Lecture 10: Linear programming

duality

Michael Patriksson

19 February 2004

\ The canonical primal-dual pair
AcR™" becR™ and ¢ € R
maximize z=c'x
subject to Ax < b,
x>0",
and
minimize w=by

subject to ATy > ¢,

y=>0"
0-0
\ The dual of the LP in standard form / \ Rules for formulating dual LPs J
e We say that an inequality is canonical if it is of <
minimize > — ¢V (P) [respectively, >] form in a maximization [respectively,
) minimization| problem.
subject to Ax = b,
n e We say that a variable is canonical if it is > 0.
x> 0"
and e The rule is that the dual variable [constraint] for a
primal constraint [variable] is canonical if the other one
maximize w=b'y (D) is canonical. If the direction of a primal constraint [sign

subject to ATy < ¢,
y free

from the canonical.

o

of a primal variable] is the opposite from the canonical,
then the dual variable [dual constraint] is also opposite

/




primal/dual constraint

\ e Further, the dual variable [constraint] for a primal /

equality constraint [free variable] is free [an equality
constraint).

e Summary:

dual/primal variable

-

Weak Duality Theorem 11.4 /

If x is a feasible solution to (P) and y a feasible
solution to (D), then c'x > b'y.

Similar relation for the primal-dual pair (2)—(1): the
max problem never has a higher objective value.

T T, \To — 0T — o Th — pT
canonical inequality <= >0 e Proof. c’x> (A'y) x =y Az =y b=>by. O
non-canonical inequality <= <0 e Corollary: If ¢'x = by for a feasible primal-dual pair
equality <= unrestricted (free) (#,y) then they must be optimal
\ Strong Duality Theorem 11.6 / \ thereafter establish (a) that from the optimality J

K BF'S representing an optimal extreme point @, and K

e In the compendium, strong duality is established for
the pair (P) and (D). Here, we establish the result for
the pair (1), (2).

e [f one of the problems (1) and (2) has a finite optimal
solution, then so does its dual, and their optimal
objective values are equal.

e Proof. The idea behind the proof is as follows. We
suppose first that it is the primal maximization
problem that has a finite optimal solution. (This is
without loss of generality.) We then state an optimal

condition that the reduced costs are non-positive, we
can construct a dual vector of the form y* = cLB™!
which is feasible in (2). (b) We show that the objective

T

values ¢"x and b'y are equal. Hence, the dual vector

must be optimal in its problem.

(a) Suppose we have added slacks s € R™, and
represented an optimal extreme point & through a
basic/non-basic partitioning of (zx, s) and
correspondingly of (A, I™) and (¢,0™). Suppose that
the basis is optimal. Then, all the reduced costs of the

/

x and s variables are non-positive.




\o Emﬁomvmwﬂnelnwm\ﬁ»mAo;vamsg /
¢ = (0T —cEB '™ < (0™)T.

Now, let us define a dual vector as follows:

y':=cLB .

We notice that this choice is identical to that which we
saw was provided in the pricing step of the Simplex
method. Therefore, we can say that this vector is
provided for free from having used the Simplex method

in finding an optimal BFS.
Then, ¢’ —yTA < (0")7T and —y™I™ < (0™)7.
In other words, ATy > ¢ and y > 0™, that is,

/ y = (B )7 is feasible in (2). \

\

\o (b) Note that at the BFS chosen, /

z= GMWL@ = yTb = w. By the construction of the
dual vector y in this way, it will always have the same
value as the primal BFS! In particular, it has here the
same objective value as the primal optimal one. Use
the above Corollary. O

\
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\ Complementary Slackness Theorem 11.12 /

e Let x be a feasible solution to (1) and y a feasible
solution to (2). Then x is optimal to (1) and y optimal
to (2) if and only if

HQAA@.|@H>QV HOu QH Hu...“jg Aw@v
where A.; is the jth column of A and A,. the ith row
of A.

e Proof. From Weak and Strong Duality we have both
that

K c'e> (ATy) e =yTAz =y b=0b"y K

-

and that ¢"x = by holds. Since we have equality J
throughout above, we have that

0=[c— ATy|Tx = yT[Az — b]. Since each term is

sign restricted, each one must be zero. We are done

with this direction.

e The converse argument follows similarly: weak duality
plus complementarity implies strong duality. d
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\ Necessary and sufficient optimality conditions: /
Strong duality, the global optimality conditions,
and the KKT conditions are equivalent for LP

e We have seen above that the following statement
characterizes the optimality of a primal-dual pair

(z,y):

e x is feasible in (1), y is feasible in (2), and
complementarity holds.

e In other words, we have the following result (think of
the KKT conditions!):

N /
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\o Theorem 11.14: Take a vector € R". For x to be mE/
optimal solution to the linear program (1), it is both
necessary and sufficient that

(a) x is a feasible solution to (1);
(b) corresponding to @ there is a dual feasible solution
y € R™ to (2); and
(¢) @ and y together satisfy complementarity (3).
e This is precisely the same as the KKT conditions!

e Those who wishes to establish this—note that there are
no multipliers for the “x > 0™” constraints, and in the
KKT conditions there are. Introduce such a multiplier

/ vector and see that it can later be eliminated. \
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\ e Further: suppose that x and y are feasible in (1) and /
(2). Then, the following are equivalent:

(a)
(b)
(c

) « and y satisfy complementarity.

x and y have the same objective value;

x and y solve (1) and (2);

14

\ The Simplex method and the global optimality J
conditions

e The Simplex method is remarkable in that it satisfies
two of the three conditions at every BFS, and the
remaining one is satisfied at optimality:

e x is feasible after Phase-I has been completed.

e r and y always satisfy complementarity. Why? If z; is
in the basis, then it has a zero reduced cost, implying
that the dual constraint j has no slack. If the reduced
cost of x; is non-zero, then its value is zero.

- /
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\ e The feasibility of yT = nme is not fulfilled until Sm/
reach an optimal BFS. How is the incoming criterion
related to this? We introduce as an incoming variable
that variable which has the best reduced cost. Since

the reduced cost measures the dual feasibility of y, this
means that we select the most violated dual constraint;
at the new BFS, that constraint is then satisfied (since
the reduced cost then is zero). The Simplex method
hence works to try to satisfy dual feasibility!

N /
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-

Farkas’ Lemma revisited /

e Let A be an m X n matrix and b an m x 1 vector.
Then exactly one of the systems

Az =0, (I)
x> 0",
and
Aty <o, (1)
by >0,

has a feasible solution, and the other system is

inconsistent. \
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\ e Proof. If (I) has a solution @, then /
by =aTATy > 0.

But > 0", so ATy < 0" cannot hold, which means

that (II) is infeasible.

e Assume that (II) is infeasible. Consider the linear
program

maximize b'y (4)
subject to ATy < 0",
y free,

18

and its dual program J
minimize  (0")'x (5)
subject to Ax = b,
x > 0",

Since (II) is infeasible, y = 0™ is an optimal solution to
(4). Hence the Strong Duality Theorem 11.6 gives that
there exists an optimal solution to (5). This solution is
feasible to (I). N

/
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\ Decentralized planning /

e Consider the following profit maximization problem:

m
. T . T
maximize 2 = p & = M P; i,

i=1

mH @u
Ty
.mw @m
T2
s.t. < ,
B,, b,
Lm
| c | c

/ z; > 0" NHHs\
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\ for which we have the following interpretation: /

e We have m independent subunits, responsible for

finding their optimal production plan.

e While they are governed by their own objectives, we
(the Managers) want to solve the overall problem of

maximizing the company’s profit.

e The constraints B;x; < b;, x; > 0™ describe unit i’s

own production limits, when using their own resources.

N /
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\ e The units also use limited resources that are the mm:dm./

The resource constraint is difficult as well as unwanted

to enforce directly, because it would make it a
centralized planning process.

We want the units to maximize their own profits
individually.

e But we must also make sure that they do not violate
the resource constraints Cx < c.

(This constraint is typically of the form
MUM.HH QSHS < O.V

Ko How? K
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\ e ANSWER: Solve the LP dual problem! J

e Generate from the dual solution the dual vector y for
the joint resource constraint.

e Introduce an internal price for the use of this resource,
equal to this dual vector.

e Let each unit optimize their own production plan, with
an additional cost term.

e This will then be a decentralized planning process.

- /
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\ e Each unit ¢ will then solve their own LP problem to /

maximize [p, — C} y]"z;,
x;
subject to B;x; < b;,

x > 0™,
resulting in an optimal production plan!

e Decentralized planning, is related to Dantzig—Wolfe
decomposition, which is a general technique for solving
large-scale LP by solving a sequence of smaller LP:s.

N /
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