EXERCISE 8: THE SIMPLEX METHOD

NICLAS ANDRÉASSON

EXERCISE 1 (Checking feasibility: Phase I). Consider the system

$$3x_1 + 2x_2 - x_3 \le -3,$$

$$-x_1 - x_2 + 2x_3 \le -1,$$

$$x_1, x_2, x_3 \ge 0.$$

Show that this system is infeasible!

The Simplex algorithm

Step 0. (initialization): Assume that $x^{T} = (x_{B}^{T}, x_{N}^{T})$ is a BFS corresponding to the partition A = (B, N).

П

Step 1. (entering variable, pricing): Calculate the reduced costs of the non-basic variables,

$$(\tilde{\boldsymbol{c}}_N)_j = (\boldsymbol{c}_N^{\mathrm{T}} - \boldsymbol{c}_B^{\mathrm{T}} \boldsymbol{B}^{-1} \boldsymbol{N})_j, \quad j = 1, \dots, n - m.$$

If $(\tilde{\boldsymbol{c}}_N)_j \geq 0$ for all $j = 1, \ldots, n-m$ then stop; \boldsymbol{x} is then optimal. Otherwise choose $(\boldsymbol{x}_N)_j$, where

$$j \in \arg \min_{j \in \{1, \dots, n-m\}} \{(\tilde{\boldsymbol{c}}_N)_j\},$$

to enter the basis.

Step 2. (leaving variable): If

$$\boldsymbol{B}^{-1}\boldsymbol{N}_{i}\leq\boldsymbol{0}^{m},$$

then the problem is unbounded, stop; $((\boldsymbol{B}^{-1}\boldsymbol{N}_j)^{\mathrm{T}},\boldsymbol{e}_j^{\mathrm{T}})^{\mathrm{T}}$ is then a direction of unboundness. Otherwise choose $(\boldsymbol{x}_B)_i$, where

$$i \in \arg \min_{i \in \{i \mid (\boldsymbol{B}^{-1}\boldsymbol{N}_j)_i > 0\}} \frac{(\boldsymbol{B}^{-1}\boldsymbol{b})_i}{(\boldsymbol{B}^{-1}\boldsymbol{N}_j)_i},$$

to leave the basis.

Step 3. (change basis): Construct a new partition by swapping $(x_B)_i$ with $(x_N)_i$. Go to Step 1.

Date: February 20, 2004.

EXERCISE 2 (The Simplex algorithm: Phase I & II). Consider the linear program

minimize
$$z = 3x_1 + 2x_2 + x_3$$

subject to $2x_1 + x_3 \ge 3$,
 $2x_1 + 2x_2 + x_3 = 5$,
 $x_1, x_2, x_3 \ge 0$.

(a) Solve the linear program by using the Simplex algorithm with Phase I & II'

(b) Is the solution obtained unique?

EXERCISE 3 (Sensitivity analysis: Perturbations in the objective function). Consider the linear program

Find the values of c_3 and c_4 such that the basic solution that corresponds to the partition $x_B = (x_1, x_2)^T$ is an optimal basic feasible solution to the problem!

EXERCISE 4 (Sensitivity analysis: Perturbations in the right-hand side). Consider the linear program

minimize
$$z = -x_1 + 2x_2 + x_3$$

subject to $2x_1 + x_2 - x_3 \le 7$,
 $-x_1 + 2x_2 + 3x_3 \ge 3 + \delta$,
 $x_1, x_2, x_3 \ge 0$.

- (a) Show that the basic solution that corresponds to the partition $x_B = (x_1, x_3)^T$ is an optimal solution to the problem when $\delta = 0$!
- (b) Find the values of the perturbation $\delta \in \mathbb{R}$ such that the above BFS is optimal!

EXERCISE 5 (equivalent problems). Consider the linear program in standard form,

minimize
$$z = c^{\mathrm{T}}x$$

subject to $Ax = b$, $x \ge 0^n$.

Suppose that at a given step of the Simplex algorithm, there is only one possible entering variable, $(x_N)_j$. Also assume that the current BFS is non-degenerate. Show that $(x_N)_j > 0$ in any optimal solution!