
The Frank–Wolfe algorithm

Consider the problem to

minimize f(x), (1a)

subject to x ∈ S, (1b)

where S ⊂ <n is a polyhedron and where f : <n 7→ < is a continuously differentiable
function. (We suppose that S is also bounded, for simplicity of the presentation
only.)

The Frank–Wolfe algorithm works as follows:

0. Choose an initial solution, x0 ∈ S. Let k := 0.

Here one typically chooses an arbitrary basic feasible solution, that is, an extreme
point.

1. Determine a search direction, pk.

In the Frank–Wolfe algorithm one determines pk through the solution of the ap-
proximation of the problem (1) that is obtained by replacing the function f with
its first-order Taylor expansion around xk: therefore, solve the problem to

minimize zk(y) := f(xk) + ∇f(xk)
T(y − xk), (2)

subject to y ∈ S. (3)

This is an LP problem, and it gives an extreme point, yk, as an optimal solution.
The search direction is pk := yk−xk, that is, the direction vector from the feasible
point xk towards the extreme point. Observe that this is a feasible direction, since
both xk and yk belong to S and S is convex.

2. Determine a step length, αk, such that

f(xk + αkpk) < f(xk). (4)

Here, we must limit the step length to be at most 1, because for α > 1 the solution
becomes infeasible; the line search therefore has the form

minimize
α∈[0,1]

f(xk + αpk).
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3. New iteration point:
xk+1 = xk + αkpk.

4. If a stopping criterion is fulfilled −→ Stop! xk+1 is an approximation of x∗.
Otherwise, let k := k + 1, and go to 1.

What is left is (a) to motivate why the search direction pk is a descent direction, so that
we are guaranteed to be able to fulfill (4), and (b) to find good termination criteria.

We say that x ∈ S is stationary if ∇f(x)T(y−x) ≥ 0 for all y ∈ X. This is a necessary
condition for x to be a local minimum. Because suppose otherwise, that x ∈ S is a
local minimum for which ∇f(x)T(ȳ − x) < 0 holds for some ȳ ∈ S. But p := ȳ − x
is a feasible direction, so we therefore have that p is a feasible descent direction. This
contradicts the local optimality of x.

We can now note that

zk(yk) ≤ zk(xk) = 0.

(The inequality stems from the fact that yk solves the LP problem, but that may not be
true for xk.) If zk(yk) = 0 it means that

∇f(xk)
T(y − xk) ≥ 0, ∀y ∈ S,

that is, xk is a stationary point. If this is true we terminate the algorithm with a
stationary point at hand. Note: if f is convex, then xk is a global minimum.

If, on the other hand, zk(yk) < 0 holds, then this means that ∇f(xk)
T(yk − xk) < 0,

that is, the vector pk := yk − xk towards the LP solution is a descent direction.

A more valuable termination criterion in practice is given by upper and lower bounds
on the optimal objective value. This is valid for convex problems only! That is, what
follows is valid if f is a convex function, but not otherwise. The basis for the arguments
to follow is the known property that f is convex on S if and only if

f(y) ≥ f(x) + ∇f(x)T(y − x), x, y ∈ S.

We therefore have that

zk(yk) = f(xk) + ∇f(xk)
T(yk − xk)

≤ f(xk) + ∇f(xk)
T(x∗ − xk)

≤ f(x∗),

where the equality follows from the definition of the optimal solution to the LP problem,
the first inequality by the fact that yk solves this LP problem but not necessarily x∗, and
the second inequality from the convexity of f . So, we have that at every iteration k,

zk(yk) ≤ f(x∗) ≤ f(xk),



where the last inequality holds since xk is a feasible solution. In the Frank–Wolfe algo-
rithm the value of f descends after each iteration, that is, the sequence {f(xk)} strictly
monotonically decreases towards f(x∗), while the sequence {zk(yk)} approaches f(x∗)
from below—but not necessarily monotonically. We therefore always have an interval,
[zk(yk), f(xk)], which contains the optimal objective value. Through this knowledge, we
can construct a termination criterion of the type: Let ε > 0 be an a priori chosen value
of an acceptable relative objective error. Then, “if (f(xk) − zk(yk))/|zk(yk)| ≤ ε, then
terminate.”


