Lecture 9: The Simplex method

Michael Patriksson 17 February 2004

0-0

- If $\bar{c}_N \not\geq 0^{n-m}$ then $\exists j \in N$ with $\bar{c}_j < 0$. Then the current point $x_N = 0^{n-m}$ may be non-optimal.
- Generate a feasible descent direction!
- Choose one that leads to a neighboring extreme point!
- Swap one variable in B for one in N!
- \bullet Increase one variable in N from zero!
- Choose j^* to be among arg minimum $_{j \in N}$ \bar{c}_j .

 $z^* = \inf \mathbf{m} \mathbf{m} \mathbf{c}^{\mathrm{T}} \mathbf{x}$ $=c_B^{\mathrm{T}}B^{-1}b+ \quad ext{infimum} \ [c_N^{\mathrm{T}}-c_B^{\mathrm{T}}B^{-1}N]x_N$ subject to Ax = b, subject to $Bx_B + Nx_N = b$, subject to $B^{-1}b - B^{-1}Nx_N \ge 0^m$, $x_N \geq 0^{n-m}$ $\operatorname{infimum} \, \boldsymbol{c}_{B}^{\mathrm{T}} \boldsymbol{x}_{B} + \boldsymbol{c}_{N}^{\mathrm{T}} \boldsymbol{x}_{N}$ $oldsymbol{x}_B \geq oldsymbol{0}^m; \ oldsymbol{x}_N \geq oldsymbol{0}^{n-m}$

An algebraic derivation of the pricing step

- $ullet x_N = oldsymbol{0}^{n-m} ext{ feasible. Let } ar{oldsymbol{c}}_N := oldsymbol{c}_N^{ ext{T}} oldsymbol{c}_B^{ ext{T}} B^{-1} N.$
- If reduced cost $\bar{c}_N \geq 0^{n-m}$ then $x_N = 0^{n-m}$ is optimal.

The basis change

- ullet In x_N -space: $p_N=e_{{
 m j}^*}$ (unit vector)
- In x_B -space: $x_B = B^{-1}b B^{-1}Nx_N \Longrightarrow$ $p_B = -B^{-1}Np_N = -B^{-1}N_{
 m j^*}$
- So, search direction in \mathbb{R}^n :

$$oldsymbol{p} = egin{pmatrix} oldsymbol{p}_B \ oldsymbol{p} \end{pmatrix} = egin{pmatrix} -oldsymbol{B}^{-1} oldsymbol{N}_{
m J^*} \ oldsymbol{e}_{
m J^*} \end{pmatrix}$$

- Descent? Yes, because $c^{\mathrm{T}}p = \bar{c}_{j^*} < 0!$
- Feasible? Must check that $Ap = 0^m$ and that $p_i \ge 0$ if $x_i = 0, i \in B$.

• (b) Suppose that $x_B > 0^m$. Then, at least a small step in p keeps $x_B \ge 0^m$. But if there is an 1* with $(x_B)_{1^*} = 0$ and $(p_B)_{1^*} < 0$ then it is not a feasible direction.

• Must then perform a basis change without moving! A degenerate basis change: swap x_{j^*} for x_{i^*} in the basis.

- Otherwise (and normally), we utilize the unit direction.
- Line search? Linear objective; move the maximum step!
- Maximum step: If $p_B \geq 0^m$ there is no maximum step! We have found an extreme direction p along which $c^T x$ tends to $-\infty$! Unbounded solution.

6

Computational notes—how do we do all of this?

 \bullet Given basis matrix \boldsymbol{B} , solve

$$Bx_B=b$$
 .

• Gives us BFS: $x_B = B^{-1}b$.

ı

• Pricing step: (a) Solve

$$\boldsymbol{B}^{\mathrm{T}}\boldsymbol{y} = \boldsymbol{c}_B$$

• (b) Calculate $\bar{\boldsymbol{c}}_N^{\mathrm{T}} = \boldsymbol{c}_N^{\mathrm{T}} - \boldsymbol{y}^{\mathrm{T}} \boldsymbol{N}$, the reduced cost vector.

• Choose the incoming variable, x_{j^*} .

• Otherwise: Some basic variables will reach zero eventually. Choose as the outgoing variable a variable $i \in B$ with minimum in

 \bullet Done. In the basis, replace ι^* by $\jmath^{*!}$ Go back to the pricing step.

• Outgoing variable: Solve

$$Bp_B=-N_{
m J^*}.$$

- The quotient rule for $(\mathbf{B}^{-1}\mathbf{b})_i/(-\mathbf{p}_{\mathbf{B}})_i$ gives the outgoing variable, x_{i^*} .
- Note: Three similar linear systems in $\boldsymbol{B}!$ LU factorization + three triangular substitutions!
- Factorizations can be updated after basis change rather than done from scratch.
- LP solvers like Cplex and XPRESS-MP have excellent numerical solvers for linear systems.
- Linear systems the bulk of the work in solving an LP.

7

0

• Theorem 10.10: If all of the basic feasible solutions are non-degenerate, then the Simplex algorithm terminates after a finite number of iterations.

Convergence

Rough argument: Non-degeneracy implies that the step length is > 0; hence, we cannot return to an old BFS once we have left it. There are finitely many BFSs.

10

Initial BFS: Phase I of the Simplex method

- If a starting BFS cannot be found, do the following
- Suppose $b \geq 0^m$. Introduce artificial variables a_i in every row (or rows without a unit column).
- Solve the following Phase-I problem:

$$\begin{array}{lll} \text{minimize} & w = & (\mathbf{1}^m)^{\mathrm{T}} \boldsymbol{a} \\ \text{subject to} & & \boldsymbol{A}\boldsymbol{x} & + \boldsymbol{I}^m \boldsymbol{a} = \boldsymbol{b}, \\ & & & & \geq \mathbf{0}^n, \\ & & & & \boldsymbol{a} \geq \mathbf{0}^m. \end{array}$$

• Possible cases: (a) $w^* = 0$, meaning that $a^* = 0^m$ must hold. There is then a BFS in the *original* problem.

• Degeneracy: Can actually lead to cycling—the same sequence of BFSs is returned to indefinitely!

9

• Remedy: Change the incoming/outgoing criterial Bland's rule: Sort variables according to some index ordering. Take the first possible index in the list. Incoming variable first in the list with the right sign of the reduced cost; outgoing variable the first in the list among the minima in the quotient rule.

- Start Phase-II, to solve the original problem, starting from this BFS.
- (b) $w^* > 0$. The optimal basis then has some $a_i^* > 0$; due to the objective function construction, there exists no BFS in the original problem. The problem is then infeasible!
- What to do then? Modelling errors? Can be detected from the optimal solution. In fact some LP problems are pure feasibility problems.

11