Lecture 2: Convexity

Convexity of sets

Let $S \subseteq \mathbb{R}^n$. The set S is convex if

$$\left. egin{array}{c} oldsymbol{x}^1, oldsymbol{x}^2 \in S \ \lambda \in (0,1) \end{array}
ight\} \quad \Longrightarrow \quad \lambda oldsymbol{x}^1 + (1-\lambda) oldsymbol{x}^2 \in S.$$

A set S is convex if, from anywhere in S, all other points are "visible." (See Figure 1.) PSfrag replacements

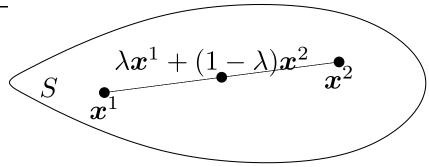


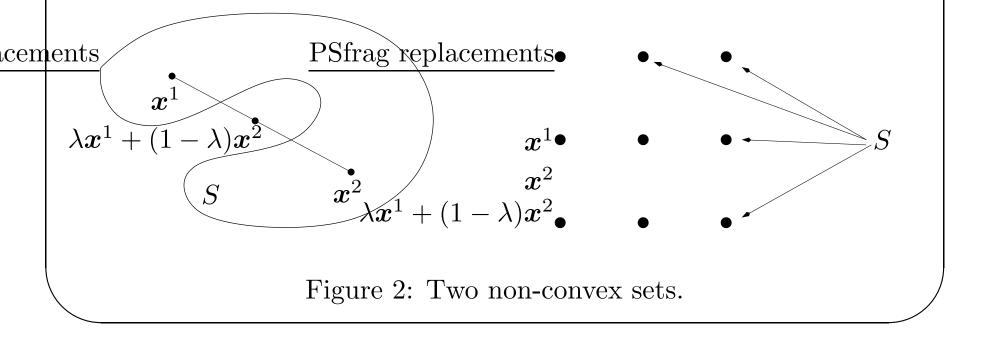
Figure 1: A convex set. (For the intermediate vector shown, the value of λ is $\approx 1/2$.)

Examples

- The empty set is a convex set.
- The set $\{ \boldsymbol{x} \in \mathbb{R}^n \mid ||\boldsymbol{x}|| \leq a \}$ is convex for every value of $a \in \mathbb{R}$.
- The set $\{ x \in \mathbb{R}^n \mid ||x|| = a \}$ is non-convex for every a > 0.

• The set
$$\{0, 1, 2\}$$
 is non-convex.

Two non-convex sets are shown in Figure 2.



Intersections of convex sets

Suppose that S_k , $k \in \mathcal{K}$, is any collection of convex sets. Then, the intersection $\bigcap_{k \in \mathcal{K}} S_k$ is a convex set.

Proof.

Convex and affine hulls

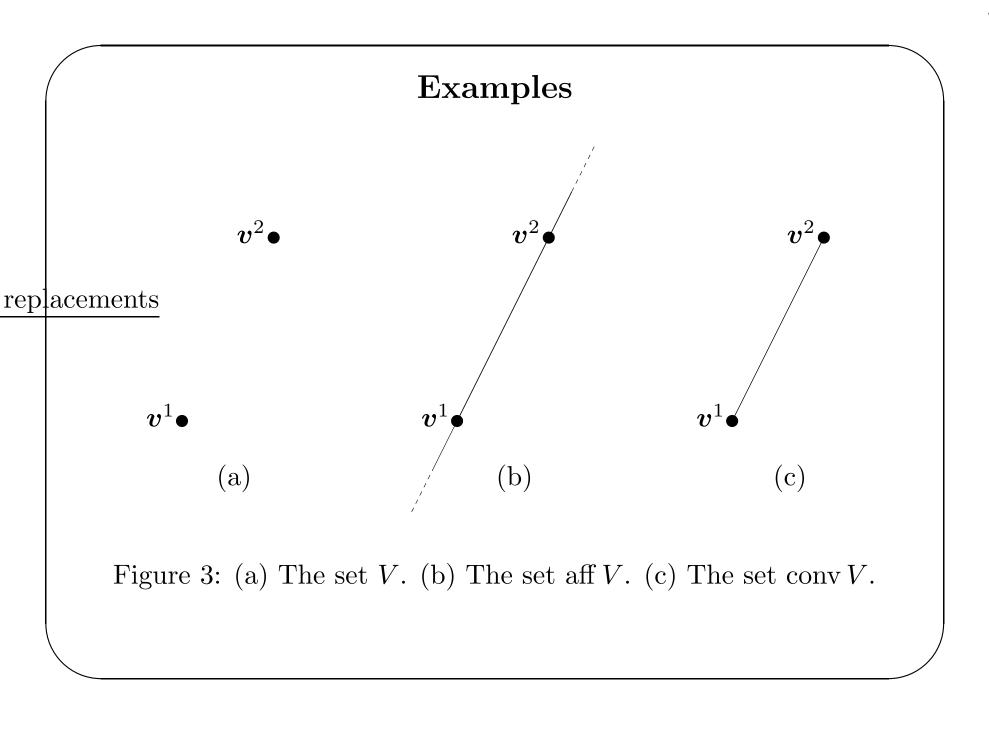
The affine hull of a finite set $V = \{v^1, \ldots, v^k\} \subset \mathbb{R}^n$ is the set

aff
$$V := \left\{ \lambda_1 \boldsymbol{v}^1 + \dots + \lambda_k \boldsymbol{v}^k \mid \lambda_1, \dots, \lambda_k \in \mathbb{R}; \sum_{i=1}^k \lambda_i = 1 \right\}$$

The convex hull of a finite set $V = \{v^1, \ldots, v^k\} \subset \mathbb{R}^n$ is the set

$$\operatorname{conv} V := \left\{ \lambda_1 \boldsymbol{v}^1 + \dots + \lambda_k \boldsymbol{v}^k \mid \lambda_1, \dots, \lambda_k \ge 0; \sum_{i=1}^k \lambda_i = 1 \right\}.$$

The sets are defined by all possible affine (convex) combinations of the k points.



Carathéodory's Theorem

- The convex hull of $V \subset \mathbb{R}^n$ is the smallest convex set containing V.
- Let $V \subseteq \mathbb{R}^n$. Then, conv V is the set of all convex combinations of points of V.
- Every point of the convex hull of a set can be written as a convex combination of points from the set. How many do we need?
- [Car.:] Let $x \in \operatorname{conv} V$, where $V \subseteq \mathbb{R}^n$. Then x can be expressed as a convex combination of n + 1 or fewer points of V.
- Proof by contradiction: if more than n + 1 points are needed then these points must be affinely dependent \implies can remove at least one such point. Etcetera.

Polytope

- A subset P of \mathbb{R}^n is a polytope if it is the convex hull of finitely many points in \mathbb{R}^n .
- The set shown in Figure 4 is a polytope.

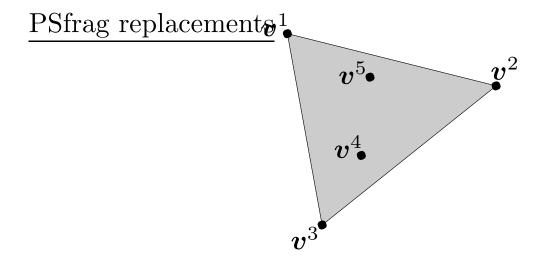


Figure 4: The convex hull of five points in \mathbb{R}^2 .

• A cube and a tetrahedron are polytopes in \mathbb{R}^3 .

Extreme points

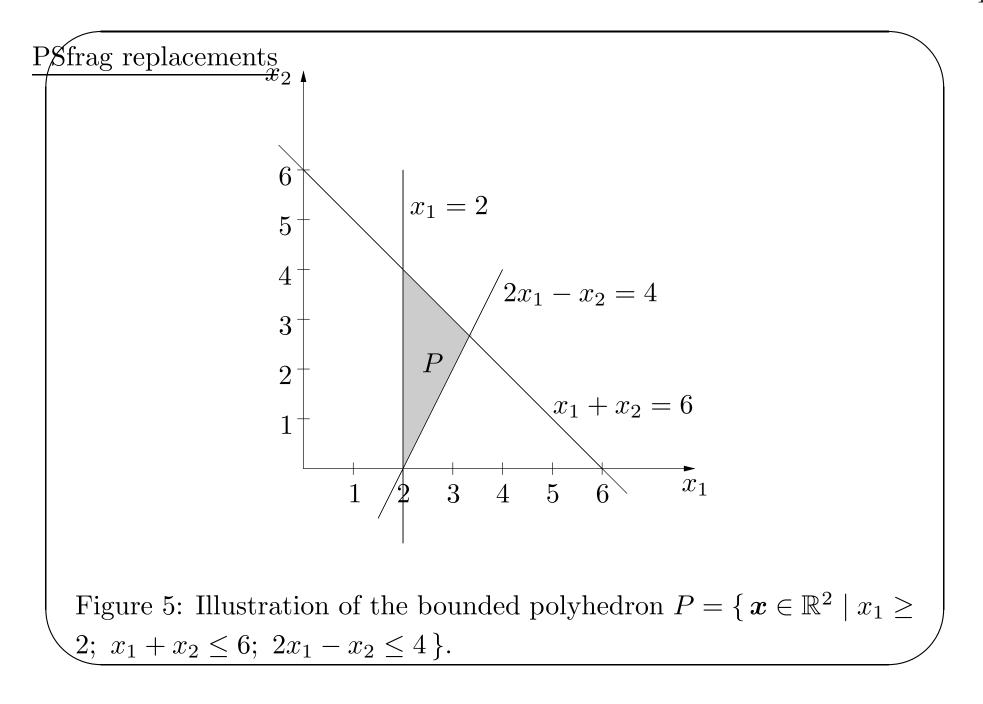
- A point \boldsymbol{v} of a convex set P is called an extreme point if whenever $\boldsymbol{v} = \lambda \boldsymbol{x}^1 + (1 - \lambda) \boldsymbol{x}^2$, where $\boldsymbol{x}^1, \boldsymbol{x}^2 \in P$ and $\lambda \in (0, 1)$, then $\boldsymbol{v} = \boldsymbol{x}^1 = \boldsymbol{x}^2$.
- Examples: The set shown in Figure 3(c) has the extreme points v¹ and v². The set shown in Figure 4 has the extreme points v¹, v², and v³. The set shown in Figure 3(b) does not have any extreme points.
- Let P be the polytope conv V, where $V = \{v^1, \ldots, v^k\} \subset \mathbb{R}^n$. Then P is equal to the convex hull of its extreme points.

Polyhedra

• A subset P of \mathbb{R}^n is a polyhedron if there exist a matrix $A \in \mathbb{R}^{m \times n}$ and a vector $b \in \mathbb{R}^n$ such that

$$P = \{ \boldsymbol{x} \in \mathbb{R}^n \mid \boldsymbol{A}\boldsymbol{x} \leq \boldsymbol{b} \}.$$

- $Ax \leq b \iff a_ix \leq b_i$ for all i (a_i is row i of A).
- Intersection of half-spaces. [Hyperplane: $\{x \in \mathbb{R}^n \mid a_i x = b_i\}$.]
- Examples: (a) Figure 5 shows the bounded polyhedron $P = \{ \boldsymbol{x} \in \mathbb{R}^2 \mid x_1 \ge 2; \ x_1 + x_2 \le 6; \ 2x_1 - x_2 \le 4 \}.$
- (b) The unbounded polyhedron $P = \{ \boldsymbol{x} \in \mathbb{R}^2 \mid x_1 + x_2 \ge 2; \ x_1 - x_2 \le 2; \ 3x_1 - x_2 \ge 0 \} \text{ is shown}$ in Figure 6.





Algebraic characterizations of extreme points

- Let $\tilde{x} \in P = \{ x \in \mathbb{R}^n \mid Ax \leq b \}$, where $A \in \mathbb{R}^{m \times n}$ with rank A = n and $b \in \mathbb{R}^m$. Further, let $\tilde{A}\tilde{x} = \tilde{b}$ be the equality subsystem of $A\tilde{x} \leq b$. Then \tilde{x} is an extreme point of P if and only if rank $\tilde{A} = n$.
- Of great importance in Linear Programming: **A** then always has full rank! Hence, can solve special subsystem of linear equalities to obtain an extreme point.
- Corollary: The number of extreme points of P is finite.
- Corollary: Since the number of extreme points is finite, the convex hull of the extreme points of a polyhedron is a polytope.
- Consequence: Algorithm for linear programming!

Cones

- A subset C of \mathbb{R}^n is a cone if $\lambda x \in C$ whenever $x \in C$ and $\lambda > 0$.
- Example: Let $A \in \mathbb{R}^{m \times n}$. The set $\{ x \in \mathbb{R}^n \mid Ax \leq 0^m \}$ is a cone.
- Figure 7(a) illustrates a convex cone and Figure 7(b) illustrates a non-convex cone in \mathbb{R}^2 .

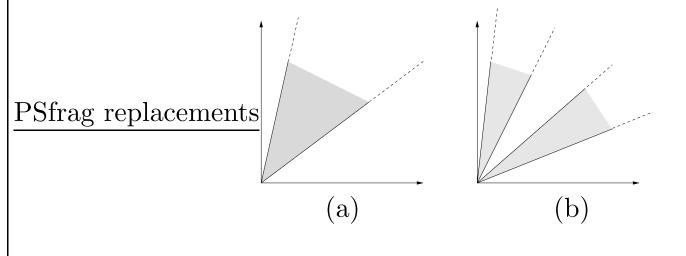


Figure 7: (a) A convex cone in \mathbb{R}^2 . (b) A non-convex cone in \mathbb{R}^2 .

Representation Theorem

- Let Q = { x ∈ ℝⁿ | Ax ≤ b }, P be the convex hull of the extreme points of Q, and C := { x ∈ ℝⁿ | Ax ≤ 0^m }. If rank A = n then
 Q = P + C = { x ∈ ℝⁿ | x = u + v for some u ∈ P and v ∈ C }. In other words, every polyhedron (that has at least one extreme point) is the direct sum of a polytope and a polyhedral cone.
- Proof by induction on the rank of the subsystem matrix \tilde{A} .
- Central in Linear Programming. Can be used to establish: Optimal solutions to LP problems are found at extreme points!

Sfrag replacements

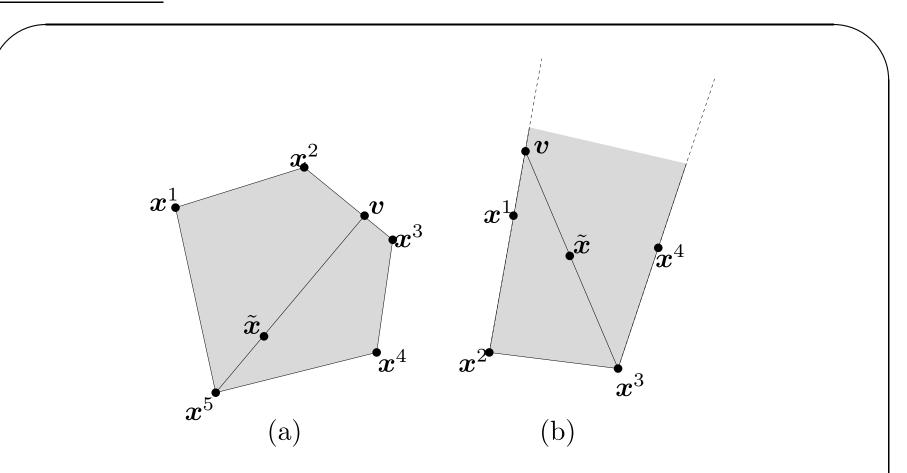


Figure 8: Illustration of the Representation Theorem (a) in the bounded case, and (b) in the unbounded case.

Separation Theorem

- "If a point \boldsymbol{y} does not lie in a closed and convex set C, then there exists a hyperplane that separates \boldsymbol{y} from C."
- Suppose that the set $C \subseteq \mathbb{R}^n$ is closed and convex, and that the point \boldsymbol{y} does not lie in C. Then there exist $\alpha \in \mathbb{R}$ and $\boldsymbol{\pi} \neq \boldsymbol{0}^n$ such that $\boldsymbol{\pi}^T \boldsymbol{y} > \alpha$ and $\boldsymbol{\pi}^T \boldsymbol{x} \leq \alpha$ for all $\boldsymbol{x} \in C$.
- Proof later—requires existence and optimality conditions.
- Consequence: A set P is a polytope if and only if it is a bounded polyhedron. [\Leftarrow trivial; \Longrightarrow constructive.]
- A finitely generated cone has the form

cone { $\boldsymbol{v}^1,\ldots,\boldsymbol{v}^m$ } := { $\lambda_1\boldsymbol{v}^1+\cdots+\lambda_m\boldsymbol{v}^m\mid\lambda_1,\ldots,\lambda_m\geq 0$ }.

• A convex cone is finitely generated iff it is polyhedral.

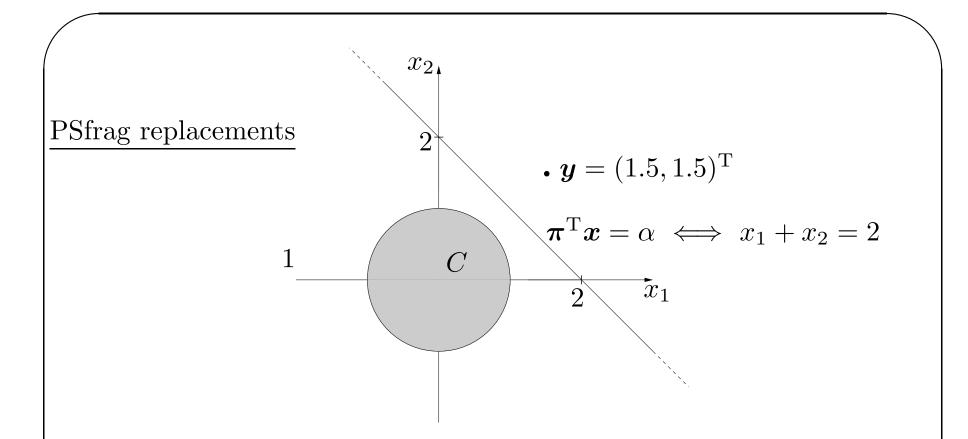


Figure 9: Illustration of the Separation Theorem: the unit disk is separated from \boldsymbol{y} by the line $\{\boldsymbol{x} \in \mathbb{R}^2 \mid x_1 + x_2 = 2\}.$

Farkas' Lemma

• Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$. Then, exactly one of the systems

$$Ax = b, (I)$$
$$x \ge 0^n,$$

and

$$A^{\mathrm{T}} \boldsymbol{\pi} \leq \mathbf{0}^{n}, \tag{II}$$
$$b^{\mathrm{T}} \boldsymbol{\pi} > 0,$$

has a feasible solution, and the other system is inconsistent.

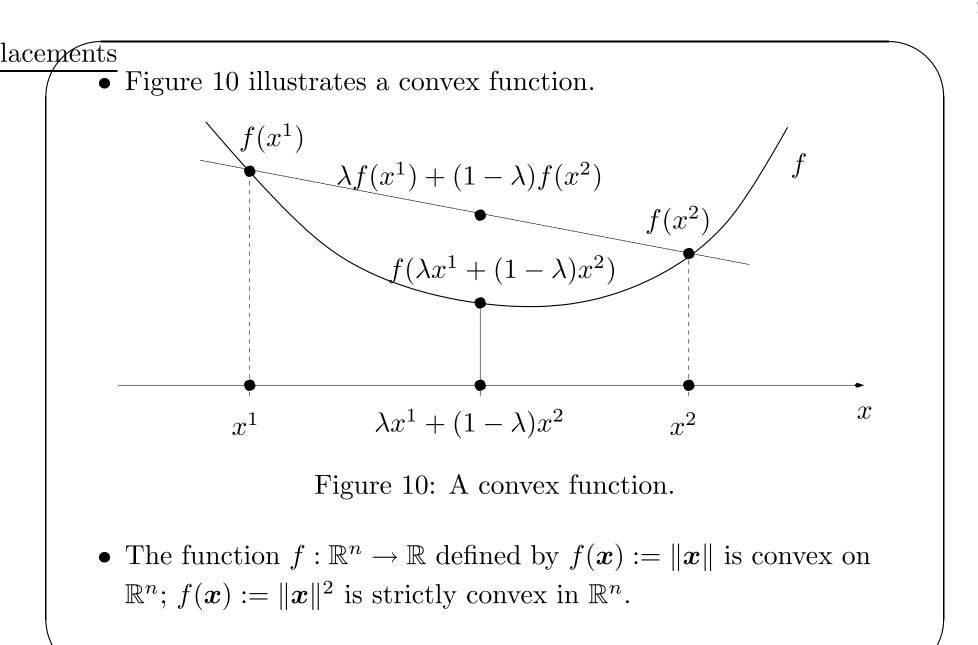
- Farkas' Lemma has many forms. "Theorems of the alternative."
- Crucial for LP theory and optimality conditions.
- Simple proof later!

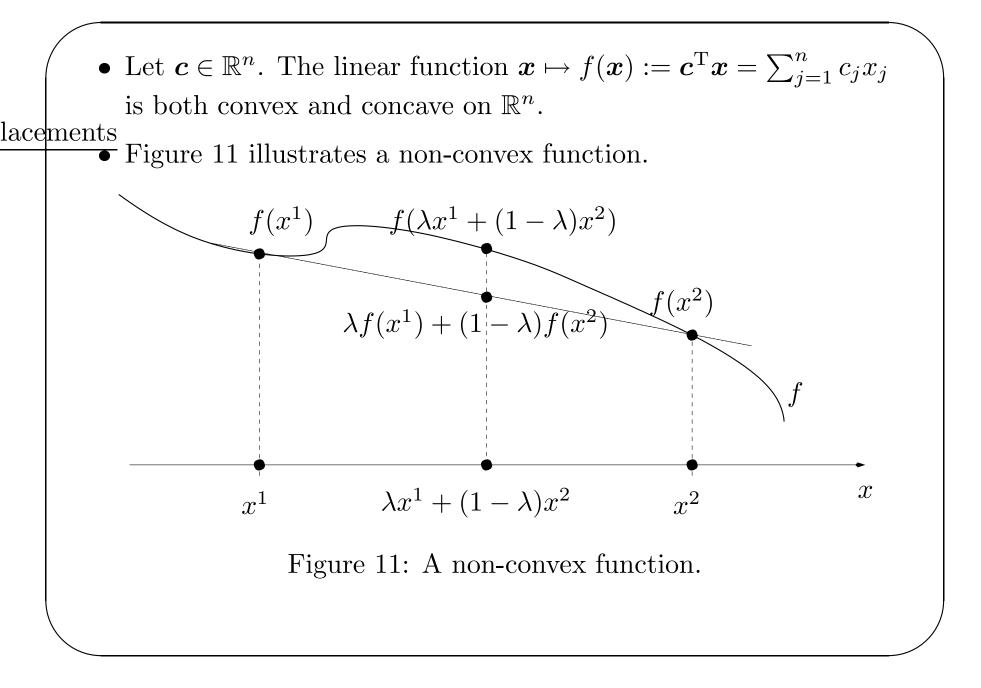
Convexity of functions

• Suppose that $S \subseteq \mathbb{R}^n$ is convex. A function $f : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is convex at $\bar{x} \in S$ if

$$\left. \begin{array}{l} \boldsymbol{x} \in S \\ \lambda \in (0,1) \end{array} \right\} \Longrightarrow f(\lambda \bar{\boldsymbol{x}} + (1-\lambda)\boldsymbol{x}) \le \lambda f(\bar{\boldsymbol{x}}) + (1-\lambda)f(\boldsymbol{x}). \end{array} \right.$$

- The function f is convex on S if it is convex at every $\bar{x} \in S$.
- The function f is strictly convex on S if < holds in place of \leq above for every $x \neq \bar{x}$.
- A convex function is such that a linear interpolation never is lower than the function itself. For a strictly convex function the linear interpolation lies above the function.
- (Strict) concavity of $f \iff (\text{strict})$ convexity of -f.

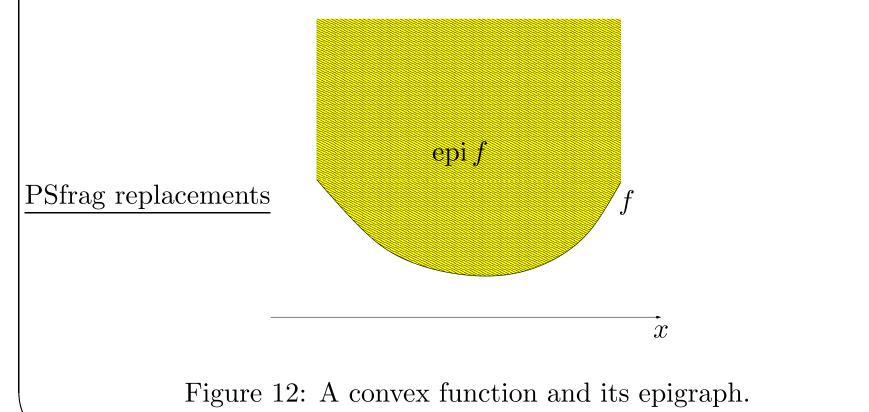




- Sums of convex functions are convex.
- Composite function: $\boldsymbol{x} \mapsto f(g(\boldsymbol{x}))$
- Suppose that $S \subseteq \mathbb{R}^n$ and $P \subseteq \mathbb{R}$. Let further $g: S \to \mathbb{R}$ be a function which is convex on S, and $f: P \to \mathbb{R}$ be convex and non-decreasing $(y \ge x \Longrightarrow f(y) \ge f(x))$ on P. Then, the composite function f(g) is convex on the set $\{ x \in \mathbb{R}^n \mid g(x) \in P \}.$
- The function $\boldsymbol{x} \mapsto -\log(-g(\boldsymbol{x}))$ is convex on the set $\{ \boldsymbol{x} \in \mathbb{R}^n \mid g(\boldsymbol{x}) < 0 \}.$

Epigraphs

• Characterize convexity of a function on \mathbb{R}^n by the convexity of its epigraph in \mathbb{R}^{n+1} . [Note: the graph of a function $f : \mathbb{R}^n \to \mathbb{R}$ is the boundary of epi f.]



• The epigraph of a function $f : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is the set

$$\operatorname{epi} f := \{ (\boldsymbol{x}, \alpha) \in \mathbb{R}^{n+1} \mid f(\boldsymbol{x}) \le \alpha \}.$$

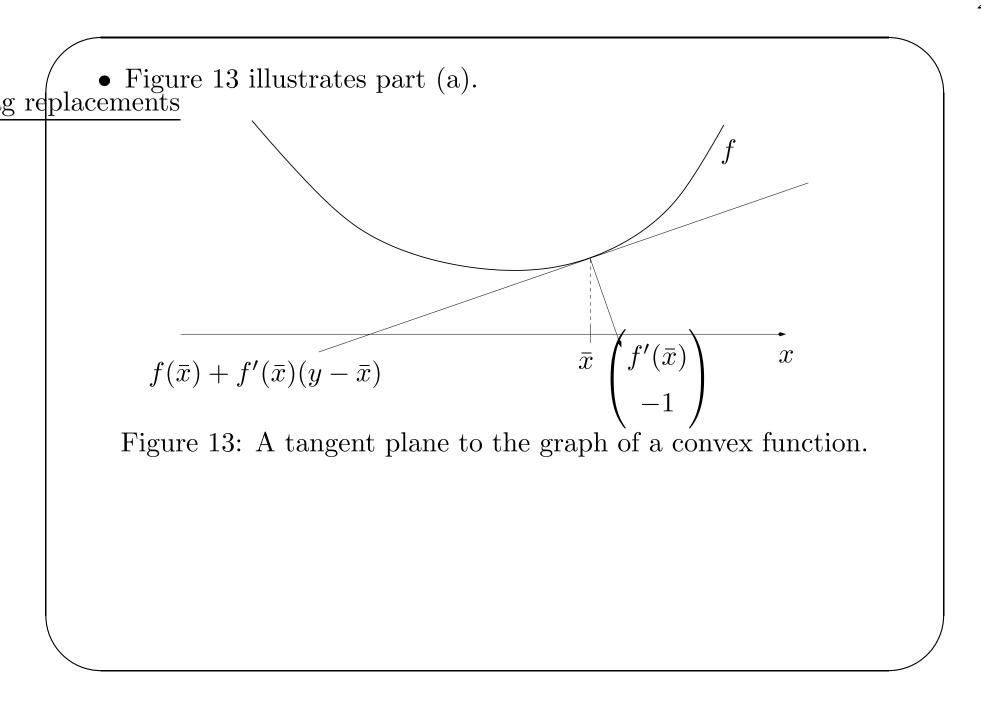
The epigraph of the function f restricted to the set $S\subseteq \mathbb{R}^n$ is

$$\operatorname{epi}_{S} f := \{ (\boldsymbol{x}, \alpha) \in S \times \mathbb{R} \mid f(\boldsymbol{x}) \leq \alpha \}.$$

- Connection between convex sets and functions; in fact the definition of a convex function stems from that of a convex set!
- Suppose that S ⊆ ℝⁿ is a convex set. Then, the function
 f : ℝⁿ → ℝ ∪ {+∞} is convex on S if, and only if, its epigraph restricted to S is a convex set in ℝⁿ⁺¹.

Convexity characterizations in C^1

- C^1 : Differentiable once, gradient continuous.
- Let f ∈ C¹ on an open convex set S.
 (a) f is convex on S ⇔ f(y) ≥ f(x) + ∇f(x)^T(y x), x, y ∈ S.
 (b) f is convex on S ⇔ [∇f(x) ∇f(y)]^T(x y) ≥ 0, x, y ∈ S.
- (a): "Every tangent plane to the function surface lies on, or below, the epigraph of f", or, that "a first-order approximation is below f."
- (b) ∇f is "monotone on S." [Note: when n = 1, the result states that f is convex if and only if its derivative f' is non-decreasing, that is, that it is monotonically increasing.]
- Proofs use Taylor expansion, convexity and Mean-value Theorem.



Convexity characterizations in C^2

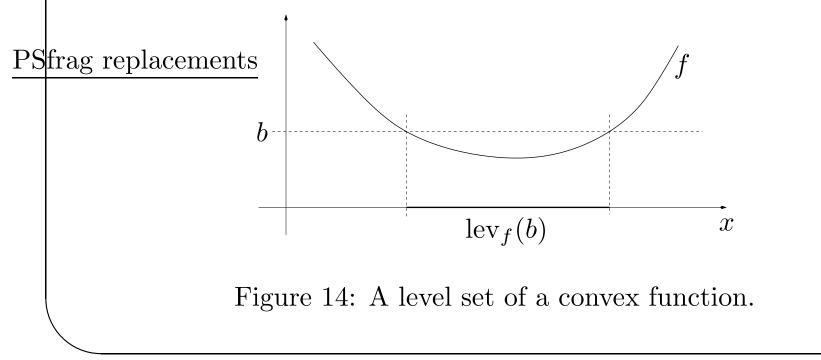
- Let f be in C² on an open, convex set S ⊆ ℝⁿ.
 (a) f is convex on S ⇔ ∇²f(x) is positive semidefinite for all x ∈ S.
 (b) ∇²f(x) is positive definite for all x ∈ S ⇒ f is strictly convex on S.
- Note: n = 1, S is an open interval: (a) f is convex on S if and only if f''(x) ≥ 0 for every x ∈ S; (b) f is strictly convex on S if f''(x) > 0 for every x ∈ S.
- Proofs use Taylor expansion, convexity and Mean-value Theorem.
- Not the direction \Leftarrow in (b)! $[f(x) = x^4 \text{ at } x = 0]$
- Difficult to check convexity; matrix condition for every \boldsymbol{x} .
- Quadratic function: $f(\boldsymbol{x}) = (1/2)\boldsymbol{x}^{\mathrm{T}}\boldsymbol{Q}\boldsymbol{x} \boldsymbol{q}^{\mathrm{T}}\boldsymbol{x}$ convex on \mathbb{R}^{n} iff \boldsymbol{Q} is psd (\boldsymbol{Q} is the Hessian of f, and is independent of \boldsymbol{x}).

Convexity of feasible sets

• Let $g: \mathbb{R}^n \to \mathbb{R}$ be a function. The level set of g with respect to the value $b \in \mathbb{R}$ is the set

$$\operatorname{lev}_g(b) := \{ x \in \mathbb{R}^n \mid g(x) \le b \}.$$

• Figure 14 illustrates a level set of a convex function.



Suppose that the function g : ℝⁿ → ℝ is convex. Then, for every value of b ∈ ℝ, the level set lev_g(b) is a convex set. It is moreover closed.

Proof.

• We speak of a convex problem when f is convex (minimization) and for constraints $g_i(\boldsymbol{x}) \leq 0$, the functions g_i are convex; and for constraints $h_j(\boldsymbol{x}) = 0$, the functions h_j are affine.

Euclidean projection

• The Euclidean projection of $\boldsymbol{w} \in \mathbb{R}^n$ is the nearest (in Euclidean norm) vector in S to \boldsymbol{w} . The vector $\boldsymbol{w} - \operatorname{Proj}_S(\boldsymbol{w})$ is normal to S.

