
Introduction to linear programming using
LEGO.

1 The manufacturing problem.

A manufacturer produces two pieces of furniture, tables and chairs. The production
of the furniture requires the use of two different pieces of raw-material, one table is
assembled by putting together two pieces of of each, while one chair is assembled
from one of the larger pieces and two of the smaller pieces. When determining the
optimal production plan, the manufacturer must take into account that only 6 large
and 8 small pieces are available. One table is sold for 1600:-, while the chair sells
for 1000:-. Under the assumption that all items produced can be sold, and that the
raw material has already been paid for, determine the optimal production plan.
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Small pieces

Large pieces

Chair, x2

Table, x1

Objective: Maximize income

Variable definition: x1 = number of tables manufactured and sold
x2 = number of chairs manufactured and sold
z = total income

Model: max z = 1600x1 + 1000x2

subject to 2x1 + x2 ≤ 6 (large pieces)
2x1 + 2x2 ≤ 8 (small pieces)

x1, x2 ≥ 0 (physical restrictions)
x1, x2 integers (ignored here)



2 Solving the model using LEGO.

Starting at no production, x = (0, 0)T, we use the method of best marginal profit
to choose the item to produce. Since x1 has the highest marginal profit, we produce
as many tables as possible. At x = (3, 0)T, there are no more large pieces.

The marginal value of x2 is now 200 since taking apart one table (= 1600:-) yields
two chairs (= 2000:-). Increase x2 maximally. At x = (2, 2)T, there are no more
small pieces.

The marginal value of x1 is negative (one has to take apart two chairs to build one
extra table, loss of 400:-), and so is the marginal value of x2 (one table must be
taken apart to build one chair, loss of 600:-). Hence x = (2, 2)T is optimal. The
maximum profit is 5200:-.

3 Sensitivity analysis using LEGO.

The following three modifications are performed independently, starting from the
original model.

• Suppose that an additional large piece was offered to the manufacturer. How
much would he/she be willing to pay for such a piece, and how many pieces would
be worth this price?

Answer: with an additional large piece, a chair can be turned into a table. The
profit from this adjustment is 1600 − 1000 = 600:-. The manufacturer is willing to
pay up to 600:- for each large piece, as long as there are chairs left. So, the maximum
number of pieces bought is 2.

• Same question for the small pieces.

Answer: with two additional small pieces, a table can be converted into two chairs,
to an additional profit of 2 · 1000 − 1600 = 400:-. The value per piece is therefore
200:-, and the manufacturer is willing is willing to pay up to this price for as many
as 4 small pieces (no more than 2 tables can be broken down).

• Suppose the price of the tables falls to 750:-. What should be manufactured in
order to maximize income?

Answer: The marginal value of x2 is changed to 1000 − 750 = 250:- per chair
(dismantle a table and build a chair). This value is valid as long as there are tables
to dismantle, i.e., increase x2 by 2 to x2 = 4; which gives x1 = 0. The marginal
value of x1 is now 750 − 1000 = −250:-, that is, it is not profitable to build any
more tables. Hence x = (0, 4)T (manufacturing 4 chairs and no tables) is optimal
at a total income of 4000 :-.
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4 Geometric solution of the model

max z = 1600x1 + 1000x2 (0)
subject to 2x1 + x2 ≤ 6 (1)

2x1 + 2x2 ≤ 8 (2)
x1, x2 ≥ 0
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z = 0

(0) (1) (2)

r
x∗ = (2, 2)

4.1 Geometric sensitivity analysis

The model may be described as:









max z = 1600x1 + 1000x2

subject to 2x1 + x2 ≤ 6
2x1 + 2x2 ≤ 8

x1, x2 ≥ 0









⇐⇒









max z = c1x1 + c2x2

subject to a11x1 + a12x2 ≤ b1

a21x1 + a22x2 ≤ b2

x1, x2 ≥ 0









Suppose the following changes are made (independent of each other):

• b1 = 6 + ∆b1, ∆b1 = 1 ⇒ x∗ = (3, 1)T ⇒ z∗ = 5800:-
Income per additional large piece: 5800 − 5200:- = 600:-
∆b1 > 2 gives no further income since x2 ≥ 0 must apply.

• b2 = 8 + ∆b2, ∆b2 = 2 ⇒ x∗ = (1, 4)T ⇒ z∗ = 5600:-
Income per additional large piece: (5600 − 5200)/2:- = 200:-
∆b2 > 4 gives no further income since x1 ≥ 0 must apply.
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• c1 = 1600 + ∆c1, ∆c1 = −750 ⇒ x∗ = (0, 4)T ⇒ z∗ = 4000 : −
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5 A non technical introduction to the Simplex

method and sensitivity analysis in LP

5.1 Slack, dependent, independent variables and extreme

points

Original problem form:

max z = 1600x1 + 1000x2

subject to 2x1 + x2 ≤ 6 (1)
2x1 + 2x2 ≤ 8 (2)

x1, x2 ≥ 0

Inequalities cannot be manipulated using row operations. We therefore turn (1) and
(2) to equations using slack variables:
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max z = 1600x1 + 1000x2

subject to 2x1 + x2 + s1 = 6 (1)
2x1 + 2x2 + s2 = 8 (2)

x1, x2, s1, s2 ≥ 0

We now have 4 variables and 2 equations. We will eliminate 2 of the 4 variables by
the use of the equations, and view the problem in terms of the remaining variables.
We refer to the variables used to solve the system of equations as the dependent

variables, and the remaining ones the independent variables. We will also define the
objective function z in terms of the independent variables. When choosing which
variables to be dependent and which to be independent, we must make sure that
(1) the dependent variables can be used to solve the linear system; this will require
that the corresponding columns of the system matrix are linearly independent; and
(2) the solution to the linear system also fulfils the non-negativity requirements.
We note the following: each constrained boundary corresponds to a variable with a
value zero:

Let X = {x ∈ <2 | 2x1 + x2 ≤ 6, 2x1 + 2x2 ≤ 8, x1 ≥ 0, x2 ≥ 0}
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Non feasible intersection pointXXXXy

In the figure we see that an extreme point of X is characterized by two variables being
zero simultaneously. We also see that there are other points where two variables are
zero (that is, two lines intersect), but those are infeasible since either a variable xj

or a slack variable si is negative.

Linear programming problems have the fundamental property that if an optimal
solution exists, then there exists an optimal extreme point.
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In general, consider
max z = cTx,

subject to Ax = b,
x ≥ 0,

where x, c ∈ <n, b ∈ <m and A ∈ <m×n. Let X = {x ∈ <n | Ax = b, x ≥ 0}.

For our example this corresponds to m = 2, n = 4, x = (x1, x2, s1, s2)
T , c =

(1600, 1000, 0, 0)T , A =

(

2 1 1 0
2 2 0 1

)

, and b =

(

6
8

)

.

An extreme point of X corresponds to a solution x to Ax = b, in which n − m
variables (the independent) are zero, and the remaining m variables (the dependent)
are non-negative. (This is the fundamental connection between the geometry and
algebra of linear programming and the simplex method.)

We draw the interesting conclusion that if there exists an optimal solution to an LP
with n variables and m constraints (inequality and/or equality constraints), then
there exists an optimal solution where no more than m variables have a positive
value. Hence, we know already beforehand how many activities will be active, and
it is a relatively small number too (normally, it holds that n � m).

5.2 The simplex method

The simplex method searches the extreme points of X in a clever way, following
the edges of X so that the value of z is always improving until the optimal extreme
point is found. Moving from one extreme point to the next, the simplex method
swaps one independent variable and a dependent variable, and it always maintains
a description of the problem in terms of the current independent variables.

In essence, the Simplex method works as follows: among the variables, n − m are
chosen as independent variables, by eliminating the remaining m variables from the
objective function, using the system Ax = b to describe the m variables in terms of
the independent variables.

If the partitioning of the n variables into independent and dependent variables is
correct, then setting the independent variables to zero means that x describes an
extreme point of X. The objective function is now written in terms of the n − m
variables; we determine if the extreme point is optimal by checking the sign of
the coefficients of the objective. If one of the coefficients is > 0, then increasing
the corresponding variable means a higher profit. We choose the variable with the
highest positive coefficient. To increase the value of an independent variable from its
value zero at the extreme point means that we leave the boundary of one constraint
and move along an edge of X. We move along the edge until we encounter a
new constraint, which determines the maximal increase of the independent variable.
The constraint encountered corresponds to some dependent variable becoming zero.
Since, in the new point, n − m variables are zero, it is an extreme point. The next
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step in the Simplex method is to replace the independent variable being increased
from zero with the dependent variable which became zero, that is, the two variables
swap positions so that the previous dependent variable becomes independent and
vice versa. This is done through simple row operations and we repeat the same steps
from this new problem description.

We note that the algorithmic process explained below with the help of the simplex
tableau is not exactly the one that is implemented in practice, although it does
produce the same sequence of improved solutions. The difference between the one
given here and the one actually used in practice, known as the revised simplex
method, is that the tableau format requires one to perform some calculations that
in reality are unnecessary.

5.3 The example problem

We begin by writing the problem in the form

−z + cTx = 0
Ax = b

x ≥ 0

which gives the following system of linear equations (excluding the non-negativity
constraints)

−z + 1600x1 + 1000x2 = 0
2x1 + x2 + s1 = 6
2x1 + 2x2 + s2 = 8

We identify s1 and s2 as dependent variables and x1 and x2 as independent variables,
since (1) s1 and s2 are given as functions of x1 and x2, and (2) s1 and s2 are not in
the objective function. Setting the independent variables to zero yields x1 = x2 = 0,
that is, the extreme point being the origin point. The coefficients for x1 and x2 in
the objective are 1600 and 1000, so x1 is the most profitable. (Needless to say, the
origin is not an optimal extreme point since the coefficients are not non-positive.)
We consider increasing x1 from zero; this means moving along the x1-axis (an edge
of X). How far can we move? From the above, we have:

s1 = 6 − 2x1 − x2 = 6 − 2x1

s2 = 8 − 2x1 − 2x2 = 8 − 2x1

Note that x2 stays equal to zero while x1 increases. As long as s1, s2 ≥ 0, x1 may
increase. The first variable to reach zero is s1 (when x1 = 6/2 = 3), and so the
maximum value for x1 is 3. (That s1 = 0 means that we have used up all the
large pieces.) We have now found the independent variable (x1) and the dependent
variable (s1) that are to change places. In order to express the problem in the new
set of independent variables (x2,s1), we do as follows:
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−z + 1600 x1 + 1000 x2 = 0 (0)
2 x1 + x2 + s1 = 6 (1)
2 x1 + 2 x2 + s2 = 8 (2)

−z + 200 x2 − 800 s1 = − 4800 (0)−800·(1)
x1 + 1

2
x2 + 1

2
s1 = 3 1

2
·(1)

x2 − s1 + s2 = 2 (2)−(1)

We have now eliminated the dependent variables (x1,s2) from the objective, and the
two dependent variables are written in terms of the independent variables (x2,s2).
We observe the following: (1) setting x2 = s1 = 0, we have x = (3, 0)T, that is, an
extreme point of X (2) the objective value at this point is 4800 (note the sign!); (3)
the marginal profit of x2 at this point is 200, as seen in the objective function. So,
since at least one coefficient is positive, the current solution is not optimal.

We next choose to increase x2 from zero. Since we keep s1 = 0 we move along the
first constraint. From the above system we then get the following:

x1 = 3 − 1

2
x2

s2 = 2 − x2

First to reach zero is s2 (at x2 = 2). So, we set x2 = 2 and have identified the next
pair to be exchanged. The new extreme point clearly is x = (2, 2)T, since the new
value of x1 = 3 − 1

2
· 2 = 2, and we express the new extreme point as follows:

−z + 200 x2 − 800 s1 = −4800 (0)
x1 + 1

2
x2 + 1

2
s1 = 3 (1)

x2 − s1 + s2 = 2 (2)
−z − 600 s1 − 200 s2 = −5200 (0)−200·(2)

x1 + s1 − 1

2
s2 = 2 (1)−1

2
·(2)

x2 − s1 + s2 = 2 (2)

From this system, we read that x = (2, 2)T, that z = 5200, and that this extreme
point is optimal, since no coefficient in the objective function is positive. This
completes the application of the simplex method to the problem.

5.4 Sensitivity analysis

We are next interested in determining the value of additional resources from the
above system, and also how many such pieces one would be willing to purchase at
the given price.

We argue as follows. Consider letting b1 := b1 + ∆b1, where ∆b1 > 0. Keeping the
representation as in the above system, utilizing the new capacity fully by changing
x∗ = (2, 2)T so that it follows the constraint means that the slack variable, s1, must
become negative; if b1 := b1 + 1, then s1 must equal −1. So, if ∆b1 = 1, then the
added profit must be (−600) · (−1) = 600:-. To see what the new optimal solution
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is, we use the system to see that

x1 = 2 − s1

x2 = 2 + s1

so with b1 := b1 + 1 we get s1 = −1, that is, x∗ = (3, 1)T. It is also clear that the
maximal value of ∆b1 is that for which either x1 or x2 becomes zero. This happens
when s1 = −2, that is, for ∆b1 = 2, in which case x∗ = (4, 0)T (only tables are
produced). Hence, a maximal of two extra pieces will be bought at a maximal price
of 600:- per piece.

For the second piece, the argument is identical. Let b2 := b2 + ∆b2. The effect of an
increase in b2 is that s2 must become negative, and we can read of the profit from
an additional small piece as (−200) · (−1) = 200:-. The new solution for any value
of ∆b2 and its maximal value follows from the system as:

x1 = 2 +
1

2
s2 = 2 −

1

2
∆b2

x2 = 2 − s2 = 2 + ∆b2.

So, with ∆b2 = 2, we get x∗ = (1, 4)T, and the maximal value of ∆b2 is 4 (corre-
sponding to x∗ = (0, 6)T). We hence buy at most 4 pieces for the maximum price
of 200:- each.

6 A non-technical introduction to duality in lin-

ear programming

6.1 A competitor

Suppose that another manufacturer (let us call them Billy) produce book shelves
whose raw material is identical to those used for the table and chairs, that is, the
small and large pieces. Billy wish to expand their production, and are interested in
acquiring the resources that “our” factory sits on. Let us ask ourselves two questions,
which (as we shall see) have identical answers: (1) what is the lowest bid (price)
for the total capacity at which we are willing to sell?; (2) what is the highest bid
(price) that Billy are prepared to offer for the resources? The answer to those two
questions is a measure of the wealth of the company in terms of their resources.

6.2 A dual problem

To study the problem, we introduce:
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Variable definition: y1 = the price (in Skr) which Billy offers for each large piece
y2 = the price (in Skr) which Billy offers for each small piece
w = det total bid which Billy offers

In order to accept to sell our resources, it is reasonable to require that the price
offered is at least as high as the value that the resource represents in our optimal
production plan, as otherwise we would earn more by using the resource ourselves.
Consider, for example, the net income on a table sold. It is 1600:-, and for that
we use two large and two small pieces. The bid would therefore clearly be too
low unless 2y1 + 2y2 ≥ 1600. The corresponding requirement for the chairs is that
y1 + 2y2 ≥ 1000.

Billy is interested in minimizing the total bid, under the condition that the offer is
accepted. Observing that y1 and y2 are prices and therefore nonnegative, we have
the following mathematical model for Billy’s problem:

Model: min w = 6y1 + 8y2

subject to 2y1 + 2y2 ≥ 1600 (table)
y1 + 2y2 ≥ 1000 (chair)

y1, y2 ≥ 0 (price)

This is usually called the dual problem of our production planning problem (which
would then be the primal problem).

The optimal solution to this problem is y∗ = (600, 200)T. The total offer is w∗ =
5200:-.

6.3 Interpretations of the dual optimal solution

It is evident that the dual optimal solution is identical to the shadow prices for
the resource (capacity) constraints. (This is indeed a general conclusion in linear
programming.) To motivate that this is reasonable in our setting, we may consider
Billy as a fictitious competitor only, which we use together with the dual problem
to measure the value of our resources. This (fictitious) measure can be used to
create internal prices in a company in order to utilize limited resources as efficiently
as possible, especially if the resource is common to several independent sub-units.
The price that the dual optimal solution provides will then be a price directive for
the sub-units, that will make them utilize the scarce resource in a manner which is
optimal for the overall goal.

We note that the optimal value of the production (5200:-) agrees with the total
value w∗ of the resources in our company. (This is also a general result in linear
programming; see Strong duality below.) Billy will of course not pay more than
what the resource is worth, but can at the same time not offer less than the profit
that our company can make ourselves, since we would then not agree to sell.
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It follows immediately that for each feasible production plan x and price y, it holds
that z ≤ w, since

z = 1600x1 + 1000x2 ≤ (2y1 + 2y2)x1 + (y1 + 2y2)x2 = y1(2x1 + x2) + y2(2x1 + 2x2)

≤ 6y1 + 8y2 = w,

where in the inequalities we utilize all the constraints of the primal and dual prob-
lems. (Also this fact is general in linear programming; see Weak duality below.) So,
each accepted offer (from our point of view) must necessarily be an upper bound on
our own possible profit, and this upper bound is what Billy wish to minimize in the
dual problem.

6.4 Dual problems

Exactly the same data is present in both problems. In fact, to each primal problem
one can associate a corresponding dual problem:

Primal problem: max z = cTx

subject to Ax ≤ b

x ≥ 0

Dual problem: min w = bTy

subject to ATy ≥ c

y ≥ 0

In our case we have that c =

(

1600
1000

)

, A =

(

2 1
2 2

)

, and b =

(

6
8

)

.

Between these two problems there are many relations, forming a theory of linear
programming duality and optimality. A few examples are given next.

6.5 Duality theory

For short, let us call the primal problem (P) and the dual problem (D). We note
that the dual problem to (D) is (P).

Weak duality: If x is feasible in (P) and y is feasible in (D), then z ≤ w.

Proof: z = cTx ≤ (ATy)Tx = yTAx ≤ yTb = w. 2

Strong duality: If (P) and (D) both have feasible solutions, then the two also have
optimal solutions, and z∗ = w∗.

Proof: See Appendix. 2
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Complementarity: Let x∗ and y∗ be optimal solutions to the respective problems (P)
and (D). Then,

y∗

i [aix
∗ − bi] = 0, i = 1, . . . , m,

x∗

j [(a
j)Ty∗ − cj] = 0, j = 1, . . . , n,

where ai is row i in the matrix A and aj is column j in the matrix A.

Proof: Since strong duality holds, the two inequalities in the proof of weak dual-
ity holds with equality. These two equalities form the complementarity conditions
stated in the theorem. 2

In other words, if a constraints in (P) is not fulfilled with equality (we then say
that there is a slack in the constraint), then its price is zero. In our example, both
resources are used to full capacity; otherwise, the value of additional resource would
clearly be zero, as we would be uninterested in buying more of something that we
do not even use now.

The optimality of a vector x can be summarized with the fact that three conditions
are satisfied simultaneously: x is (1) feasible in (P), x corresponds to a dual vector
y, the two of which (2) satisfy the complementarity conditions, and y is moreover
(3) feasible in (D):

Optimality: If x is feasible in (P) and y is feasible in (D) then they are optimal
in its respective problem if, and only if, they have the same objective value, or,
equivalently, they together satisfy the complementarity conditions. 2

If we have solved one of the problems we can generate an optimal solution to the
other one through the complementarity conditions. In the simplex method, comple-
mentarity is fulfilled at all times, whereas dual feasibility will be reached precisely
when we have reached an optimal solution in (P). Information about the dual opti-
mal solution is provided automatically in the simplex tableau, as well as when using
the revised simplex method.
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Appendix Farkas’ Lemma and the strong duality theorem

The following result is central in the theory of polyhedral sets:

Farkas’ Lemma (1901): Precisely one of the following two linear systems have a
solution:

Ax ≥ 0, (1a)

cTx < 0 (1b)

ATy = c, (2a)

y ≥ 0 (2b)

We apply this result on the primal–dual pair

(P) min z = cTx

subject to Ax ≥ b

x ≥ 0

(D) max w = bTy

subject to ATy ≤ c

y ≥ 0

Note that weak duality implies that every pair of feasible solutions to (P) and (D)
fulfill cTx ≥ bTy.

Proof of the strong duality theorem: Consider the system

Ax ≥ b,
− ATy ≥ −c,

−cTx + bTy ≥ 0,
x ≥ 0, y ≥ 0

If this system has a solution, (x,y), then the result follows by weak duality, since
then z = w. Suppose therefore that it does not have a solution. A suitable refor-
mulation of the system and an application of Farkas’ Lemma then yields that the
following system has a solution:

ATu − λc ≤ 0,
− Av + λb ≤ 0,

bTu − cTv > 0,
u ≥ 0, v ≥ 0 λ ≥ 0

Suppose first that λ > 0. We may, with no loss of generality, assume that λ = 1,
since the right-hand sides are zero. We then observe that u, respectively v, are
feasible in (P) and (D), with objective values contradicting weak duality. Therefore,
λ = 0 must hold. Suppose now that cTv ≥ 0. It then follows that bTu > 0, and
through Farkas’ Lemma we conclude that (P) lacks feasible solutions, which is a
contradiction. Suppose instead that cTv < 0. Then, from a feasible solution x to
(P) we can construct a primal feasible solution x(θ) := x + θv for which it holds
that cTx(θ) → −∞ as θ → +∞. From weak duality then follows that the problem
(D) lacks feasible solutions, which is a contradiction. The result follows. 2
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We can also motivate Farkas’ Lemma with the help of strong duality—although the
opposite was done before . . . .

Proof of Farkas’ Lemma:

[(1) =⇒ ¬(2)]: Suppose that (1) has a solution, x. If (2) also has a solution, y, it
implies that

cTx = yTAx ≥ 0,

which leads to a contradiction.

[¬(1) =⇒ (2)]: Suppose that (1) lacks solutions. We construct a solution to (2) as
follows. Construct the primal–dual pair of linear programs

min z = cTx

subject to Ax ≥ 0

max w = 0Ty

subject to ATy = c

y ≥ 0

The minimization problem has the optimal solution x∗ = 0. According to strong
duality, its dual has an optimal solution as well. It is therefore in particular a feasible
solution. 2
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