
1'

&

$

%

When are integer models needed?

� Products or raw materials are indivisible

� Logical constraints: “if A then B”; “A or B”

� Fixed costs

� Combinatorics (sequencing, allocation)

� On/off-decision to buy, invest, hire, generate electricity,

...

Lecture 10: Integer programming

0-0

3'

&

$

%

At least 2 of 3 constraints must be fulfilled
x1 + x2 ≤ 4 (1)

2x1 + x2 ≤ 6 (2)

x2 ≤ 3 (3)

and x1, x2 ≥ 0

x1 + x2 ≤ 4 + M(1 − y1) (1)

2x1 + x2 ≤ 6 + M(1 − y2) (2)

x2 ≤ 3 + M(1 − y3) (3)

y1 + y2 + y3 ≥ 2

∗ = feasible regions y1, y2, y3 ∈ {0, 1}

M ≥ 2 and x1, x2 ≥ 0

6

-

@
@

@
@

@
@

@
@

@
@

@

A
A

A
A

A
A

A
A

A
A

A
A

A
AA

∗
∗

∗
∗

2'

&

$

%

Either 0 ≤ x ≤ 1 or x ≥ 7

1

0
0

y

1 7 M
x

Let M � 1 : x ≤ 1 + My, x ≥ 7y, y ∈ {0, 1}

Variable x may only take the values 2, 45, 78 & 107

x = 2y1 + 45y2 + 78y3 + 107y4

y1 + y2 + y3 + y4 = 1

y1, y2, y3, y4 ∈ {0, 1}

5'

&

$

%

Other applications of integer optimization

� Facility location (new hospitals, shopping centers, etc.)

� Scheduling (on machines, personnel, projects, schools)

� Logistics (material- and warehouse control)

� Distribution (transportation of goods, buses for

disabled persons)

� Production planning

� Telecommunication (network design, frequency

allocation)

� VLSI design

4'

&

$

%

Fixed costs

x = the amount of a certain product to be sent

If x > 0 then the initial cost c1 (e.g. car hire) is generated

Variable cost c2 per unit sent

Total cost: f(x) =

0 if x = 0 effect

c1 + c2 · x if x > 0 wanted!

s
c

6

-

������������

c2

1

c1

x

Might send an
empty car!
Hardly profitable

Let M =car capacity

y =

1 if x > 0 effect

0 if x = 0 wanted!

f(x, y) = c1 · y + c2 · x

x≤M · y linear 0/1 model!

x≥ 0, y ∈ {0, 1}

7'

&

$

%

Linear continuous optimization model

max zLP = x1 + 2x2

s.t. x1 + x2 ≤ 10 (1)

−x1 + 3x2 ≤ 9 (2)

x1 ≤ 7 (3)

x1, x2 ≥ 0 (4, 5)

x∗

LP =

21/4

19/4

z∗LP = 14 3

4

-

6

��������������
@

@
@

@
@

@
@

@@HHHHHH
���

x∗
LPa

c = (1, 2)T

x1 + 2x2 = 0
1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

x1

x2

(2)

(3)

(1)

(4)

(5)

6'

&

$

%

The combinatorial explosion

Assign n persons to carry out n jobs # feasible solutions: n!

Assume that a feasible solution is evaluated in 10−9 seconds

n 2 5 8 10 100

n! 2 120 4.0 · 104 3.6 · 106 9.3 · 10157

dtimee 10−8 s 10−6 s 10−4 s 10−2 s 10142 yrs

Complete enumeration of all solutions is not an efficient algorithm!

An algorithm exists that solves this problem in time O(n4) ∝ n4

n 2 5 8 10 100 1000

n4 16 625 4.1 · 103 104 108 1012

dtimee 10−7 s 10−6 s 10−5 s 10−5s 10−1 s 17 min

9'

&

$

%

Classic methods

� Branch–and-Bound: relaxation plus

divide–and–conquer

� Cutting plane method: relaxation plus generations of

constraint that cut off infeasible (e.g., non-integer)

points generated

� “Relaxation” can be the continuous or Lagrangian one

� Lagrangian optimization: Lagrangian relaxation plus

multiplier optimization

� These methods are often combined (e.g., cutting planes

added at nodes in B & B tree: Branch & Cut)

8'

&

$

%

Linear integer optimization model

max zIP = x1 + 2x2

s.t. x1 + x2 ≤ 10 (1)

−x1 + 3x2 ≤ 9 (2)

x1 ≤ 7 (3)

x1, x2 ≥ 0 (4, 5)

x1, x2 integer

x∗

IP =

6

4

z∗IP = 14 < z∗LP

q = feasible
integer points

q q q q q q q qq q q q q q q qq q q q q q q qq q q q q q q qq q q qbx∗

IP

-

6

��������������
@

@
@

@
@

@
@

@@HHHHHH
���

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

11'

&

$

%

The complexity of integer optimization, I: Aditiva

� The Aditiva LP has 62 variables and 27 linear

constraints. Solution by our linux computer: 0.05 s.

after 17 dual simplex pivots

� We create an integer programming (IP) variant: all

producers can sell all raw materials; the suppliers have

limited capacities; supplies must be bought in 100 kg

batches; and there are fixed costs for transporting and

for using the drying processes and the reactors

� The new problem has 168 variables (58 binary, 52

integer, 58 linear) and 131 linear constraints

10'

&

$

%

The branch–and–bound-algorithm

Relax integrality constraints ⇒ linear program ⇒ x∗

LP
= (5.25, 4.75)T

PSfrag replacements

zLP = 14.75

zLP = 14.33

zLP = 14

zLP = 13 infeasible

integral

integral

x1 ≤ 5 x1 ≥ 6

x2 ≤ 4 x2 ≥ 5

�LP = (5, 4.67)T

�LP = (6, 4)T

�LP = (5, 4)Tq q q q q q q qq q q q q q q qq q q q q q q qq q q q q q q qq q q qqx∗
LPc

-

6

��������������
@

@
@

@
@

@
@

@@HHHHHH
���

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

13'

&

$

%

The complexity of integer optimization, II: The

knapsack problem

� Knapsack problem: maximize value of a finite number

of items put in a knapsack of a given capacity

� Each variable has a value and weight per unit

� AMPL model:

var x1..5 integer, >=0;

maximize ka:213*x[1]-1928*x[2]-11111*x[3]-2345*x[4]+9123*x[5];

subject to c1:

12223*x[1]+12224*x[2]+36674*x[3]+61119*x[4]+85569*x[5] =

89643482;

� Often binary; here, general integer variables

12'

&

$

%

� Solver uses B & B, in which to the continuous

relaxation is added integer requirements on some of the

binary variables that received a fractional value in the

LP solution. (Note: xj binary here =⇒ variable value

fixed at 0 or 1)

� Solution process: after 10 minutes the solver has

produced 497,000 B & B nodes and used 1,602,861 dual

simplex pivots; the feasible solution found so far has not

been proved to be within 0.8% from an optimal solution

� The first problem (the LP relaxation) takes only 0.06 s.

and 3 dual pivots to solve

15'

&

$

%

Cutting plane methods

� Goal: generate the convex hull of the feasible integer

vectors

� Result: Can solve the IP by solving the LP relaxation

over this convex hull

� Compare IP example: one extra linear constraint

defines the entire convex hull! (x2 ≤ 4)

� Means: Relax problem (e.g., continuous relaxation);

Solve. If infeasible solution, generate constraint to the

relaxation that cuts off that vector but no feasible

vectors. Repeat

� Constraint generation called a separation oracle

14'

&

$

%

� LP relaxation trivial: sort variables in descending order

of cj/aj ; take the best one

� Result: After 10 minutes in CPLEX: 8 Million B & B

nodes; no feasible solution

17'

&

$

%

� The Traveling Salesman Problem (TSP):

minimize
∑

(i,j)∈L

cijxij

subject to
∑

(i,j)∈L:{i,j}⊂S

xij ≤ |S| − 1, S ⊂ N , (1)

∑

(i,j)∈L

xij = n, (2)

∑

i∈N :(i,j)∈L

xij = 2, j ∈ N , (3)

xij ∈ {0, 1}, (i, j) ∈ L

16'

&

$

%

The Philips example—TSP solved heuristically

� Let cij denote the distance between cities i and j, with

{i, j} ⊂ N − set of nodes

(i, j) ∈ L− set of links

� Links (i, j) and (j, i) the same; direction plays no role

� xij =

{

1, if link (i, j) is part of the TSP tour,

0, otherwise

19'

&

$

%

Lagrangian relaxation

� TSP is NP-hard—no known polynomial algorithms

exist

� Lagrangian relax (3) for all nodes except starting node

� Remaining problem: 1-MST—find the minimum

spanning tree in the graph without the starting node

and its connecting links; then, add the two cheapest

links to connect the starting node

� Starting node s ∈ N and connected links assumed

removed from the graph

18'

&

$

%

Interpretations

� Constraint (1) implies that there can be no sub-tours,

that is, a tour where fewer than n cities are visited

(that is, if S ⊂ N then there can be at most |S| − 1

links between nodes in the set S, where |S| is the

cardinality–number of members of–the set S);

� Constraint (2) implies that in total n cities must be

visited;

� Constraint (3) implies that each city is connected to

two others, such that we make sure to arrive from one

city and leave for the next

21'

&

$

%

� Updating step:

λj := λj + α

2 −
∑

i∈N :(i,j)∈L

xij

 , j ∈ N ,

where α > 0 is a step length

� Update means:

Current degree at node j :

> 2 =⇒ λj ↓ (link cost ↑)

= 2 =⇒ λj ↔ (link cost constant)

< 2 =⇒ λj ↑ (link cost ↓)

� Link cost shifted upwards (downwards) if too many

(too few) links connected to node j in the 1-MST

20'

&

$

%

� Objective function of the Lagrangian problem:

q(λ) = minimum
x

∑

(i,j)∈L

cijxij +
∑

j∈N

λj

(

2 −
∑

i∈N :(i,j)∈L

xij

)

= 2
∑

j∈N

λj + minimum
x

∑

(i,j)∈L

(cij − λi − λj)xij

� A high (low) value of the multiplier λj makes node j

attractive (unattractive) in the 1-MST problem, and

will therefore lead to more (less) links being attached

to it

� Subgradient method for updating the multipliers

23'

&

$

%

The Philips example

� Fixed number of subgradient iterations

� Feasibility heuristic used every K iterations (K > 1),

starting at a late subgradient iteration

� Typical example: Optimal path length in the order of 2

meters; upper and lower bounds produced concluded

that the relative error in the production plan is less

than 7 %

� Also: increase in production by some 70 %

22'

&

$

%

Feasibility heuristic

� Adjusts Lagrangian solution x such that the resulting

vector is feasible

� Often a good thing to do when approaching the dual

optimal solution—x often then only mildly infeasible

� Identify path in 1-MST with many links; form a

subgraph with the remaining nodes which is a path;

connect the two

� Result: A Hamiltonian cycle (TSP tour)

� We then have both an upper bound (feasible point) and

a lower bound (q) on the optimal value—a quality

measure: [f(x) − q(µ)]/q(µ)

