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Screening of smear tests (granska cellprover) /
Prevent cancer in the womb (livmoderhalscancer)

Regular examinations of all women above the age of 18

Manual screening of each smear test using a microscope

Pre-screening using graphics processing =< 50000 points that

must be manually screened

~ 300 pictures/smear test (as few as possible = more time for

each picture)
Optimization?

Screen the pictures in the right order (automatically by the

microscope)—not in this lecture

/

\ A smear test and an initial grid /

e Totally 36 246 points and 392 squares (pictures)

Ko Can we decrease the number of pictures that have to be m@@@b@&w&

\ The smallest rectangle that covers all points in NJ

square




\ Generation of alternative squares /

\ The smear test and all square-candidates /
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e Totally 1610 square candidates
/ \ /o Find the least number of squares to cover all the points \
\ Mathematical model / \ Smear test with “minimum” number of squares J

The coefficient ay; =
0 otherwise

. 1  if square j is chosen
The variable z; =
0 otherwise

Cover each point with at least one square:
min M T
J
st. Y agz;>1 forallk
J

zj € {0,1} for all j

1 if square j covers point k

(SET COVERING)

e 36 246 points are covered by 339 squares

/o ~ 13% fewer than the original 392 \




\ When are integer models needed? /

e Products or raw materials are indivisible

Logical constraints: “if A then B”; “A or B”

e Fixed costs

Combinatorics (sequencing, allocation)

On/off-decision to buy, invest, hire, generate electricity, .

N /

\ Either 0 <z<lorz>7 /

—

0 = T ™ X
0 1 1 M

Let M>1: <1+ My, z>7y, ye€{0,1}

Variable r may only take the values 2, 45, 78 & 107

T = 2y1 + 45y + 78ys + 107y,
y1ty2t+yst+ys=1

Y1,Y2,Y3,Y4 S ﬁou H_,W

N /

\ At least 2 of 3 constraints must be fulfilled /

1tz < 4 (1)
/ 2z +x2 < 6 (2)
| 2 < 3 3)
/ and x1,29 > 0
*
ritay < A+ MA-y) (1)
| 20 +ap < 6+ M(1-yo) (2)
* 2 < 34+ M(l-ys) (3)
T / / oty tys > 2
x = feasible regions y1,92,y3 € {0,1}
M>2 and 21,22 > 0

N /

\ Fixed costs J

x = the amount of a certain product to be sent.

If £ > 0 then the initial cost ¢1 (e.g. car hire) is generated.
Variable cost co per unit sent.

0 if =0 [effect]
ci+ey-x if x>0 E

Let M = car capacity

“ 1 ifz >0 [effect]
HQ =
: 0 ifzx=0 [wanted]

C1 B . .
Might send an fley) = ea-ytea-a
M-y

Total cost: f(z) =

IN

Hardly profitable

8
%

empty car! T
0, y e {01} K
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\ Other applications of integer optimization / \ The combinatorial explosion /
e Facility location (new hospitals, shopping centers, etc.) Assign n persons to carry out n jobs. # feasible solutions: n!
e Scheduling (on machines, personnel, projects, for schools) Assume that a feasible solution is evaluated in 10~ seconds
e Logistics (material- and warehouse control) n 2 5 8 10 100
4 6 157
e Distribution (transportation of goods, buses for disabled persons) n! 2 120 4.0-10% | 3.6-10° | 9.3-10
ti 1 -8 1 —6 1 —4 1 —2 1 142
e Production planning [time] 07" s [ 1077 07" 0% 07 yrs
o . . Complete enumeration of all solutions is not an efficient algorithm!
e Telecommunication (network design, frequency allocation)
An algorithm exists that solves this problem in time O(n?) oc n*
e VLSI-design
n 2 5 8 10 100 1000
n' 16 625 | 4.1-10° | 10* 108 10'2
[time] | 1077 s | 107%s | 107°s | 107%s | 107! s | 17 min
14 15
\ Linear continuous optimization model / \ Linear integer optimization model J
max 2[p = T, + 2x9 max 2zjp = Ty + 2x9
s.t. xr1 + ax < 10 (1) s.t. r1 + 1z < 10 (1)
— 3 < 9 2 — 3 < 9 2
(3) RN 2) - = feasible 1ot 9T S )
2 1 < 7 (3) integer points 1 < 7 (3)
@ ot \QV z1,T2 > 0 (4,5) — r1,72 > 0 (4,5)
T1, X2 integer
4 . 21/4 P
€T =
o LP 1 19/4 x 6
2 xr =
A“_.v . B 3 24 . . . . . . P 4
re= .27 Lp =M g
IR I S S qp =M <<p




\ The branch—and—bound-algorithm /

Relax integrality constraints = linear program = xrp = (5.25,4.75)

zLp = 14.75
Xr1 N 6

TLp = Awu%.mﬂv
a1 <5

N

ZLP = 14.33
X2 m 4

HMWW NHLUHH%

integral
A
zLp = 13 infeasible !
integral
_s TLp = Amvm@

h

\

24 . . . . . . i

Lp ;H Awu K_C

14 . . . . . .

* * * * * * T T
/ 2 3 4 5 6 8 9 \
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\ The complexity of integer optimization: An /
example

e The Mexico LP has (in the version which is handed
out) 113 variables and 84 linear constraints. Solution
by a slow (333 MHz Unix) computer: 0.01 s.

e We create an integer programming (IP) variant: add a
fixed cost for using a railway link for the raw material
transport. 78 binary (0/1) variables.

e Cplex uses Branch & Bound (B & B), in which to a
continuous relaxation is added integer requirements on
some of the integer values that received a fractional

/ value in the LP solution. \
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\o Solution times: /

100 = 20 s.
18,000 B & B nodes

Fixed cost

60,000 simplex iterations

300 = 3 min.
208,000 B & B nodes
650,000 simplex iterations

e There are 2™ ~ 0.3 - 10** possible combinations. B & B
is good at implicitly enumerating them all.

N /
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\ e The higher the fixed cost, the more difficult the J
problem. Why?

e Continuous relaxation worse and worse approximation.
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\ The Philips example—TSP solved heuristically /

e Let ¢;; denote the distance from city ¢ to city j, with
i<j,and i, € N ={1,2,...,n}, and

1, if link (¢, 5) is part of the TSP tour,
[ ] bws.. =
! 0, otherwise.

N /
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\

\ e The Traveling Salesman Problem (TSP):

n n
minimize M M CijTij

i=1 j=lij#i
subject to MUMU,&G <IS|-1, SCWN, (1)
€S jES
2.2 w=n 2
=1 j=lij#i
MU&&.HP JjeEN, ()
i=1
T4 S AOQHT s?wm.\/\\
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\ Interpretations /

e Constraint (1) implies that there can be no sub-tours,
that is, a tour where fewer than n cities are visited
(that is, if S C N then there can be at most |S| — 1
links between nodes in the set S, where |S]| is the
cardinality-number of members of-the set S);

e Constraint (2) implies that in total n cities must be
visited;

e Constraint (3) implies that each city is connected to
two others, such that we make sure to arrive from one
city and leave for the next.

N /
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Lagrangian relaxation

e TSP is NP-hard—mno known polynomial algorithms
exist

e Lagrangian relax (3) for all nodes except starting node

e Remaining problem: 1-MST—find the minimum
spanning tree in the graph without the starting node
and its connecting links; then, add the two cheapest
links to connect the starting node

~
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\ e Objective function of the Lagrangian problem: /

n

q(A) = BEEEB M MU CijTij + MU s Aw _ MU &@.v

1=1 j=1:5%#1i i=1:1#j
=2 MU Aj+ EEEEE MU MU Cij — Ni — \j)Tij.
i=1 j=1:j#i

e A high (low) value of the multiplier \; makes node j
attractive (unattractive) in the 1-MST problem, and
will therefore lead to more (less) links being attached
to it.

e Subgradient method for updating the multipliers.

N /
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\o Updating step: /

v(.“HVQATQ 2 — MU.&J& s M.HMT.Qﬁ:
i=1:ij
where o > 0 is a step length.

e Update means:

Current degree at node j :
> 2= ), | (link cost T)

=2 = ); < (link cost constant)
< 2=, 1 (link cost |)

Link cost shifted upwards (downwards) if too many

/ (too few) links connected to node j in the 1-MST. K
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\ Feasibility heuristic /

e Adjusts Lagrangian solution « such that it becomes
feasible.

e Often a good thing to do when approaching the dual
optimal solution—ax often then only mildly infeasible.

e Identify path in 1-MST with many links; form a
subgraph with the remaining nodes which is a path;
connect the two.

e Result: A Hamiltonian cycle (TSP tour).
e We then have both an upper bound (feasible point) and

a lower bound (¢) on the optimal value—a quality

K measure! K
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\ The Philips example J

e Fixed number of subgradient methods.

e Feasibility heuristic used every K iterations (K > 1),

starting at a late subgradient iteration.

e Typical example: Optimal path length in the order of 2
meters; upper and lower bounds produced concluded

that the relative error in the production plan is less

than 7 %.

e Also: increase in production by some 70 %.

- /
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