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Question 1

(the Simplex method and sensitivity analysis in linear programming)

Consider the following linear program:

minimize z =−2x1 +(5 + c)x2 −2x3

subject to x1 −3x2 +4x3 ≤ 2,

−3x1 +x2 +3x3 ≥−3 + b,

x1, x2, x3 ≥ 0.

a) Let b = c = 0. Show that the basis xB = (x1, x3)
T corresponds to the(1p)

unique optimal solution.

b) Let c = 0 and find all values of b such that xB = (x1, x3)
T is optimal. Then,(1p)

let b = 0 and find all values of c such that xB = (x1, x3)
T is optimal.

c) Let c = 0 and b = −4. The basis xB = (x1, x3)
T is then primal infeasible(1p)

but dual feasible. Starting with this basis, use the dual simplex method to
find an optimal solution.

In order to calculate necessary matrix inverses the following identity is useful:

(

a b
c d

)

−1

=
1

ad − bc

(

d −b
−c a

)

.

Question 2(3p)

(Newton’s method)

Consider the unconstrained problem to

minimize f(x, y) :=
x3

6
+

y2

2
subject to (x, y)T ∈ R

2.

Let (x0, y0)
T be the starting point and assume that x0 6= 0. Show that if Newton’s

method with a unit step length is applied to this problem, then for k = 1, 2, . . . ,
the kth iteration point is given by

(xk, yk)
T =

(x0

2k
, 0
)T

.
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Will the method converge to an optimal solution?

Question 3

(Farkas’ Lemma and other theorems of the alternative)

Farkas’ Lemma can be stated as follows:

Let A ∈ R
m×n and b ∈ R

m. Then, exactly one of the systems

Ax = b, (I)

x ≥ 0n,

and

ATy ≤ 0n, (II)

bTy > 0,

has a feasible solution, and the other system is inconsistent.

a) Prove Farkas’ Lemma.(2p)

b) Consider the following version of Farkas’ Lemma:(1p)

Let A ∈ R
m×n and b ∈ R

m. Then, exactly one of the systems

Ax ≥ b, (I’)

x ≥ 0n,

and

ATy ≤ 0n, (II’)

bTy > 0,

y ≥ 0m

has a feasible solution, and the other system is inconsistent.

Prove this result by utilizing Farkas’ Lemma.

[Note: The latter result is one of many versions of Farkas’ Lemma; they are
often referred to as Theorems of the alternative.]
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Question 4

(optimality)

Consider the problem to

minimize
x

f(x) := x1 log x2 + ex1,

subject to 1 ≤ xj ≤ 2, j = 1, 2.

Suppose that you have downloaded a MATLAB based solver on the web, and
have run it with default settings on this problem. It prints out:

Optimal solution: x∗

1 = x∗

2 = 1.

The main question that concerns us is whether the solver has found an optimal
solution.

a) Investigate whether x∗ satisfies the KKT conditions or not. Is Abadie’s CQ(1p)
fulfilled for this problem?

b) Investigate whether the problem is convex or not. As a consequence of your(1p)
answer to this question, can you draw any conclusions regarding the global
optimality of x∗? If not, can you verify that x∗ is globally optimal by any
other means?

c) Consider a general problem:(1p)

minimize
x

f(x),

subject to gi(x) ≤ 0, i = 1, . . . , m,
hj(x) = 0, j = 1, . . . , ℓ,

where the functions f , gi (i = 1, . . . , m), and hj (j = 1, . . . , ℓ) are continu-
ously differentiable on R

n.

Suppose that your solver has solved an instance in R
3 of this general prob-

lem and reports:

x∗ = (1, 2.3, 4.5)T is a KKT point.

In your investigation of your problem you have noticed that no familiar CQ
is fulfilled, and yet you know that the problem is convex. What conclusions
can you draw regarding the optimality of x∗?
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Question 5(3p)

(the variational inequality)

Consider the problem to

maximize f(x) :=

(

n
∑

i=1

cixi

)(

n
∑

i=1

1

ci

xi

)

subject to
n
∑

i=1

xi = 1,

xi ≥ 0, i = 1, . . . , n,

where 0 < c1 < c2 ≤ · · · ≤ cn−1 < cn, and n ≥ 3. Use the variational inequality
to find an optimal solution. Show that the solution obtained is unique.

Hint: Recall that for a C1 function f minimized over a closed and convex set
S ⊂ R

n the variational inequality states that

∇f(x∗)T(x − x∗) ≥ 0, x ∈ S,

and that it characterizes x∗ as a stationary point in the problem at hand.

Assume that xi > 0 for some i = 2, . . . , n − 1, and use the variational inequality
to derive a contradiction.

Question 6(3p)

(modelling)

You are asked to plan a one week (7 days) golf trip. The number of participants
is 20. Each day they will play in groups of 4 (that is, in total there are 5 groups
each day). If two players, say A and B, belong to the same group some of the
days (perhaps more than one day) then we say that there has been a meeting
between A and B.

Your task is to formulate an integer linear program for finding a schedule that
maximizes the total number of (unique) meetings during the week. (If the two
players A and B meet more than once their meeting should still not be counted
more than once.) An ideal schedule would, of course, be such that each pair of
players meet at least once during the week; this may, however, not be possible.
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Question 7

(convex analysis)

Consider the function f : R
n → R. Suppose that f is convex but not differen-

tiable. We are interested in characterizing a global minimum by some kind of
derivative condition.

According to convex analysis, the function f is characterized by a condition
similar to that in the C1 convex case, namely that the epigraph of f is supported
by a Taylor-like expansion: f is convex on R

n if and only if it holds that for every
x ∈ R

n there exists at least one vector g ∈ R
n for which

f(y) ≥ f(x) + gT(y − x), ∀y ∈ R
n. (1)

In the C1 convex case, the vector g ≡ ∇f(x), and we refer to the vector g as a
subgradient to f at x. It holds that the function f is differentiable at x if and
only if this vector is unique, in which case the above inequality reduces to the
classic C1 case for the given value of x. Further, the set of vectors g satisfying
the above inequality,

∂f(x) := { g ∈ R
n | f(y) ≥ f(x) + gT(y − x), ∀y ∈ R

n }, (2)

is referred to as the subdifferential of f at x. This set is nonempty, convex and
compact for every x ∈ R

n. Last, we note that the directional derivative of f in
the direction of p ∈ R

n in the C1 case equals f ′(x; p) = ∇f(x)Tp, while it is in
the current case extended to the following:

f ′(x; p) = maximum
g∈∂f(x )

gTp. (3)

This result follows from an equivalent way of expressing ∂f(x), based on direc-
tional derivatives:

∂f(x) := { g ∈ R
n | gTp ≤ f ′(x; p), ∀y ∈ R

n }. (4)

(Recall that the original definition is that f ′(x; p) = limα→0+
[f(x + αp) −

f(x)]/α.)
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a) Your first task is to prove the following extension of the first-order optimal-(2p)
ity conditions in the C1 convex case to the C0 convex case:

The following three statements are equivalent:

1. f is globally minimized at x∗ ∈ R
n;

2. 0n ∈ ∂f(x∗);

3. f ′(x∗; p) ≥ 0 for all p ∈ R
n.

b) Recall the definition of a direction of descent: the vector p ∈ R
n is a(1p)

direction of descent with respect to f at x if

∃δ > 0 such that f(x + αp) < f(x) for every α ∈ (0, δ].

According to the result in a), for convex functions this implies that f ′(x; p) <
0. Does this result hold true also for non-convex functions?

Good luck!


