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TMA946 Applied optimization / MAN280
Optimization

Michael Patriksson

Feb 26, 2004, 17:15 — 21:00.
Computer rooms B, C, G, H.

To start, download the zip-file from the course homepage, and follow the
instructions given there. Move to the directory LAB2 (by giving the command
cd LAB2) and start MATLAB by simply typing matlab.

If you feel a slight anxiety in the proximity of computers, you may want
to take a look at MATLAB’s optdemo in advance.

Part I: Constrained optimization: penalty methods

Consider the problem to

minimize f(z),
subject to g(z) < 0™,

where f and g are continuously differentiable functions. Penalty methods are
generally of one of two different kinds: exterior and interior penalty methods,
depending on if the methods generally give an infeasible of strictly feasible
sequence of iteration points. We have implemented one method of each kind
in MATLAB.

In order to run the programs, you should move from the directory LAB2
to the directories LAB2/epa (exterior penalty algorithm) or LAB2/lipa (in-
terior penalty, or interior point, algorithm for linear programming). Both
algorithms are started by typing go in Matlab’s command window.

Note that the problems are given with the constraints on “<”-form, while
Nash—Sofer describes the methods using the “>"-form.



The exterior penalty method (“penalty method” in Nash-Sofer) works
with the relaxation
minimize f(z) + prxs(z),

TeER™

where pg > 0 and pp — +00 when k — +00, and the penalty function is the
quadratic function

m

Xs(z) = (max{0, gi(2)})”-

=1

The interior penalty method (“barrier method” in Nash—Sofer) works with
the relaxation
minimize f(z) + prxs(z),

TER™

where u; > 0 and pp — 0 when k — 400, and where the penalty function
is the function

Xs(z) == — Zlog(—gi(w))-

In order to avoid numerical problems one usually lets the sequences py
and p converge slowly to their respective limits.

Description of the interface

After choosing the example from the drop-down list in the lower-left part
of the window, press the “Load” button. In the left window you will see the
level sets of the objective function (you can think of them as a topographic
map), the directions the negative gradient, as well as the curves constraining
the feasible set. The coordinates of the current iteration point can be read
below the left window.

After adjusting the desired penalty value, press the “Optimize” button.
The right window will show the level sets of the penalised function, exactly as
the algorithm would “see” it, were it not near-sighted. The current iteration
point is plotted in the right window (pink “x” cross); the left window will
contain the optimization “path”; showing the progress of the algorithm (pink
curve).

Note! In our implementation of EPA we solve the penalized problem using
a gradient algorithm to obtain a globally optimal solution. Instead, one can
perform only a few iterations of the gradient algorithm.

In TPA, we perform only one iteration of the modified Newton method
(with an Armijo line search). We show the global minimum point in the right



window using a red “o” circle; its evolution as the penalty parameter changes
(so-called “central path”) is shown in the left window as a red line.

Hint! You can change the starting point for the algorithm by modifying
the variables x1_start and x2_start in the .m-file, corresponding to the
example you solve. Even more, you can add your own problems by providing
a corresponding examplex*.m file!

Exercises

There are four nonlinear problems, two convex (example_n1{01,02}.m), and
two non-convex (example_nl{03,04}.m), as well as three linear problems
(example_1in[01-03] .m); you can find the problem formulations in the Ap-
pendix.

1. Using the interior point method, solve the LPs 01-03. Do we always
find an optimal extreme point (problem 03)7 Notice how the algorithm
follows closely the central path and goes “directly” to the global mini-
mum point (i.e., it skips visiting the extreme points), if you change the
penalty parameter smoothly. Compare with the Simplex method.

2. Change the directory to LAB2/kkt and type go at the Matlab prompt.
Find the KKT points of the nonlinear problems (example_n1[01-04] .m).
Are the KKT conditions sufficient for the global optimality (problem
03)? Set up the KKT-system for the non-linear problem 04 and check
whether KKT-conditions are necessary. Why /why not?

Hint: Matlab does not calculate the Lagrange multipliers exactly. This
hint is especially important for the problem 04. Also note that in some
of the constraints may be scaled, which does not change feasible sets,
positions of local/global minima or KKT-points, but affects Lagrange
multipliers!

3. Using the exterior penalty algorithm, solve the nonlinear and linear
problems. Can you get different “optimal” solutions by changing the
penalty parameter in a different manner or by starting from different
points (nonlinear problem 03)? Why does the algorithm converge so
slowly in the nonlinear problem 04 (hint: KKT)?



Part II: Constrained optimization; MATLAB:s Op-
timization Toolbox

In this part of the lab, you are to use MATLAB’s optimization routines to
solve some nonlinear problems.

Note! This part of the lab should be prepared by formulating the KKT
conditions for the exercise problems. We have created an example to show
how Matlab’s constrained minimization, fmincon, works. In order to un-
derstand the command, it is helpful to read Matlab’s help about it (type
help fmincon). If you also would like to know more about various options
of the solver, type help optimaset.

Example:

min f(z) = 22? + 23
s.t. I Z 0
:1:% + T2 > 2

The code for this example is found in the file LAB2/fminconl.m, and the ex-
ample can be run by typing run fminconl in the Matlab command window.
Study the code that implements this example; to solve the other problems,
you need to create similar files.

Exercises

1. Given is the problem

max f(z) := 1z — 227 + 229 — 22 + 7129 |
s.t. :c% — 1z < 0,
2.’1)1 — X2 Z 0.

(a) Solve the problem using fmincon.

(b) State the KKT conditions, examine the convexity of the problem
and verify that the obtained solution is a global minimum.

2. Given is the problem

min f(z) := z; ,

st (z71—-1)% + (z2+2)? < 16,
77 + T3 > 13.

Solve the problem from at least five starting points. Describe what
happens. Which point is the best one? Can you guarantee that this is



a global minimum? Fun points to try are (1,1)",(0,0)", (3.7,0)T and
(-1,-1)T.

Appendix

Linear problems
example_1inO1l.m

minz; + 3x9,
T1 +2z9 > 2,
1 — 39 < 2,
—z1 + 3z < 12,

T1,T2 Z O,

example_1in02.m

minx + 3xo,
lzy +1/10z9 > 1,
1/2z1 +1/9z9 > 1,
1/31171 + 1/8:62 >1,
1/4z1 +1/7x9 > 1,
1/521 + 1/6z2 > 1,
1/61‘1 + 1/5.’132 >1,
1/7z1 + 1/4z9 > 1,
1/81171 + 1/3:62 >1,
1/9z1 +1/2z9 > 1,
1/10z1 + 1lzo > 1,
z1 < 20,
T > 0.

s.t. <




example_1in03.m

min zo,

s.t.

<

lzy +1/10z9 > 1,
1/2z1 +1/9z9 > 1,
1/3z1 +1/8z9 > 1,
1/4z1 +1/7x9 > 1,
1/5.771 + 1/6.’172 >1,
1/621 + 1/5z2 > 1,
1/7x1 + 1/4z9 > 1,
1/8z1 +1/3z9 > 1,
1/921 +1/2z2 > 1,

1/10z1 + 1zo > 1,

Z1 g 20,
L T2 Z 0.
Nonlinear problems
example_nlO1l.m
minz? 4 23,
Z1 Z 27
s.t. x9 Z 1,
1/2z1 + 1/4z9 < 2.
example_nl02.m
min z?,
Z1 Z 23
s.t. ) 2 1,

1/2.’,61 + 1/4:1}'2 < 2.



example_nl03.m
minz1 sin(z1) + 2 sin(xs),
z1 > 1/3,
z9 > 3/4,
z1 —sin(z2) > 0,
(1 — 1)? + (2 — 1)? < 5.

s.t.

example_nl04.m
min(z; + 1) + 1/223,
z1 <3,
s.t. z9 > 0,
1/823 — x5 > 0.



