INFORMATION, LAB 2

TMA946 Applied optimization / MAN280
Optimization

Michael Patriksson

26 februari 2003

Preparations

In Part II of the exercise, there are some exercises which we recommend that
you prepare by formulating the KKT conditions in advance. If you feel a
slight anxiety in the proximity of computers, you may want to take a look
at MATLAB’s optdemo in advance.

Part I: Unconstrained optimization

In this part of the lab, you will solve some unconstrained problems using
steepest descent and Newton’s method. The latter exists in three different
versions, (1) with a unit step length (the classic version), (2) Newton’s “modi-
fied” method, which includes a line search, and (3) the Levenberg—Marquardt
modification, where diagonal terms are added, if necessary, such that the
eigenvalues of the resulting matrix are positive. The methods are implemen-
ted in MATLAB. The purpose of this lab is to graphically illustrate the
methods in order to give an insight into their behaviour.

To start, download the tar-file from the course homepage, and follow the
instructions given there. Move to the directory ILP (by giving the command
cd ILP) and start MATLAB by simply typing matlab. Once MATLAB starts
up, type ilpmeny in the command window.

The lab is menu-driven and mostly self-explaining. The following selec-
tions may be done:



Setting Default value

Starting point 00

termination criterion Gradient length
Function to be minimized Function 1
Maximal number of iterations 200

Printing of iteration data On

Method Steepest descent

You may choose to take 1, 10 or 100 iterations at a time and follow the
algorithm search path in the graph.

Exercises

In all these exercises, the function is to be minimized.
1. Study function 1
f(x1,29) :=2(z1 + 1)? + 8(22 + 3)? + 5x1 + 29

(a) Solve the problem by using steepest descent and Newton’s method
(unit step). Start at the points (10,10)T and (=5, —5)T as well
as in some starting point of your own choice. Toward which point
do the methods converge? How many iterations are required?

(b) Is the point obtained an optimal point (globally or locally)?

(¢) Why does Newton’s method always converge in one iteration?
2. Study function 2 (Rosenbrock’s function)
f(z1,z2) = 100(xy — 22)® + (1 — z1)%

(a) Solve the problem by using steepest descent and Newton’s method
(all versions). Start at the point (—1.5, —1)T. Towards which point
does the methods converge? How many iterations are required?

(b) Is the function convex? Is the obtained point a global optimum?

(c) Choose some starting points on your own to study the methods’
behaviour.

3. Study function 4

f(zy,29) == a3 + 223 — 27x) — 65,



(a) Start at the point (0,0)T and solve the problem using steepest
descent and Newton’s method (unit step). Why does not Newton’s
method work? Try the Levenberg-Marquardt modification and
study that method’s behaviour.

(b) Start at some arbitrarily chosen points. How many stationary
points do you find? Which kinds of stationary points?

Those who wish to play further may test the other functions. They are:

2, 2 2, 2 2 2 2 2
_zitap _zitT) _ (x1-5)"+(wa+4) _(z1+4)+(z2-5)
(8) flx1,2) = —5e™ 10 +de” w0 5 0o -5 0o -
(21442 + (29 —5)2
- 100 2

(@142 % +(z9+1)? _ (@1+2)%+(29+1)?
10 100

(5) f(x1,m0) := —4e +0.01((21 +2)2 +

(z2 +1)%) 4 0.01z;

(6) f(x1,22) = (2] — x2)* + 2(21 — x2)*

e

z%—O.S
x3140.5

(7) f(x1,22) == —5cos(0.2(1 + ) +0.00123 + 0.003z} + 21

(8) f(z1,22) :=2(w2 — 23)% + 0.1(x1 + 2)? + 0.523 + z323

Part II: Constrained optimization; MATLAB:s Op-
timization Toolbox

In this part of the lab, you are to use MATLAB’s optimization routines to
solve some nonlinear problems.

Note! This part of the lab should be prepared by formulating the KKT
conditions for the exercise problems. We have created an example to show
how Matlab’s constrained minimization, fmincon, works. In order to un-
derstand the command, it is helpful to read Matlab’s help about it (type
help fmincon).

Example:

The objective function is given in the file testf.m, and the constraints in
testg.m. To solve the other problems, you need to create similar files.
We now call fmincon by using the command

[x,y,ef,output,lambda] = fmincon(’testf’>,[0 01,01,01,00,01,01,[], testg’)



which means that we wish to minimize the function testf, starting at (0,0)T,
using no linear inequality constraints, no linear equality constraints, and no
bounds on the variables. (We treat x; < 1 as a general nonlinear constraint.)
Once the solver is done, x will contain the optimal point, y the optimal
objective value, and 1lambda the Lagrange multipliers. For the other variables,
see Matlab’s help files. For example, to see the Lagrange multipliers for the
nonlinear inequality constraints, write

lambda.inegnonlin.

Exercises

1. Given is the problem

max f(z) = x1 — 223 + 229 — 3 + 2179 ,
st. 23 — xz9 < 0,
2:171 — X2 Z 0.

(a) Solve the problem using fmincon.

(b) State the KKT conditions, examine the convexity of the problem
and verify that the obtained solution is a global minimum.

2. Given is the problem

min f(x) := x; ,
st. (z1—1)2 + (22+2)? 16,
z? + 3 13.

(AVAVAN

Solve the problem from at least five starting points. Describe what
happens. Which point is the best one? Can you guarantee that this is
a global minimum? Fun points to try are (1,1)T,(0,0)",(3.7,0)" and
(-1,-1)T.

Part III: Constrained optimization: penalty methods

Consider the problem to

minimize f(z),
subject to g(x) < 0™,



where f and g are continuously differentiable functions. Penalty methods are
generally of one of two different kinds: exterior and interior penalty methods,
depending on if the methods generally give an infeasible of strictly feasible
sequence of iteration points. We have implemented one method of each kind
in MATLAB.

In order to run the programs, you should move from the directory ILP
to the directories ILP/epa (exterior penalty algorithm) or ILP/lipa (in-
terior penalty, or interior point, algorithm for linear programming). Both
algorithms are started by typing go in Matlab’s command window.

Note that the problems are given with the constraints on “<”-form, while
Nash—Sofer describes the methods using the “>"-form.

The exterior penalty method (“penalty method” in Nash-Sofer) works
with the relaxation

minimize f(x) + pry(x),
zeRn"

where pr > 0 and pr — +00 when k — 400, and the penalty function is the

quadratic function
m

Y(a) =) (max{0,g;(x)})*.
i=1
The interior penalty method (“barrier method” in Nash—Sofer) works with
the relaxation
minimize f(x) 4+ prp(x),

zeR™

where pp > 0 and pp — 0 when k£ — 400, and where the penalty function
is the function

o(z) = — > log(—g:(a)).
=1

In order to avoid numerical problems one usually lets the sequences py
and py converge slowly.

Description of the interface

After choosing the example from the drop-down list in the lower-left part
of the window, press the “Load” button. In the left window you will see the
level sets of the objective function (you can think of them as a topographic
map), the directions the negative gradient, as well as the curves constraining
the feasible set. The coordinates of the current iteration point can be read
below the left window.



After adjusting the desired penalty value, press the “Optimize” button.
The right window will show the level sets of the penalised function, exactly as
the algorithm would “see” it, were it not near-sighted. The current iteration
point is plotted in the right window (pink “x” cross); the left window will
contain the optimization “path”, showing the progress of the algorithm (pink
curve).

Note! In our implementation of EPA we solve the penalised problem using
a gradient algorithm to obtain a globally optimal solution. Instead, one can
perform only a few iterations of the gradient algorithm.

In IPA, we perform only one iteration of the modified Newton method
(with an Armijo line search). We show the global minimum point in the right
window using a red “o” circle; its evolution as the penalty parameter changes
(so-called “central path”) is shown in the left window as a red line.

Hint! You can change the starting point for the algorithm by modifying
the variables x1_start and x2_start in the .m-file, corresponding to the
example you solve. Even more, you can add your own problems by providing
a corresponding example*.m file!

Exercises

There are four nonlinear problems, two convex (example_n1{01,02}.m), and
two non-convex (example_nl{03,04}.m), as well as three linear problems
(example_1in[01-03] .m); you can find the problem formulations in the Ap-
pendix.

1. Using the interior point method, solve the LPs 01-03. Do we always
find an optimal extreme point (problem 03)? Notice how the algorithm
follows closely the central path and goes “directly” to the global mini-
mum point (i.e., it skips visiting the extreme points), if you change the
penalty parameter smoothly. Compare with the Simplex method.

2. Change the directory to ILP/kkt and type go at the Matlab prompt.
Find the KKT points of the nonlinear problems (example_n1[01-04] .m).
Are the KKT conditions sufficient for the global optimality (problem
03)? Are they necessary (problem 04)?

Hint: Matlab does not calculate the Lagrange multipliers exactly. This
hint is especially important for the problem 04.

3. Using the exterior penalty algorithm, solve the nonlinear and linear
problems. Can you get different “optimal” solutions by changing the
penalty parameter in a different manner or by starting from different



points (problem 03)? Why does the algorithm converge so slowly in
the problem 04 (hint: KKT)?

Appendix

Linear problems
example_1linO1l.m

min x + 3x9,
1+ 239 > 2,
x1 — 3wg < 2,
—x1 + 3z < 12,

T1,T2 Z 0,

example_1in02.m

minz + 3z2,
lzy 4+ 1/10z9 > 1,
1/2x1 +1/922 > 1,
1/3x1 +1/8xz9 > 1,
1/4z1 +1/7x9 > 1,
1/5x1 + 1/6x9 > 1,
1/6x1 + 1/529 > 1,
1/Txy + 1/429 > 1,
1/8x1 +1/3x9 > 1,
1/921 +1/225 > 1,
1/10z; + 1lxg > 1,
x1 < 20,
zo > 0.

s.t.




example_1in03.m

min xa,

lzy +1/10z9 > 1,
1/2z1 + 1/929 > 1,
1/321 +1/823 > 1,
1/4z1 +1/7x9 > 1,
1/5x1 + 1/6x9 > 1,
1/6x1 + 1/529 > 1,
1/721 + 1/4zs > 1,
1/8x1 +1/3x9 > 1,
1/921 +1/225 > 1,

1/10z; + 1lag > 1,

s.t.

x1 < 207
) > 0.
Nonlinear problems
example_nl01.m
min :U% + 33%,
T Z 27
s.t. Tg > 1,

1/2z1 + 1/4x9 < 2.

example_nl02.m
min:n%,
r > 2,
s.t. z9 > 1,
1/2z1 + 1/4x9 < 2.



example_nl03.m
min 2y sin(zq) + 2 sin(zz),
T Z 1/3,
T2 Z 3/4,
x1 — sin(zg) > 0,

x%—kx%SS.

s.t.

example_nl04.m
min(z; + 1) + 1/223,
x1 <3,
S.t. T > 0,
1/8z3 — x5 > 0.



