Simplicial decomposition

Consider the problem to

minimize f(x), (1a)
subject to z € S, (1b)

where S C R” is a polyhedron and f : R” — R is a continuously differentiable
function. Simplicial decomposition builds on the knowledge that a polyhedron has
an inner representation in terms of extreme points and directions (Theorem 4.2 in
Nash/Sofer): Suppose that S = {z € R* | Ax =b; =z > 0} is non-empty, and is
bounded (for simplicity of the presentation). The set of extreme points is finite:

V= {’Ul,Ug,...,’U[}.

Each point x € S can be written as a convex combination of the extreme points:

I
xES(z)x:Zo/vi,
i=1

where

The advantage of this representation is that it is much simpler to deal with in an
optimization algorithm than the linear constraints that define S above; essentially,
we have only non-negativity left, since the “Zle a’ = 1”7 constraint can be dealt

with by the substitution of one of the variables.

The disadvantage of the representation is that the set V is both very large for a
large-scale problem, and it is not known; compare with the case of the simplex
method, where we cannot simply enumerate the extreme points in order to then
pick the best one. In this nonlinear case, we may also need a large number of them
in order to “span” an optimal solution. The trick is to consider the variables o' to
be zero for all those elements in V' that we do not know, and to generate those that



seem profitable by solving the linear Frank—Wolfe subproblem: at a feasible solution
T, we generate an extreme point by solving the problem to

minimize 2;(y) := f(z1) + Vf(zx)" (y — z1), (2a)
subject toy € S. (2b)

The method is as follows:

0. Choose an wnitial solution, xo € S. Let k := 0.
Here one typically chooses an arbitrary basic feasible solution, that is, an extreme
point corresponding to an index i in {1,2,...,I}. We call this index 7. Let [ :=
{’Lo} and Ty = Vyq-

1. Generate a new extreme point.

Solve the LP problem (2). This problem gives us as an optimal solution the extre-
me point i, € I. If i) € I then the algorithm stops, because z;, is then stationary.
(WHY?) Otherwise, it is a new extreme point (WHY?), whose inclusion will im-
prove the solution, and we let [ := I U {i;}.

2. Solve the restriction to the original problem to the set Icl.

Solve the problem to

minimize f(x),

subject to

T = E a'v;,

iel
ZO/ =1,
el
o'>0, iel.

The optimum is a vector «y, whose corresponding vector in the original space is
Lh+1 = Ziei V.

3. If a stopping criterion is fulfilled — Stop! xy,; then is an approximation of
Z.. Otherwise, let k£ := k + 1, and go to 1.

The algorithm is quite similar to the Frank-Wolfe algorithm. The main, and ve-
ry important, difference, is that the Frank-Wolfe algorithm drops all the previous
extreme points visited, and only optimizes over line segments. In Simplicial Decom-
position, the extreme point information is stored—we could say that the algorithm
has a “memory” of where it has been—and thanks to this extra information the
algorithm can make much better progress: instead of the line search in the Frank—
Wolfe algorithm, Step 2 is a multi-dimensional search over all the extreme points
generated. The method therefore becomes much more efficient than the Frank—Wolfe
algorithm in practice.



