLAS, the Basic Linear Algebra Subprograms arose in stages, driven by the
development of hardware. The original BLAS, level-one BLAS (also called
BLAS1), contains vector operations such as inner product, scaling of vec-
tor and linear combinations of vectors. Level-two BLAS (BLAS2) contains
matrix-vector operations such as matrix-vector-multiply. BLAS3, the third
level, deals with matrix-matrix operations such as matrix multiply. Good
references for the different BLAS-levels is [16] and <http://www.netlib.

org/blas/index.html> (this web page contains a quick reference guide,
blasqr.ps, for the BLAS as well).

Let us study one routine from each of the BLAS-levels. a and b are scalars,
x and y are vectors having n elements, A, B, and C are square matrices of order
n (the routines can be used in more general situations than is shown below).
All floating point variables are double precision.

To compute y := a*x + y one would use daxpy (double a times x plus
y). The initial d stands for double precision (s is for single, c for complex and
z for double complex). dgemv, in BLAS2, can compute y := a*A*x + b*y,
and dgemm, in BLAS3, forms C := a*A*B + b*C. If a = 1 and b = 0 this is
an ordinary matrix multiply.
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A call to daxpy involves O(n) data and performs O(n) operations. This
is the main reason why BLAS1-routines are slow on RISC-systems. There
are too few floating point operations as compared to the number of memory
accesses. The same is true for dgemv where we have O(n2) data and O(n2)
operations. The BLAS3-routine differs, however, as we have O(n2) data and
O(n3) operations. The ratio between operations and data is to our favour.
We can see the opportunities for data re-use in a slightly different way. When
we compute C = A * B, A(j, k) is used when forming all elements in row
j of C (similarly for the elements in B). One may think that it would fairly
straightforward to write a fast matrix multiplication routine, but this is un-
fortunately not the case. The basic algorithm taught in most linear algebra
classes, “row times column”, C(j, k) = A(j, :) * B(:, k) (to use Mat-
lab notation) gives very bad performance unless one is using a really superb
compiler (or a preprocessor, which recognizes the code and replaces it with
something faster). There are actually several research projects working on
methods to, more or less automatically, generate fast BLAS-routines, see
for example [17,18,6,37,35,31] and [20,27] for related problems. One reason
this is so important, is that the BLAS-routines are used as building blocks in
other programs, for example in LAPACK. We have not sufficient room in this
chapter to describe how to write a fast dgemm-routine. The basic ingredient
is blocking, see [4] for a thorough discussion.

To show the difference between different implementations, we have tested
C = A * B for varying dimension, n, of the square matrices. (see Fig. 5).
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Fig. 5. Performance of different matrix multiplication routines.

Along the y-axis we have million multiply-add operations per second,
Mflop/s, (in a matrix-multiplication, * and + appear in pairs). In some con-
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texts, Mflop/s, is defined as number of million floating point operations per
second, which would double the performance numbers used in the plot. On
this particular system the fastest routine is a tuned platform-specific dgemm,
after which comes the Fortran 90 built-in matmul. The basic algorithm is the
slowest of them all. We used full optimization on the compiler. This par-
ticular machine is running at 375 MHz and can start two FMAs per clock
cycle, so the theoretical top speed is 750 million FMAs per second. Note that
dgemm comes rather close to this top speed. The curve for the basic algo-
rithm is quite typical for matrix routines based on vector operations, such
as the LINPACK-solvers for linear systems. For short vectors there is a fair
amount of loop overhead and the pipelining does not perform too well. In a
middle region the routine behaves in a reasonable way, but for large matrices
the absence of blocking leads to poor cache usage and performance drops
to a miserable level. The author recommends using LAPACK and the tuned
libraries.

9 Indirect addressing

Indirect addressing (pointers) is a standard tool when working with data-
structures such as storage schemes for sparse matrices and PDE-meshes. Since
indirect addressing tends to give bad memory locality we expect poor cache
performance.

Consider the following daxpy-like routine where ix contains a permutation
of the numbers one through n and x and y contain n elements each.

do k = 1, n

j = ix(k)

y(j) = y(j) + a * x(j)

end do

Tab. 6 shows the execution times, on three systems, for calling the routine
many times. “random” means that the ix(k) are in random order, “ordered”
means using pointers but where ix(k)=k or ik(k)=n+1-k (the two alterna-
tives behave roughly the same way), and “no ix” is not using any pointers.

Table 6. The effect of indirect addressing.

system random ix ordered ix no ix

1 39 16 9
2 56 2.7 2.4
3 83 14 10

Once again we see how important it is with locality of reference. Indirect
addressing with ordered data does not cause such a performance degradation.
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10 If-statements

If-statements in a loop may stall the pipeline in the processor, and should
be moved outside the loop if possible. Modern hardware and compilers have
become better at hiding the delay casued by branches, so this is not quite so
much of an issue anymore.

Sometimes it is feasible to rewrite the code so that if-statements are
avoided, as in the following example:

Original version Optimized version

do k = 1, n take care of k = 1

if ( k == 1 ) then do k = 2, n

statements statements for k = 2, ..., n

else end do

statements

end if

end do

This can be generalized if there are more special cases in the loop.
If we have a sequence of if-tests, if-then-elseif ..., one should try to

order the alternatives according to frequency with the most probable alter-
native first.

In logical tests like, if (a(k) .and. b(k)) then, where a and b are
logical arrays, the least likely alternative should be tested first (the most
likely in an or-test). According to the Fortran 90 standard it is not necessary
for the CPU to evaluate and test all parts of the expression. If a(k) is a
time-consuming function reference, it is probably better to place it last.

11 Inlining and overloading of operators

It is not uncommon to have short procedures that are called many times in in
a loop. Since there is an overhead in calling a routine, one can move the body
of the procedure into the loop, so-called inlining. On the author’s computer
a call (inside a loop) of a four-parameter subroutine, doing an immediate
return, takes 8 clock cycles.

Inlining can be done by hand, but this reduces the readability of the code
and it is error prone due to possible conflicts with variable names. Usually it
is possible to ask the compiler or a preprocessor to inline routines, naming
specific routines or asking the compiler to make a choice. Some compilers
will inline suitable routines provided that the calling and called routine are
residing in the same file and that the optimization level is high enough. Some
systems provide for inlining-directives in the code.

It does not pay to inline everything, the code will swell and the per-
formance may be degraded. So, only short routines that are called a huge
number of times are suitable candidates.
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Short functions are often produced when overloading operators. To be
explicit, suppose we are using complex arithmetic and assume that multi-
plication and division are the two dominating operations in our application.
By storing complex numbers in polar form, reiφ, instead of in rectangular
form, a + ib, we will get better performance. Multiplication of two numbers
in polar form only requires one multiplication and one addition. It may be
argued that less rounding error will result by keeping φ in (0, 2π) at all times,
and this can be solved by an if-statement and one (or two) subtraction(s).

In C++ it is straightforward to construct a new complex type (class) and
to bind the arithmetic operations to functions. If z, w and q are variables (ob-
jects) of this type, the multiplication- and division-routines would be called in
an expression like z = z * w / q. The same thing could be accomplished in
Fortran 90 using modules, although there is a minor problem since complex

is a predefined type in Fortran.
We implemented a new complex type in Fortran90 using overload opera-

tors. Tab. 7 shows the times for a huge number of p = p * v(k) and p = p

* v(k) / v(j) in the second column, where v is a vector and p is a scalar
of the new complex type. To make Tab. 7 more readable the times have been
normalized so that the minimum time is one. The line for Complex shows the
time using the built-in Fortran 90 type. The lines with (if) shows the time
when we keep φ in (0, 2π) (using an if-statement as discussed above).

Table 7. The effect of using inlining.

Time: * Time: * and /

No inline (if) 27 56

Inline (if) 6 11

No inline 23 50

Inline 1 9

Complex 7 45

Notice the speedup due to inlining and the degradation caused by the
if-statement and the divide operation.

12 Alignment

Consider the following lines of Fortran-code where we allocate 100 001 bytes
as a general work area (integer*1 is non-standard Fortran for one-byte
integers). In the call of the subroutine, the address of work(2) is passed
as a parameter and received as the address of the first element of a double
precision array.

integer*1 work(100001)
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! work(some_index) in a more general setting

call do_work(work(2), 12500) ! pass address of work(2)

...

end

subroutine do_work(work, n)

integer n

double precision work(n)

work(1) = 123

If we store the subroutine in a separate file this code will compile (if every-
thing is kept in one file, a good compiler should complain, due to the mix
of data types). Several UNIX-systems will give “Bus error” when we try to
execute the code. This error is more likely if we ask the compiler to opti-
mize the code. This behaviour is caused by alignment problems, how data
is placed relative to byte addresses in memory. It is usually required that
double precision variables are stored at an address which is a multiple of
eight bytes (multiple of four bytes for a single precision variable). Suppose,
for example, that a double precision number is allowed two span two cache
lines (the beginning of the number is stored in the end of one line and the
end of the number is stored in the beginning of the next line). This would
force the memory system to load two lines instead of one. So, for efficient
memory usage certain alignment rules should (and must, on certain systems)
be obeyed. To get the maximum rate of transfer between CPU and memory
data should be aligned to fit caches, buses and assembly language instructions
(for example double-word load/store instructions). The slowdown caused by
misalignment may easily be a factor of 10 or 100. The above example can be
written in C as well, in which case the work-array may have been allocated
using malloc.

Several compilers have misalignment-flags (to warn the compiler about
misalignment), in which case very conservative loads and stores must be
used for data (one byte at a time, for example). There may also be alignment
flags telling the compiler that data has a proper alignment. Another potential
source of alignment problems is the common-construct in Fortran 77.
common /block/ byte variable, double(100) should be reordered as
common /block/ double(100), byte variable to give the double-vector a
proper alignment. The variables in a common block should be ordered ac-
cording to the size in bytes, having “large” types (many bytes) first.

13 Closing notes

We have dealt with two basic tuning principles in this chapter. One is to
improve the memory access pattern of a program by using caches and virtual
memory in an efficient way; locality of reference and data re-use are the key
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phrases. This may be accomplished by stride minimization, blocking, proper
alignment and the avoidance of indirect addressing.

The other principle is to increase the opportunity for making use of the
parallel capabilities of the CPU. This can be done by decreasing data depen-
dencies, inlining short procedures and eliminating if-statements.

Choosing a good algorithm and a fast language, handling files in an ef-
ficient manner, getting to know your compiler and using tuned libraries are
other very important points in performance engineering.

14 Exercises. Note that the web-pages do not exist.

The exercises below try to illustrate some of the more important points of the
chapter. In order to decrease the programming effort some of the exercises
are somewhat contrived. It can be interesting to run a program on differ-
ent systems. Testing different compilers, languages and optimization levels
is educational as well. When testing code it is easy to be fooled by a good
compiler. Some advice of how to construct good test programs (benchmarks)
can be found on this book’s homepage, <http://www.pdc.kth.se/???>.
Analyze your results. The exercises have been constructed with dialects of
Fortran and C in mind, but any compiled language should do.

1. You have a three-dimensional array. Which order of access will give the
best locality (for the language you are using)?

2. The following code initializes a square matrix. Improve the code.

do row = 1, n ! n = order of matrix

do col = 1, n

A(row, col) = 1.5 ! off-diagonals

if ( row == col ) A(row, col) = 10.5 ! diagonal

end do

end do

3. You have three separate loops performing the following operations. What
are the relative speeds (explain)? What happens if you change * to +?
• y(k) = x(k) * x(k), k is the loop variable
• y(k) = x(k) * y(k)

• y(k) = x(k) / y(k)

4. A Householder matrix (common in numerical analysis) is defined by
H = I − 2uuT /(uT u), where u is a column vector with n elements and
I is the identity matrix of order n. Write a fast Matlab-function,
Hx(u, x), that computes y = Hx.

5. How do the following loops perform (x and s are scalar double precision
variables)?

s = 1.0; x = 0.0 s = 1.0; x = 0.0

do j = 1, many_times do j = 1, many_times
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x = x + 1.0e-6 x = x + 1.0e-6

s = s + x + x + x s = s + x * x * x

end do end do

6. Implement a function, poly(x, c, n), that evaluates a polynomial in x

(scalar variable). n is the order of the polynomial and the array c contains
the coefficients.
Suppose you have to perform, y(k) = poly(x(k), c, n), many times
in a loop. Discuss different alternatives to speed things up. Now suppose
that you know that n = 3, always. How much execution time do you
save by writing a special poly n eq 3 that is fully unrolled (no loop)?

7. On the book’s homepage, <http://www.pdc.kth.se/???>, you can find
code for the Cholesky factorization (this code is often presented in text
books). Compare the speed of this algorithm with dpotrf from LAPACK.

8. Check if your C-compiler supports a restrict keyword (used to inform
the compiler that there is no aliasing in a function). If that is the case,
see if you can speed up the example on page 6.

9. Write a program that computes A = (A + AT )/2, where A is a large
square matrix. First do it in the three obvious ways (using the Fortran 90
transpose-function, then writing row-column- and column-row-oriented
do-loops). Finally, try writing a faster routine using blocking.

New versions of some of the books, listed in the references below, have ap-
peared since the first version of this article. Since the author has not read the
new versions the references list the old ones with a note about a new version
being available.
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