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Question 1

(linear programming duality)

a) The LP dual is to

minimize w = 2y1 + 7y2 + 3y3,
subject to −2y1 − y2 + y3 ≥ 1,

y1 + 2y2 ≥ 2,
y1 , y2 , y3 ≥ 0.

The complementarity conditions are next investigated. First, we check the
conditions of the type

y∗
i ·





n
∑

j=1

aijx
∗
j − bi



 = 0, i = 1, . . . , m.

Checking the primal constraints reveals that the first constraint is fulfilled
strictly while the remaining two have no slack. This is implies that y∗

1 =
0 must hold. Next, we investigate the second type of complementarity
conditions:

x∗
j ·

(

m
∑

i=1

aijy
∗
i − cj

)

= 0, j = 1, . . . , n.

Since x = (3, 5)T is strictly positive, both dual constraints are active. To-
gether with the fact that y∗

1 = 0 leaves the following system of linear equa-
tions:

−y∗
2 + y∗

3 = 1;
2y∗

2 = 2;

its unique solution is that y∗
2 = 1; y∗

3 = 2.

It remains to check that all dual constraints are satisfied, that is, to also
check the sign conditions. Non-negativity is clearly satisfied, so y∗ =
(0, 1, 2)T is the unique dual optimal solution. We therefore know from
the complementarity theorem that x∗ and y∗ are optimal in their respec-
tive problem. But we check nevertheless that strong duality is fulfilled:
cTx∗ = 13 = bTy∗.

b) The proof is by contradiction. Suppose that (D) has a feasible solution.
Since (P) has a feasible solution we can apply the Strong Duality Theorem
and conclude that both (P) and (D) have finite optimal solutions which
moreover have the same objective value. But this contradicts the fact that
(P) has an unbounded solution. Therefore, the claim that (D) has a feasible
solution is false. We are done.
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Question 2

(convexity)

A proof is found in the course notes (Theorem 3.26).

Question 3

(modeling)

Variable declaration:

• ci = number of barrels of crude oil of type i bought (i = 1, 2, 3);

• bij = number of barrels of crude oil of type i used to produce gas of type j
(i = 1, 2, 3, j = 1, 2, 3);

• aj = number of dollars spent on advertising for gas type i (i = 1, 2, 3);

• gi = number of barrels of gas of type j produced (j = 1, 2, 3).

Objective function: maximize the difference between the income of selling oil and
the cost of producing it (the latter including buying crude oil, transforming crude
oil to gas, and advertizing), that is:

maximize (70− 4)g1 +(60− 4)g2 +(50− 4)g3− (45c1 +35c2 +25c3 +a1 +a2 +a3).

Constraints:

• For each type of oil:

– definition of product;

– minimum octane rating; and

– maxiumum lead content;

• All crude oil bought is used;

• Maximum purchase of crude oil;

• Maximum capacity of production;
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• Demand of products;

• Physical constraints.

In the same order:

b11 + b21 + b31 = g1,

12b11 + 6b21 + 8b31 ≥ 10g1,

0.5b11 + 2b21 + 3b31 ≤ g1,

b12 + b22 + b32 = g2,

12b12 + 6b22 + 8b32 ≥ g2,

0.5b12 + 2b22 + 3b32 ≤ 2g2,

b13 + b23 + b33 = g3,

12b13 + 6b23 + 8b33 ≥ 6g3,

0.5b13 + 2b23 + 3b33 ≤ g3,

b11 + b12 + b13 = c1,

b21 + b22 + b23 = c2,

b31 + b32 + b33 = c3,

cj ≤ 5, 000, j = 1, 2, 3,

c1 + c2 + c3 ≤ 14, 000,

g1 ≥ 3, 000 + 10a1,

g2 ≥ 2, 000 + 10a1,

g3 ≥ 3, 000 + 10a1,

ci, bij, aj, gj ≥ 0, i = 1, 2, 3; j = 1, 2, 3.

Question 4

(on the Armijo step length rule in unconstrained optimization)

a) We have that xk+1 = xk(1 − αkx
2
k).

The requirements of linear convergence imply that 1−αkx
2
k must be bounded

away from 1, that is, that αkx
2
k must be bounded away from zero. But since

x∗ = 0 this requires that αk tends to infinity faster than x2
k tends to zero;

there is obviously no finite value of α0 that can produce such step lengths.
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b) We have that xk+1 = xk(1 − αk/3).

According to the Newton formula above, if we can ensure that αk = 1
is always going to be accepted by the Armijo rule, then we have linear
convergence with rate q := 2/3. In this case, we than have that xk+1 =
(2/3)xk. With αk = 1 the Armijo rule requires that 1 − (2/3)4 ≥ (4/3)µ
which clearly is satsified as long as the value of µ is small enough. (µ ≤ 0.6
will do.)

Question 5

(nonlinear programming optimality)

a) Let us first rewrite the LP problem into the following equivalent form, and
note that hj(x̄) = 0 for all j, since x̄ is feasible:

minimize
p

∇f(x̄)Tp,

subject to −∇gi(x̄)Tp ≥ gi(x̄), i = 1, . . . , m,
−∇hj(x̄)Tp = 0, j = 1, . . . , `.

Letting µ ≥ 0m and λ ∈ R
` be the dual variable vector for the inequality

and equality constraints, respectively, we obtain the following dual pro-
gram:

maximize
( �

, � )

m
∑

i=1

µigi(x̄),

subject to −
m
∑

i=1

µi∇gi(x̄) −
∑̀

j=1

λj∇hj(x̄) = ∇f(x̄),

µi ≥ 0, i = 1, . . . , m.

LP duality now establishes the result sought: First, suppose that the op-
timal value of the above primal problem over p is zero. Then, the same
is true for the dual problem. Hence, by the sign conditions µi ≥ 0 and
gi(x) ≤ 0, each term in the sum must be zero. Hence, we established that
complementarity holds. Next, the two constraints in the dual problem are
precisely the dual feasibility conditions, which hence are fulfilled. Finally,
primal feasibility of x̄ was assumed. It follows that this vector indeed is a
KKT point.

Conversely, if x̄ is a KKT point, then the dual problem above has a feasible
solution given by any KKT multiplier vector (µ, λ). The dual objective is



EXAM SOLUTION
TMA947/MAN280 — APPLIED OPTIMIZATION 5

upper bounded by zero, since each term in the sum is non-positive. On the
other hand, there is a feasible solution with the objective value 0, namely
any KKT point! So, each KKT point must constitute an optimal solution
to this dual LP problem! It then follows by duality theory that the dual of
this problem, which is precisely the primal problem in p above, has a finite
optimal solution, whose optimal value must then be zero. We are done.

The LP problem given in the exam is essentially the subproblem in the
Sequential Linear Programming (SLP) algorithm. By the above analysis,
the optimal value must be negative if x̄ is not a KKT point, and it must
therefore also be negative (since a zero value is given by setting p = 0n).
The optimal value of p, if one exists, is therefore a descent direction with
respect to f at x̄. A convergent SLP method introduces additional box
constraints on p in the LP subproblem to make sure that the solution is
finite, and the update is made according to a line search with respect to
some penalty function.

b) The problem is convex if f and the functions gi (i = 1, . . . , m) are convex,
and the functions hj (j = 1, . . . , `) are affine. A proof that every KKT
point is globally optimal is found in the course notes (Theorem 6.45).

Question 6

(linear programming geometry)

We prove first the result in the direction “⇐=”. So we assume that such a vector
µ exists. Let x ∈ X. Then,

dTx ≤ µTAx ≤ µTb ≤ d0

holds, which establishes that the inequality is redundant: it is always fulfilled on
X.

We next prove the result in the direction “=⇒”. So we assume that the inequality
is redundant. An implication of that is that the following LP problem must have
an optimal value which is less than or equal to d0, because otherwise we would
reach a contradiction:

maximize dTx,

subject to Ax ≤ b,

x ≥ 0n.
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Since the primal problem has a finite optimal solution, so does the dual problem
to

minimize bTµ,

subject to ATµ ≥ d,

µ ≥ 0m.

This solution is in particular feasible, and its optimal value must also be less than
or equal to d0. We are done.

Question 7

(Lagrangian duality)

a) The Slater’s CQ is clearly verified since the problem is convex (even linear),(2p)
and there is a strictly feasible point [e.g., (x, y)T = (3, 1)T].

Introducing Lagrange multipliers µ1 and µ2 we calculate the Lagrangian
dual function q:

q(µ1, µ2) = min
(µ1,µ2)∈ � 2

+

{x − 0.5y + µ1(−x + y + 1) + µ2(−2x + y + 2)}

= µ1 + 2µ2 + min
x≥0

(1 − µ1 − 2µ2)x + min
y≥0

(−0.5 + µ1 + µ2)y

=







µ1 + 2µ2, if µ1 + 2µ2 ≤ 1 and µ1 + µ2 ≥ 0.5,

−∞, otherwise.

Thus the set of optimal Lagrange multipliers is { (µ1, µ2) | µ1 ≥ 0, µ2 ≥
0, µ1 + 2µ2 = 1 }, which is clearly convex and bounded (e.g., you may
illustrate this graphically) as it should be in the presence of Slater’s CQ.

b) Subgradients of the Lagrangian dual function are calculated as follows:(1p)

1. At (µ1, µ2)
T = (1, 0)T the set of optimal solutions to the Lagrangian

relaxed problem is the singleton { (0, 0)T }. Hence, the Lagrangian
function is differentiable at this point and its gradient equals the value
of the vector of constraint functions evaluated at the optimal solution
to the relaxed problem, i.e., (−0 + 0 + 1,−2 · 0 + 0 + 2)T = (1, 2)T.
Alternatively, we may directly differentiate q at a given point to obtain
the same result.

2. At (µ1, µ2)
T = (1/4, 1/3)T the set of optimal solutions to the La-

grangian relaxed problem is not a singleton: it equals { (x, 0)T | x ≥
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0 }. Hence, the dual function is not differentiable, and the set of
subgradients is obtained by evaluating the constraint functions at
the optimal solutions to the relaxed problem, i.e., ∂q(1/4, 1/3) =
{ (−x + 1,−2x + 2)T | x ≥ 0 }.


