
Lecture 11: Integer programming

Michael Patriksson

22 February 2005

0-0

1'

&

$

%

When are integer models needed?� Products or raw materials are indivisible� Logical constraints: “if A then B”; “A or B”� Fixed costs� Combinatorics (sequencing, allocation)� On/off-decision to buy, invest, hire, generate electricity,

...

2'

&

$

%

Either 0 ≤ x ≤ 1 or x ≥ 7

1

0
0

y

1 7 M
x

Let M ≫ 1 : x ≤ 1 + My, x ≥ 7y, y ∈ {0, 1}

Variable x may only take the values 2, 45, 78 & 107

x = 2y1 + 45y2 + 78y3 + 107y4

y1 + y2 + y3 + y4 = 1

y1, y2, y3, y4 ∈ {0, 1}

3'

&

$

%

At least 2 of 3 constraints must be fulfilled
x1 + x2 ≤ 4 (1)

2x1 + x2 ≤ 6 (2)

x2 ≤ 3 (3)

and x1, x2 ≥ 0

x1 + x2 ≤ 4 + M(1 − y1) (1)

2x1 + x2 ≤ 6 + M(1 − y2) (2)

x2 ≤ 3 + M(1 − y3) (3)

y1 + y2 + y3 ≥ 2

∗ = feasible regions y1, y2, y3 ∈ {0, 1}

M ≥ 2 and x1, x2 ≥ 0

6

-

@
@

@
@

@
@

@
@

@
@

@

A
A

A
A

A
A

A
A

A
A

A
A

A
AA

∗
∗

∗
∗

4'

&

$

%

Fixed costs

x = the amount of a certain product to be sent

If x > 0 then the initial cost c1 (e.g. car hire) is generated

Variable cost c2 per unit sent

Total cost: f(x) =







0 if x = 0 effect

c1 + c2 · x if x > 0 wanted!

s
c

6

-

������������

c2

1

c1

x

Might send an
empty car!
Hardly profitable

Let M =car capacity

y =







1 if x > 0 effect

0 if x = 0 wanted!

f(x, y) = c1 · y + c2 · x

x≤M · y linear 0/1 model!

x≥ 0, y ∈ {0, 1}

5'

&

$

%

Other applications of integer optimization� Facility location (new hospitals, shopping centers, etc.)� Scheduling (on machines, personnel, projects, schools)� Logistics (material- and warehouse control)� Distribution (transportation of goods, buses for

disabled persons)� Production planning� Telecommunication (network design, frequency

allocation)� VLSI design

6'

&

$

%

The combinatorial explosion

Assign n persons to carry out n jobs. # feasible solutions: n!

Assume that a feasible solution is evaluated in 10−9 seconds

n 2 5 8 10 100

n! 2 120 4.0 · 104 3.6 · 106 9.3 · 10157

⌈time⌉ 10−8 s 10−6 s 10−4 s 10−2 s 10142 yrs

Complete enumeration of all solutions is not an efficient algorithm!

An algorithm exists that solves this problem in time O(n4) ∝ n4

n 2 5 8 10 100 1000

n4 16 625 4.1 · 103 104 108 1012

⌈time⌉ 10−7 s 10−6 s 10−5 s 10−5s 10−1 s 17 min

7'

&

$

%

Linear continuous optimization model

max zLP = x1 + 2x2

s.t. x1 + x2 ≤ 10 (1)

−x1 + 3x2 ≤ 9 (2)

x1 ≤ 7 (3)

x1, x2 ≥ 0 (4, 5)

x
∗

LP =





21/4

19/4





z∗LP = 14 3

4

-

6

��������������
@

@
@

@
@

@
@

@@HHHHHH
���

x
∗
LPa

c = (1, 2)T

x1 + 2x2 = 0
1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

x1

x2

(2)

(3)

(1)

(4)

(5)

8'

&

$

%

Linear integer optimization model

max zIP = x1 + 2x2

s.t. x1 + x2 ≤ 10 (1)

−x1 + 3x2 ≤ 9 (2)

x1 ≤ 7 (3)

x1, x2 ≥ 0 (4, 5)

x1, x2 integer

x
∗

IP =





6

4





z∗IP = 14 < z∗LP

q = feasible
integer points

q q q q q q q qq q q q q q q qq q q q q q q qq q q q q q q qq q q qbx∗

IP

-

6

��������������
@

@
@

@
@

@
@

@@HHHHHH
���

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

9'

&

$

%

Classic methods� Branch–and-Bound: relaxation plus

divide–and–conquer� Cutting plane method: relaxation plus generations of

constraint that cut off infeasible (e.g., non-integer)

points generated� “Relaxation” can be the continuous or Lagrangian one� Lagrangian optimization: Lagrangian relaxation plus

multiplier optimization� These methods are often combined (e.g., cutting planes

added at nodes in B & B tree: Branch & Cut)

10'

&

$

%

The branch–and–bound-algorithm

Relax integrality constraints ⇒ linear program ⇒ x
∗

LP
= (5.25, 4.75)T

zLP = 14.75

zLP = 14.33

zLP = 14

zLP = 13 infeasible

integral

integral

x1 ≤ 5 x1 ≥ 6

x2 ≤ 4 x2 ≥ 5

xLP = (5, 4.67)T

xLP = (6, 4)TxLP = (5, 4)Tq q q q q q q qq q q q q q q qq q q q q q q qq q q q q q q qq q q qqx
∗
LPc

-

6

��������������
@

@
@

@
@

@
@

@@HHHHHH
���

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

11'

&

$

%

The complexity of integer optimization, I: Mexico� The Mexico LP has 113 variables and 84 linear

constraints. Solution by a slow (333 MHz Unix)

computer: 0.01 s.� We create an integer programming (IP) variant: add a

fixed cost for using a railway link for the raw material

transport. 78 binary (0/1) variables.� Cplex uses B & B, in which to the continuous

relaxation is added integer requirements on some of the

binary varaibles that received a fractional value in the

LP solution. (Note: x binary here =⇒ variable values

fixed at 0 or 1)

12'

&

$

%

� Solution times:

Fixed cost 100 =⇒ 20 s.

18,000 B & B nodes

60,000 simplex iterations

300 =⇒ 3 min.

208,000 B & B nodes

650,000 simplex iterations� There are 278 ≈ 0.3 · 1024 possible combinations. B & B

is good at implicitly enumerating them all� Higher fixed cost =⇒ more difficult problem. Why?

Continuous relaxation worse approximation!

13'

&

$

%

The complexity of integer optimization, II: The

knapsack problem� Knapsack problem: maximize value of a finite number

of items put in a knapsack of a given capacity� Each variable has a value and weight per unit� AMPL model:

var x1..5 integer, >=0;

maximize ka:213*x[1]-1928*x[2]-11111*x[3]-2345*x[4]+9123*x[5];

subject to c1:

12223*x[1]+12224*x[2]+36674*x[3]+61119*x[4]+85569*x[5] =

89643482;� Often binary; here, general integer variables

14'

&

$

%

� LP relaxation trivial: sort variables in descending order

of cj/aj; take the best one� Result: After 10 minutes in CPLEX: 8 Million B & B

nodes; no feasible solution

15'

&

$

%

Cutting plane methods� Goal: generate the convex hull of the feasible integer

vectors� Result: Can solve the IP by solving the LP relaxation

over this convex hull� Compare IP example: one extra linear constraint

defines the entire convex hull! (x2 ≤ 4)� Means: Relax problem (e.g., continuous relaxation);

Solve. If infeasible solution, generate constraint to the

relaxation that cuts off that vector but no feasible

vectors. Repeat.� Constraint generation called a separation oracle

16'

&

$

%

� Niclas Ph.D. thesis project deals with a large-scale

mixed-integer optimization problem, solvable by special

cutting plane methods� Important to generate constraints that cut off vectors

in a high dimension, especially so-called facets—faces of

a polyhedron with the maximal dimension� Niclas has established a class of such facets for “his”

(convex hull) polyhedron

17'

&

$

%

The Philips example—TSP solved heuristically� Let cij denote the distance between cities i and j, with

{i, j} ⊂ N − set of nodes

(i, j) ∈ L − set of links� Links (i, j) and (j, i) the same; direction plays no role

� xij =

{

1, if link (i, j) is part of the TSP tour,

0, otherwise

18'

&

$

%

� The Traveling Salesman Problem (TSP):

minimize
∑

(i,j)∈L

cijxij

subject to
∑

(i,j)∈L:{i,j}⊂S

xij ≤ |S| − 1, S ⊂ N , (1)

∑

(i,j)∈L

xij = n, (2)

∑

i∈N :(i,j)∈L

xij = 2, j ∈ N , (3)

xij ∈ {0, 1}, (i, j) ∈ L

19'

&

$

%

Interpretations� Constraint (1) implies that there can be no sub-tours,

that is, a tour where fewer than n cities are visited

(that is, if S ⊂ N then there can be at most |S| − 1

links between nodes in the set S, where |S| is the

cardinality–number of members of–the set S);� Constraint (2) implies that in total n cities must be

visited;� Constraint (3) implies that each city is connected to

two others, such that we make sure to arrive from one

city and leave for the next.

20'

&

$

%

Lagrangian relaxation� TSP is NP-hard—no known polynomial algorithms

exist� Lagrangian relax (3) for all nodes except starting node� Remaining problem: 1-MST—find the minimum

spanning tree in the graph without the starting node

and its connecting links; then, add the two cheapest

links to connect the starting node� Starting node s ∈ N and connected links assumed

removed from the graph

21'

&

$

%

� Objective function of the Lagrangian problem:

q(λ) = minimum
x

∑

(i,j)∈L

cijxij +
∑

j∈N

λj

(

2 −
∑

i∈N :(i,j)∈L

xij

)

= 2
∑

j∈N

λj + minimum
x

∑

(i,j)∈L

(cij − λi − λj)xij

� A high (low) value of the multiplier λj makes node j

attractive (unattractive) in the 1-MST problem, and

will therefore lead to more (less) links being attached

to it� Subgradient method for updating the multipliers

22'

&

$

%

� Updating step:

λj := λj + α



2 −
∑

i∈N :(i,j)∈L

xij



 , j ∈ N ,

where α > 0 is a step length� Update means:

Current degree at node j :














> 2 =⇒ λj ↓ (link cost ↑)

= 2 =⇒ λj ↔ (link cost constant)

< 2 =⇒ λj ↑ (link cost ↓)� Link cost shifted upwards (downwards) if too many

(too few) links connected to node j in the 1-MST.

23'

&

$

%

Feasibility heuristic� Adjusts Lagrangian solution x such that the resulting

vector is feasible� Often a good thing to do when approaching the dual

optimal solution—x often then only mildly infeasible� Identify path in 1-MST with many links; form a

subgraph with the remaining nodes which is a path;

connect the two� Result: A Hamiltonian cycle (TSP tour)� We then have both an upper bound (feasible point) and

a lower bound (q) on the optimal value—a quality

measure!

24'

&

$

%

The Philips example� Fixed number of subgradient iterations� Feasibility heuristic used every K iterations (K > 1),

starting at a late subgradient iteration� Typical example: Optimal path length in the order of 2

meters; upper and lower bounds produced concluded

that the relative error in the production plan is less

than 7 %� Also: increase in production by some 70 %

