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Overview� Want to establish that x
∗ local minimum of f over S implies

that a well-defined condition holds that we can easily check� This is possible when constraints are linear, since the set of

feasible directions then can be stated simply� With non-linear constraints things become more complicated� Constraint qualifications CQ are needed to make sure that the

well-defined condition is a necessary condition for local

optimality (rule out strange cases)� Under convexity, the condition turns out to also always (under

no CQ) be sufficient for global optimality� Called the Karush–Kuhn–Tucker conditions� Karush: master’s student at Univ. of Chicago, 1939

Tucker/Kuhn: prof./Ph.D. student at Princeton Univ., 1951
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Cautions needed!� Costly errors can be made if one ignores that KKT conditions

are necessary, but not always sufficient� US Air Force’s B-2 Stealth bomber program: Reaganism, 1980s� Design variables: various dimensions, distribution of volume

between wing and fuselage, flying speed, thrust, fuel

consumption, drag, lift, air density, etc� Objective: maximum range on full tank� Model from the 1940s which had produced B-29, B-52, etc� Solution to the KKT conditions found; specified design variable

values that put almost all of the total volume in the wing,

leading to the flying wing design for the B-2 bomber� Billions of dollars later, found the design solution works, but its

range too low in comparison with other bomber designs
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� Of course, a globally optimal solution must then satisfy the KKT

conditions. But it is not practical to search for all KKT points

and pick the best. Its use is for checking that an algorithm has

found the right solution.� Compare checking for every x with f ′(x) = 0 in R!� The user has all the responsibility!
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Nice photos, I
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� Review carried out. The model is correct!� But ... The model was a nonconvex NLP; the review revealed a

second solution to the KKT system� Much less wing volume! Looks like an airplane! Maximizes range!� In other words, the design implemented was the aerodynamically

worst possible choice of configuration, leading to a very costly

error� Still flies. Why? Happens that it has good properties wrt. radar

protection (stealth) ...
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Overview, cont’d� The condition must not only be easy to check, it should also

state something useful� It is easy to state some condition: If x
∗ is a local minimum of f

over S then it is also feasible� Completely useless, since it is satisfied everywhere� That is what we end up with if we want something that is

applicable to every problem. We need to get rid of some weird

problems, and that is a main reason for introducing the CQs� We begin by studying an abstract problem and provide a

geometric optimality condition� Next, we state the corresponding result for an explicit

representation of S in terms of constraints. This is the Fritz John

condition
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Nice photos, II
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Geometric optimality conditions

Problem:
minimize f(x),

subject to x ∈ S,
(1)

S ⊂ R
n non-empty, closed; f : R

n → R in C1� Idea: at a local minimum x
∗ of f over S it is impossible to draw

a curve from x
∗ such that it is feasible and f decreases along it� Cannot work with f itself; descent is measured in terms of

directional derivatives. Linearize f� We must also “linearize” S. Reason: the cone of feasible

directions may be too small to be useful; also, it is difficult to

state it explicitly. We replace the cone of feasible directions with

the tangent cone to S at x
∗

8'

&

$

%

� Introducing a CQ we then obtain the Karush–Kuhn–Tucker

conditions� There is more than one CQ, some more useful than others in

particular cases� Linear independence of the equality constraints is the classic one

from the Lagrange multiplier rule. We extend it and show others
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and

G(x) := {p ∈ R
n | ∇gi(x)Tp ≤ 0, i ∈ I(x) }� For every x ∈ R

n it holds that
◦

G(x) ⊂ RS(x), and TS(x) ⊂ G(x)� So,
◦

G(x) ⊂ RS(x) ⊂ clRS(x) ⊂ TS(x) ⊂ G(x) for every x ∈ R
n
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� The cone of feasible directions for S at x ∈ R
n is

RS(x) := {p ∈ R
n | ∃ δ̃ > 0 such that x + δp ∈ S, 0 ≤ δ ≤ δ̃ }� The tangent cone for S at x ∈ R

n is

TS(x) := {p ∈ R
n | ∃ {xk} ⊂ S, {λk} ⊂ (0,∞) : lim

k→∞

xk = x,

lim
k→∞

λk(xk − x) = p }� TS(x) is closed; the set of tangents to sequences {xk} ⊂ S� It holds that clRS(x) ⊂ TS(x) for every x ∈ R
n� Suppose that for functions gi ∈ C1, i = 1, . . . , m:

S := {x ∈ R
n | gi(x) ≤ 0, i = 1, . . . , m }� Two further cones:

◦

G(x) := {p ∈ R
n | ∇gi(x)Tp < 0, i ∈ I(x) },
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Four examples, I� S = {x ∈ R
2 | −x1 ≤ 0, (x1 − 1)2 + x2

2 ≤ 1 }� RS(02) = {p ∈ R
2 | p1 > 0 }� TS(02) = {p ∈ R
2 | p1 ≥ 0 }� TS(02) = clRS(02)
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Four examples, II� S = {x ∈ R
2 | −x1 ≤ 0,−x2 ≤ 0, x1x2 ≤ 0 }� RS(02) = TS(02) = S



17'

&

$

%

1

1

1

1

S TS(02)

16'

&

$

%

Four examples, III� S = {x ∈ R
2 | −x3

1 + x2 ≤ 0, x5
1 − x2 ≤ 0,−x2 ≤ 0 }� RS(02) = ∅� TS(02) = {p ∈ R

2 | p1 ≥ 0, p2 = 0 }
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Four examples, IV� S = {x ∈ R
2 | −x2 ≤ 0, (x1 − 1)2 + x2

2 = 1 }� RS(02) = ∅� TS(02) = {p ∈ R
2 | p1 = 0, p2 ≥ 0 }
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Example problem� Consider the differentiable (linear) function f : R
2 → R defined

by f(x) = x1.� Then, ∇f = (1, 0)T, and
◦

F (02) = {p ∈ R
2 | p1 < 0 }.� x

∗ = 0
2 is a local (in fact, even global) minimum in problem (1)

with S given by either one of Examples I–IV.� Easy to check that the geometric necessary optimality condition
◦

F (02) ∩ TS(02) = ∅ is satisfied in all four examples (no surprise,

in view of the above geometric theorem).
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A geometric necessary optimality condition� ◦

F (x∗) := {p ∈ R
n | ∇f(x∗)Tp < 0 }� Consider the problem (1). If x

∗ ∈ S is a local minimum of f over

S then
◦

F (x∗) ∩ TS(x∗) = ∅� This is an elegant criterion for checking whether a given point is

a candidate for a local minimum. There is a catch though:� The set TS(x∗) is nearly impossible to compute in general!� We will compute other cones that we hope will approximate

TS(x∗) well enough� Specifically, we will use the cone
◦

G(x)
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Comments� The vector µ is a vector of Lagrange multipliers. Each of them is

associated with a constraint, and will be shown to be a measure

of the sensitivity of the solution to changes in the constraints� Conditions (2a), (2c) are known as the dual feasibility conditions� Condition (2b) is the complementarity condition. States that for

inactive constraints i 6∈ I(x∗), µi = 0 must hold� Will take a closer look at the Examples I–IV, but wait until the

KKT conditions have been developed� We do this by introducing conditions that bring either
◦

G(x) or

G(x) to be tight enough approximations of TS(x)
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The Fritz John conditions� If x
∗ ∈ S is a local minimum of f over S then there exist

multipliers µ0 ∈ R, µ ∈ R
m such that

µ0∇f(x∗) +
m∑

i=1

µi∇gi(x
∗) = 0

n, (2a)

µigi(x
∗) = 0, i = 1, . . . , m, (2b)

µ0, µi ≥ 0, i = 1, . . . , m, (2c)

(µ0, µ
T)T 6= 0

m+1 (2d)� Proof via the geometric necessary conditions and Farkas’ Lemma� What’s bad about the Fritz John conditions? It may be possible

to fulfill (2) at every feasible point by setting µ0 = 0! Then, f

plays no role, which is bad. We will develop conditions

(constraint qualifications) which ensure that µ0 > 0



25'

&

$

%

Comments� The statement in (3a) is that x
∗ is a stationary point to the

Lagrangian function x 7→ f(x) + µ
T
g(x) = f(x) +

∑m

i=1
µigi(x)� The condition (3) is that −∇f(x∗) ∈ NS(x∗) holds. The normal

cone NS(x∗) is spanned by the normals of the active constraints

x)∆

1g =0

3g =0

(x)f∆−

g1(x)∆

2g =0

x

g2(

S
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The Karush–Kuhn–Tucker conditions� Abadie’s CQ: At x ∈ S Abadie’s constraint qualification holds if

G(x) = TS(x)� Satisfied by Example I and IV� Assume that at x
∗ ∈ S Abadie’s CQ holds. If x

∗ ∈ S is a local

minimum of f over S then there exists µ ∈ R
m such that

∇f(x∗) +
m∑

i=1

µi∇gi(x
∗) = 0

n, (3a)

µigi(x
∗) = 0, i = 1, . . . , m, (3b)

µ ≥ 0
m (3c)� Proof by first noting that

◦

F (x∗) ∩ TS(x∗) = ∅, which due to our

CQ implies that
◦

F (x∗) ∩ G(x∗) = ∅. Rest of the proof by Farkas’

Lemma. [Note: case of m = 0!]
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Equality constraints

Additional constraints hj(x) = 0, j = 1, . . . , ℓ� KKT system:

∇f(x∗) +
m∑

i=1

µi∇gi(x
∗) +

ℓ∑

j=1

λj∇hj(x
∗) = 0

n, (4a)

µigi(x
∗) = 0, i = 1, . . . , m, (4b)

µ ≥ 0
m (4c)� µi ≥ 0 for the ≤-constraints; λj is sign free for =-constraints� Interpretation: The condition (4) is a force equilibrium condition� −∇f(x∗) is a force to violate the active constraints� The remaining terms equal this force. µi ≥ 0 must hold (force

towards feasibility). λj? Cannot determine before-hand in which

direction the surface must move
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Example I� Abadie’s CQ is fulfilled, therefore the KKT-system is solvable

Indeed, the system





1

0


 +


−1 −2

0 0


 µ = 0

2,

µ ≥ 0
2,

possesses solutions µ = (µ1, 2
−1(1 − µ1))

T for every 0 ≤ µ1 ≤ 1.

Therefore, there are infinitely many multipliers, that all belong

to a bounded set� Case of a non-unique dual solution µ
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Convexity implies sufficiency� Assume that the problem (1) with the feasible set S is convex,

that is, the objective function f as well as the functions gi,

i = 1, . . . , m, are convex, and the functions hj , j = 1, . . . , ℓ, are

affine; also, all functions are in C1. Assume further that for

x
∗ ∈ S the KKT conditions (4) are satisfied. Then, x

∗ is a

globally optimal solution to the problem (1).� Proof.

� Check interesting applications in the book on the

characterization of eigenvalues and eigenvectors!
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Other constraint qualifications� Slater CQ—existence of interior point: The feasible set is convex,

and there exists a feasible point such that every inequality

constraint is satisfied strictly� Linear independence CQ: The gradients of all the active

constraints are linearly independent� Linear constraints CQ: All the constraints are affine/linear� Mangasarian–Fromowitz CQ: The gradients of all the functions

hj are linearly independent, and the set
◦

G(x) ∩ H(x) is

non-empty, where

H(x) := {p ∈ R
n | ∇hi(x)Tp = 0, i = 1, . . . , ℓ }


