EXERCISE 11: LINEARLY CONSTRAINTED NONLINEAR OPTIMIZATION

NICLAS ANDRÉASSON

The Frank-Wolfe algorithm

Step 0: Generate the starting point $x_0 \in X$, for example by letting it be any extreme point in X. Set k := 0.

Step 1: Solve the problem to

$$\underset{\boldsymbol{y} \in X}{\text{minimize } \boldsymbol{z}_k(\boldsymbol{y})} := \nabla f(\boldsymbol{x}_k)^{\mathrm{T}}(\boldsymbol{y} - \boldsymbol{x}_k).$$
(1)

Let y_k be a solution (extreme point) to this LP problem, and $p_k := y_k - x_k$ be the search direction.

Step 2: Approximately solve the one-dimensional problem to minimize $f(x_k + \alpha p_k)$ over $\alpha \in [0, 1]$. Let α_k be the resulting step length.

Step 3: Let $\boldsymbol{x}_{k+1} := \boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k$.

Step 4: If, for example, $z_k(\boldsymbol{y}_k)$ or α_k is close to zero, then terminate! Otherwise, let k := k + 1 and go to Step 1.

EXERCISE 1 (the Frank-Wolfe method). Consider the linearly constrainted nonlinear optimization problem to

minimize
$$z = \frac{1}{2}(x_1 - \frac{1}{2})^2 + \frac{1}{2}x_2^2$$

subject to $x_1 \le 1$,
 $x_2 \le 1$,
 $x_1, x_2 \ge 0$.

(a) Start at the extreme point $(1, 1)^T$ and perform two iterations of the Frank-Wolfe algorithm to get the point x_2 !

1

- (b) Is \boldsymbol{x}_2 optimal?
- (c) Give upper and lower bounds for the optimal solution!

Date: March 1, 2005.

The simplicial decomposition algorithm

Step 0: Generate the starting point $x_0 \in X$, for example by letting it be any extreme point in X. Set k := 0. Let $\mathcal{P}_0 := \emptyset$.

Step 1: Let y^k be a solution (extreme point) to the LP problem (1). Let $\mathcal{P}_{k+1} := \mathcal{P}_k \cup \{k\}.$

Step 2: Let ν_{k+1} be a solution to the restricted master problem to

minimize
$$f\left(\boldsymbol{x}_{k} + \sum_{i \in \mathcal{P}_{k+1}} \nu_{i}(\boldsymbol{y}^{i} - \boldsymbol{x}_{k})\right)$$

subject to $\sum_{i \in \mathcal{P}_{k+1}} \nu_{i} \leq 1,$
 $\nu_{i} > 0, \quad i \in \mathcal{P}_{k+1}.$

Step 3: Let $x_{k+1} := x_k + \sum_{i \in \mathcal{P}_{k+1}} (\nu_{k+1})_i (y^i - x_k)$. Step 4: If, for example, $z_k(y^k)$ is close to zero, or if $\mathcal{P}_{k+1} = \mathcal{P}_k$, then termi-

nate! Otherwise, let k := k + 1 and go to Step 1.

EXERCISE 2 (the simplicial decomposition method). Consider the linearly constrainted nonlinear optimization problem to

minimize
$$z = \frac{1}{2}(x_1 - \frac{1}{2})^2 + \frac{1}{2}x_2^2$$

subject to $x_1 \le 1$,
 $x_2 \le 1$,
 $x_1, x_2 \ge 0$.

- (a) Start at the extreme point $(1,1)^{T}$ and perform two iterations of the simplicial decomposition algorithm to get the point x_{2} !
- (b) Is x_2 optimal?

EXERCISE 3 (finite convergence of the simplicial decomposition algorithm). Show that the simplicial decomposition algorithm converges in a finite number of steps!

EXERCISE 4 (the gradient projection algorithm). Consider the problem to

$$\begin{array}{ll} \text{minimize} & f(\boldsymbol{x}) \\ \text{subject to} & \boldsymbol{x} \in X, \end{array}$$

where $X \subseteq \mathbb{R}^n$ is non-empty, closed and convex, and $f : \mathbb{R}^n \to \mathbb{R}$ is in C^1 on X. Let $x \in X$, $\alpha > 0$, and

$$\boldsymbol{p} = \operatorname{Proj}_{\boldsymbol{X}}[\boldsymbol{x} - \alpha \nabla f(\boldsymbol{x})] - \boldsymbol{x}.$$

Show that if $p \neq 0^n$, then it defines a descent direction (this is exactly the direction used in the gradient projection algorithm)!