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\ Basic ideas

(a linear /quadratic or unconstrained problem).
e We solve a sequence of such problems.

To make sure that we tend towards a solution to the

original problem, we must impose properties of the

original problem more and more.

How is this done?

/ search in f is enough.

~

A nonlinearly constrained problem must somehow be

converted—relaxed—into a problem which we can solve

In simpler problem like linearly constrained ones, a line

/

\ e For more general problems, where the constraints are /
normally manipulated, this is not enough.

e We can include penalty functions for constraints that
we relax.

e We can produce estimates of the Lagrange multipliers
and invoke them.

o We will look at both types of approaches.

N /

\ Penalty functions

e Consider the optimization problem to
minimize f(x),
subject to « € S,

where S C R” is non-empty, closed, and f: R" — R
differentiable.

problem (1) with the equivalent unconstrained one:

minimize f(x) + xs(x),

o

~

(1)
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e Basic idea behind all penalty methods: to replace the

/




where /

0, ifxels,
Xs(®) = .
400, otherwise,

the indicator function of the set S.

Feasibility is top priority; only when achieving
feasibility can we concentrate on minimizing f.
Computationally bad: non-differentiable, discontinuous,
and even not finite (though it is convex provided S is a
convex set). Need to be numerically “warned” about
being infeasible or near-infeasible.

Replace the indicator function with a numerically
better behaving function. \

-
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Exterior penalty methods

e SUMT—Sequential Unconstrained Minimization
Techniques—were devised in the late 1960s by Fiacco
and McCormick. They are still among the more
popular ones for some classes of problems, although
there are later modifications that are more often used.

e Suppose
S={zecR"|gl(x) <0,
hj(x) =0,

1=1,...,m,
j=1,...,0},
g €CR),i=1,...,m, h; e C(R"),j=1,...,L

~

Choose a function 1 : R — R such that ¢(s) = 0 if /
and only if s = 0 [typical examples of ¢ (-) will be
V1(s) = |s|, or ¥y(s) = s%]. Approximation to ys:

ist@) = v( L v(max(0.a@)) + 3 v(i@) )

v > 0 is a penalty parameter.

Different treatment of inequality /equality constraints
since an equality constraint is violated whenever

h; # 0, while an inequality constraint is violated only
when ¢; > 0; equivalent to max{0, g;(x)} # 0.

-

Example
elet S={xeR*| —2,<0,(z;—1)2+23=1}.
e Let 9(s) = s%. Then,
Xs(®) = [max{0, —z2}]* + (21 — 1)* + 23 — 1]°.

e Graph of yg, and S:




\ Properties of the penalty problem /
e We assume the problem (1) has an optimal solution x*.

e We assume that for every v > 0 the problem to

Bwbmﬁwﬁgm flx) +vys(x) (2)

has at least one optimal solution ;.
e X5 > 0; xs(x) =0if and only if € S.

e The Relaxation Theorem 7.1 states that the inequality
f®)) +vx(xy) < f(x") + xs(2") = f(z") holds for
every positive v. (Lower bound on the optimal value.)

N /

\ The algorithm and its convergence properties /

e Assume that the problem (1) possesses optimal
solutions. Then, every limit point of the sequence {x?},
v — 400, of globally optimal solutions to (2) is
globally optimal in the problem (1). ]

e Of interest for convex problems. What about general
problems?
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\o Theorem 13.4: Let f, g; (i =1,...,m), and h; j
(j =1,...,0), be continuously differentiable. Further

assume that the penalty function v is continuously
differentiable and that ¢'(s) > 0 for all s > 0.

Consider a sequence {xy} of stationary points in (2),
corresponding to a positive sequence of penalty
parameters {v,} converging to +oo. Assume that
limy_. o @ = &, and that the LICQ holds at . Then,
& is a KKT-point for (1). u

- /
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\ e From the proof we can obtain estimates of Lagrange /
multipliers: the optimality conditions of (2) gives that

pi ~ vp'[max{0, gi(xx)}]  and  A; ~ vt [hy (@)

N /
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\ Interior penalty methods /

e In contrast to exterior methods, interior penalty, or
barrier, function methods construct approximations
inside the set S and set a barrier against leaving it.

e If a globally optimal solution to (1) is on the boundary
of the feasible region, the method generates a sequence
of interior points that converge to it.

e We assume that the feasible set has the following form:

S={xeR"|g(x)<0, i=1,...,m}.

e We need to assume that there exists a strictly feasible
/ point & € R", i.e., such that ¢g;(x) < 0,i=1,...,m. \
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\ e Approximation of yg: /

vy it olgi(@)l, if gi(w) <0,i=1,....,m,

vys(x) == .
400, otherwise,

where ¢ : R_ — R, is a continuous, non-negative
function such that ¢(sx) — oo for all negative
sequences {s;} converging to zero.

e Examples: ¢1(s) = —s7; ¢o(s) = —log[min{1, —s}].

e The famous differentiable logarithmic barrier function
bo(s) = —log(—s) gives rise to the same convergence
theory, if we drop the non-negativity requirement on ¢.

N /
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\ Example J

e Consider S ={z €R | —z <0}. Choose
¢ = ¢ = —s~ 1. Graph of the barrier function vyg in
Figure 1 for various values of v (note how vxg

converges to xg as v | 0):
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Figure 1: The graph of vxg for various choices of v. Note the loga-

é&:ﬁwo scale. \
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Algorithm and its convergence /
e Penalty problem:
minimize f(x)+ vxs(x) (3)

e Convergence of global solutions to (3) to globally
optimal solutions to (1) straightforward. Result for
stationary (KKT) points more practical:

\
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\o Theorem 13.6: Let f and g; (i =1,...,m), be /
continuously differentiable. Further assume that the
barrier function ¢ is continuously differentiable and
that ¢'(s) > 0 for all s < 0.

Consider a sequence {x} of stationary points in (3)
corresponding to a positive sequence of penalty
parameters {vy} converging to 0. Assume that

limg_ ..o xx = @, and that the LICQ holds at . Then,
x is a KKT-point for (1). [

o If we use @(s) = ¢1(s) = —1/s, then ¢/(s) = 1/s?, and
the sequence {vy/g?(x;)} converges towards the
Lagrange multiplier [i; corresponding to the constraint

K i(i=1,...,m). Y,
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Interior point (polynomial) method for LP J
e Consider the dual LP to
maximize by,
. Ay +s=c, (4)
subject to
s>0",
and the corresponding system of optimality conditions:
Aty +s=c,
Az =0,

x>0" s>0" x's=0.

19




\ e Apply a barrier method for (4). Subproblem:

minimize —b"y — v M log(s;)

j=1
subject to ATy +s=c.

e The KKT conditions for this problem is:

Aty +s=c,
Ax =0,
ris;=v, j=1,...,n

e Perturbation in the complementary conditions!

N

~

\
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Using a Newton method for the system (5) yields a /
very effective LP method. If the system is solved

exactly we trace the central path to an optimal

solution, but polynomial algorithms are generally
implemented such that only one Newton step is taken

for each value of v, before it is reduced.

A polynomial algorithm finds, in theory at least
(disregarding the finite precision of computer
arithmetic), an optimal solution within a number of
floating-point operations that are polynomial in the

data of the problem.

\

21

Qm&ﬂmsim_ quadratic programming (SQP) Emﬁwomm“/

A first image

e We study the equality constrained problem to

subject to hj(x) =0,

where f:R" — R and h; : R" — R are in C'' on R".

minimize f(x), (6a)
j=1,....¢,  (6b)
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The KKT conditions state that at a local minimum Sy
of f over the feasible set, where &* satisfies some CQ),
there exists a vector A* € R with

L
VoL(x™ X*) =V (") + Y N Vh(z*) = 0",
j=1

VaL(z*, \*) := h(z*) = 0°.

Appealing to find a KKT point by directly attacking
this system of nonlinear equations, which has n + ¢

unknowns as well as equations.
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\o Newton’s method! So suppose that f and h; /

N

(j=1,...,0) are in C* on R". Suppose we have an
iteration point (xx, Ax) € R™ x R’

e Next iterate (Tgi1, Agt1):
(g1, Akr1) = (@, Ap) + (Pg, V&), Where
(py, vi) € R™ x R solves the second-order
approximation of the stationary point condition for the
Lagrange function:

\

-

\

~

Dy

QMN\AH?VQAV = |<N\A8\3V§Y
3
that is,
h(x;)T 0™ | \ vy, —h(xy) .

e Interpretation: the KKT system for the QP problem to

1
minimize mﬁeﬂwahﬁa\f Ae)p + Ve L(xe, Ap)p, (8a)
p
subject to h;(xy) + Vh,(z)'p =0, j=1,... L
(8b)

\
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e Objective: second-order approximation of the hmmambmm/
function with respect to . Constraints: first-order
approximations at . The vector vy appearing in (7)
is the vector of Lagrange multipliers for the constraints

(8D).

e Unsatisfactory: (a) Convergence is only local. (b) The
algorithm requires strong assumptions about the
problem.

-

A penalty function based SQP algorithm J
e New problem:
minimize f(x), (9a)
subject to g;(x) <0, i=1,...,m, (9b)
e Penalty function:

oy gm(x)}.

P(x) = maximum{0, g, (x), .
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Interesting connection between penalty function and /
solutions to (9): Proposition 13.10: Suppose that x* is

a local minimum of f over the feasible set of the

problem (9), which satisfies the linear independence CQ
(LICQ) and together with Lagrange multipliers p*
satisfies the KK'T conditions as well as a second-order
sufficiency condition. Then, if the value of ¢ is large
enough such that

m
c>>
i=1

then the vector x* is a strict local minimum of the
function f + cP.
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SQP methods are based on a combination of a Bmgom/
for minimizing f + cP for some parameter ¢ > 0 and a
method for updating ¢ in order to try to achieve the
(unknown) threshold value stated in the Proposition.

In the convex case, the result will be a globally optimal
solution; in other cases, a KKT point.

\
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Let ¢ be given. Solve the problem to /
1
Eﬁwam Vix)'p+ mﬁam% + ¢, (10a)
Ea
subject to g;(x) + Vgi(z)"p < €, i=1,...,m,
(10b)

where Hy € R™ X n is symmetric, positive definite.

The resulting search direction p,, is a direction of
descent for f + cP at x;, (Proposition 13.11). We then
let 11 = ) + appy, where ay, is determined by an
exact line search or the Armijo rule.

/
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\ e Occasionally, we fix £ to zero in (10); this is a more J

exact representation of the second-order approximation
of the original problem. If it has no solution—go back
to the real problem(10). If it has a solution, then we
update the value of ¢ as follows:

m
¢ := maximum { c, M wi+ 0 7,
i=1

where p; is the Lagrange multiplier value for the
constraint ¢ in the problem (10), and /3 is some positive
scalar.

e The solver fmincon is an SQP method.

/
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Numerical considerations /

e [ll-conditioning: Penalty methods in general suffer from
ill-conditioning. For some problems, like LP, the
ill-conditioning is avoided thanks to the special
structure of LP.

e Exact penalty SQP methods suffer less from
ill-conditioning, and the number of QP:s needed can be
small. They can, however, cost a lot computationally.
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