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/ Convexity of sets \

Let S C R™. The set S is convex if

xt x?ec S

— Az’ +(1-Nz*eS.
A e (0,1)

A set S is convex if, from anywhere in S, all other points are
“visible.” (See Figure 1.)

Figure 1: A convex set. (For the intermediate vector shown, the value

Qf)\iszl/z) /




/ Examples

e The empty set is a convex set.
e The set {x € R" | ||z|| < a} is convex for every value of a € R.
e The set {x € R" | ||| = a} is non-convex for every a > 0.

e The set {0,1,2} is non-convex.

Two non-convex sets are shown in Figure 2.

\ Figure 2: Two non-convex sets.




/ Intersections of convex sets \

Suppose that Sy, k € IC, is any collection of convex sets. Then, the

intersection Nicx Sk IS a convex set.




/ Convex and affine hulls

The affine hull of a finite set V = {v!,...,v*} C R" is the set

k
M, ... M\ ER: inl}.

1=1

aff V 1= {)\1U1—|—~-+)\kvk

The convex hull of a finite set V = {v!,...,v*} C R™ is the set

k
A, A >0 in:1}.
1=1

convV = { Aol + - A\poF

The sets are defined by all possible affine (convex) combinations of
the k points.
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/ Examples

(a) (b) ()

Figure 3: (a) The set V. (b) The set aff V. (c) The set conv V.
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Carathéodory’s Theorem \

The convex hull of V' C R" is the smallest convex set containing

V.

Let V C R"™. Then, convV is the set of all convex combinations
of points of V.

Every point of the convex hull of a set can be written as a convex
combination of points from the set. How many do we need?

|Car.:] Let @ € convV, where V. C R". Then x can be expressed

as a convex combination of n + 1 or fewer points of V.

Proof by contradiction: if more than n 4+ 1 points are needed
then these points must be affinely dependent = can remove at

/

least one such point. Etcetera.




/ Polytope \

e A subset P of R™ is a polytope if it is the convex hull of finitely

many points in R".
e The set shown in Figure 4 is a polytope.

’Ul
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Figure 4: The convex hull of five points in R2.

\\o A cube and a tetrahedron are polytopes in R3. /
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Extreme points \

e A point v of a convex set P is called an extreme point if
whenever v = A\x! + (1 — \)x?, where ', z* € P and X € (0,1),

then v = ! = 2.

e Examples: The set shown in Figure 3(c) has the extreme points
1

Y

v! and v?. The set shown in Figure 4 has the extreme points v
v?, and v3. The set shown in Figure 3(b) does not have any

extreme points.

e Let P be the polytope convV, where V = {v!,... v*} C R™.
Then P is equal to the convex hull of its extreme points.




/ Polyhedra \

e A subset P of R™ is a polyhedron if there exist a matrix
A € R™*™ and a vector b € R™ such that

P={xeR"| Az <b}.

o Ax < b <= a;x <V, for all i (a; is row i of A).
e Intersection of half-spaces. [Hyperplane: {x € R" | a;x = b; }.]

e FExamples: (a) Figure 5 shows the bounded polyhedron
P:{CCE]R2|CE122; r1 + 1o < 0; 2$1-£B2§4}.

e (b) The unbounded polyhedron
P={xzecR?|21+20>2; 71 — 29 <2; 317 — 29 >0} is shown
in Figure 6.

. /
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Figure 5: Illustration of the bounded polyhedron P = {x € R? | z;
2; r1 + xo S 6; 2£L’1 — I §4}

Z/
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/// 3:,61 - :,U2 — O
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Figure 6: Illustration of the unbounded polyhedron P = {x € R? |
T+ a2 >2; w1 — a0 <2; 3x1 —x2 >0},
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Algebraic characterizations of extreme points \

Letx € P={x € R" | Ax < b}, where A € R™*™ with
rank A = n and b € R™. Further, let A% = b be the equality
subsystem of Ax < b. Then x is an extreme point of P if and
only if rank A = n.

Of great importance in Linear Programming: A then always has
full rank! Hence, can solve special subsystem of linear equalities

to obtain an extreme point.
Corollary: The number of extreme points of P is finite.

Corollary: Since the number of extreme points is finite, the
convex hull of the extreme points of a polyhedron is a polytope.

Consequence: Algorithm for linear programming!

/
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Cones

e A subset C of R" is a cone if A\x € C whenever € C' and \ >
e Fxamples: The set {x € R | Az < 0™ } is a cone.

~

0.

e Figure 7(a) illustrates a convex cone and Figure 7(b) illustrates a

non-convex cone in R2.

(a) (b)

Figure 7: (a) A convex cone in R?. (b) A non-convex cone in R?.

/
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Representation Theorem \

Let @Q ={x € R" | Ax < b}, P be the convex hull of the
extreme points of Q, and C :={x ¢ R" | Ax < 0™ }. If

rank A = n then

Q=P+C={xecR"|x=u+v for someu € P and v € C}.
In other words, every polyhedron (that has at least one extreme
point) is the direct sum of a polytope and a polyhedral cone.

Proof by induction on the rank of the subsystem matrix A.

Central in Linear Programming. Can be used to establish:

Optimal solutions to LP problems are found at extreme points!

/
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Figure 8: Illustration of the Representation Theorem (a) in the

bounded case, and (b) in the unbounded case.

-

/
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/ Separation Theorem \

e “If a point y does not lie in a closed and convex set (', then there
exists a hyperplane that separates y from C.”

e Suppose that the set C' C R" is closed and convex, and that the
point y does not lie in C. Then there exist a € R and w # 0"
such that #'y > o and wlx < o for all ¢ € C.

e Proof later—requires existence and optimality conditions.

e Consequence: A set P is a polytope if and only if it is a bounded
polyhedron. [<= trivial; = constructive.]

e A finitely generated cone has the form
cone{v',..., v} :={ v+ F X0 [ A1, A >0

e A convex cone is finitely generated iff it is polyhedral.

. /
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.y = (1.5,1.5)7T

T

T T=0q < 1+ x9 =2

~

Figure 9: Illustration of the Separation Theorem: the unit disk is

separated from y by the line {x € R? | 1 + 25 = 2 }.

-

/
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Farkas’ Lemma \

e Let A e R™™ and b € R™. Then, exactly one of the systems

Ax = b, (T)
x> 0",
and
Almr <o, (IT)
blm >0,

has a feasible solution, and the other system is inconsistent.
e Farkas’ Lemma has many forms. “Theorems of the alternative.”

e Crucial for LP theory and optimality conditions.

/
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Convexity of functions \

Suppose that S C R" is convex. A function f : R™ — RU {+o0}

is convex at & € S if

xrecS

— fAx+ (1 —=Nzx) <\f(2)+ (1N f(x).
A e (0,1)

The function f is convex on S if it is convex at every x € 5.

The function f is strictly convex on S if < holds in place of <

above for every x # .

A convex function is such that a linear interpolation never is
lower than the function itself. For a strictly convex function the

linear interpolation lies above the function.

(Strict) concavity of f <= (strict) convexity of —f.

/

19



20

/ e Figure 10 illustrates a convex function. \

-

1’1 )\1‘1 + (1 — )\)%2 ;UQ v
Figure 10: A convex function.

e The function f : R™ — R defined by f(x) := ||z|| is convex on
R™; f(x) := ||z||* is strictly convex in R".




/o Let ¢ € R™. The linear function  — f(x) :== cla =

is both convex and concave on R".

e Figure 11 illustrates a non-convex function.

D im1CiTy \

21 Art + (1 — \)a? 2

Figure 11: A non-convex function.

\j
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Sums of convex functions are convex.
Composite function: x — f(g(x))

Suppose that S C R™ and P C R. Let further g : S — R be a
function which is convex on S, and f : P — R be convex and
non-decreasing (y > x = f(y) > f(x)) on P. Then, the
composite function f(g) is convex on the set

{xeR"|g(x) € P}.

The function & — —1/log(—g(x)) is convex on the set
{xeR"|g(x) <0}.

~
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Epigraphs \
e Characterize convexity of a function on R" by the convexity of
its epigraph in R"*!. [Note: the graph of a function f: R" — R
is the boundary of epi f.]

epi f
f
x
Figure 12: A convex function and its epigraph. /

23



/o The epigraph of a function f : R™ — R U {400} is the set

-

epi f = { (m,0) € R | f(z) < a}.
The epigraph of the function f restricted to the set S C R" is
epig f i={(z,0) e S xR | f(x) < a}.

e Connection between convex sets and functions; in fact the

definition of a convex function stems from that of a convex set!

e Suppose that S C R" is a convex set. Then, the function
f:R™ - RU{4o00} is convex on S if, and only if, its epigraph
restricted to S is a convex set in R™ 11,

~
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Convexity characterizations in O \

e C': Differentiable once, gradient continuous.

o Let f € C! on an open convex set S.
(a) f is convex on S <= f(y) > f(zx)+Vf(z) ' (y—=x), z,y € S.
(b) f is convex on S <= [Vf(z) - Vf(y) (x—y)>0,z,y €8S.

e (a): “Every tangent plane to the function surface lies on, or
below, the epigraph of f”, or, that “a first-order approximation is

below f.”

e (b) Vf is “monotone on S.” [Note: when n = 1, the result states
that f is convex if and only if its derivative f’ in non-decreasing,
that is, that it is monotonically increasing.|

e Proofs use Taylor expansion, convexity and Mean-value Theorem.

/
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/ e Figure 13 illustrates part (a).

F@) + @)y -2 © '@) !

Figure 13: A tangent plane to the graph of a convex function.
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Convexity characterizations in C? \

Let f be in C? on an open, convex set S C R™.

(a) f is convex on S <= V?* f(x) is positive semidefinite for all
rcS.

(b) V?f(x) is positive definite for all x € S = f is strictly
convex on S

Note: n =1, S is an interval: (a) f is convex on S if and only if
f"(x) > 0 for every x € S; (b) f is strictly convex on S if
f"(x) > 0 for every x € S.

Proofs use Taylor expansion, convexity and Mean-value Theorem.
Not the direction <= in (b)! [f(z) = z* at 2 = 0]
Difficult to check convexity; matrix condition for every <.

Quadratic function: f(x) = (1/2)z'Qx — gz convex on R™ iff

\ Q is psd (Q is the Hessian of f, and is independent of x). /
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Convexity of feasible sets \

e Let g: R" — R be a function. The level set of g with respect to
the value b € R is the set

levy(b) :={z e R" | g(x) <b}.

e Figure 14 illustrates a level set of a convex function.

levp(b) x

Figure 14: A level set of a convex function.
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/ e Suppose that the function g : R® — R is convex. Then, for everjx
value of b € R, the level set lev,(b) is a convex set. It is moreover

closed.

e We speak of a convex problem when f is convex (minimization)
and for constraints g;(x) < 0, the functions g; are convex; and for

constraints h;(x) = 0, the functions h; are affine.
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Euclidean projection \

e The Euclidean projection of w € R"™ is the nearest (in Euclidean
norm) vector in S to w. The vector w — Projq(w) is normal to S.

=

Figure 15: The projection of two vectors onto a convex set.

/
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Ghe distance function below is convex: \
distg(x) := || — Projs(x)||, x c R".
xle

Figure 16: From the intermediate vector Ax! + (1 — \)x? shown the
distance to the vector AProjg(x!) + (1 — A)Projg(x?)) [dotted line

Q@gment] clearly is longer than to its projection on S [solid line]. /
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