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Question 1

(the Simplex method)

a) By introducing slack variables we get the problem in standard form:

minimize z = x1 +3x2 +x3 (P)

subject to −2x1 +5x2 −x3 −x4 = 5,

2x1 −x2 +2x3 +x5 = 4,

x1, x2, x3, x4, x5 ≥ 0.

The Phase I problem becomes

minimize w = a

subject to −2x1 +5x2 −x3 −x4 +a = 5,

2x1 −x2 +2x3 +x5 = 4,

x1, x2, x3, x4, x5, a ≥ 0.

Start with the basis defined by xB = (a, x5)
T, xN = (x1, x2, x3, x4)

T. The
reduced costs of xN become (2,−5, 1, 1), so x2 is the entering variable. The
leaving variable becomes a. The new basis is given by xB = (x2, x5)

T,
xN = (x1, a, x3, x4)

T, and the reduced costs of xN are (0, 1, 0, 0), which
means that the current basis is optimal to the Phase I problem and since
w∗ = 0 it follows that xB = (x2, x5)

T, xN = (x1, x3, x4)
T define a BFS to the

Phase II problem (P). The reduced costs of xN becomes (2.2, 1.6, 0.6)T ≥
03, which means that an optimal solution to (P) is given by

x =

(

xB

xN

)

=
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5
0
0
0













.

Hence an optimal solution to the original problem is given by

x∗ =





x1

x2

x3



 =





0
1
0



 .

b) Since the reduced costs of xN are all strictly positive, it follows that the
BFS found is the unique optimal solution (see Proposition 10.9 in the course
notes).
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Question 2

(optimality conditions)

a) Drawing the figure one can verify that the problem is non-convex, because
the feasible set is not convex (even though the objective function is). The
optimization problem amounts to finding the shortest distance from the
point (x, y)T = (2, 1)T to the feasible set, and the geometrical considera-
tions give us one local minimum (x, y)T = (2, 0)T with the objective value
f((2, 0)T) = 1/2 and a global minimum (x, y)T = (3/2, 3/2)T with objective
value f((3/2, 3/2)T) = 1/4.

Introducing the KKT-multipliers µ1 and µ2 for the inequality constraints,
as well as λ for the equality constraint, the KKT system for this problem
can be stated as follows:
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x − 2
y − 1

)

+

(

−1
1

)

µ1 +

(

0
−1

)

µ2 +

(

y
x − 2y

)

λ =

(

0
0

)

y − x ≤ 0,

−y ≤ 0,

y(x − y) = 0,

µ1, µ2 ≥ 0,

µ1(x − y) = 0,

µ2y = 0.

As it can be verified, this system gives two [in the space (x, y)T] KKT-
points:

• The point of local minimum: (x, y)T = (2, 0)T, µ1 = 0, µ2 ≥ 0,
2λ = 1 + µ2.

• The point of global minimum: (x, y)T = (3/2, 3/2)T, µ1 ≥ 0, µ2 = 0,
3λ = 1 + 2µ1.

b) A simple calculation shows that the gradients of the free constraints are:
∇g1(x, y) = (1,−1)T, ∇g2(x, y) = (0, 1)T, ∇g3(x, y) = (y, x − 2y)T. At
every feasible point we have either y = 0, which results in ∇g2(x, y) =
x∇g3(x, y), or x = y, which results in ∇g1(x, y) = y∇g3(x, y). In either
case, the LICQ is violated.

Again, from either geometrical or analytical considerations, we can split the
feasible set of the original problem into two (non-disjoint) parts defined by
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linear constraints:

F1 = { (x, y) ∈ R
2 | y = 0, x − y ≥ 0 },

and
F2 = { (x, y) ∈ R

2 | y ≥ 0, x − y = 0 }.

We can therefore solve two convex linearly constrained optimization prob-
lems:

minimize f(x, y),

subject to (x, y) ∈ F1,

and
minimize f(x, y),

subject to (x, y) ∈ F2,

and choose the best solution among the two.

c) The procedure in the previous part can be generalized for problems with
several complementarity constraints as follows. The feasible set can be split
into 2n parts FI, I ⊆ {1, . . . , n}, where

aT

i x = bi, and xi ≥ 0, i ∈ I,

aT

i x ≥ bi, and xi = 0, i 6∈ I.

Therefore, instead of solving the origial non-convex problem, which vio-
lates the LICQ, one can (in principle) solve 2n convex problems with linear
constraints.

Question 3

(modelling)

Introduce variables according to Figure 1.

Introduce constraints according to the following list:

Maximum sales:

x1 ≤ 200, x2 ≤ 100, x3 ≤ 300. (1)

Process balances, Machine 1:

y1 ≥ x1, y2 ≥ x2, y3 ≥ x2, y4 ≥ x3. (2)
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PSfrag replacements

A B C

D E F

1 2 3

4 5

6 7 8

100200 300

12 SEK 21 SEK 8 SEK

4 SEK 3 SEK 2 SEK

(2 min) (4)

(4)

(6)

(6)

(7)
(1)
(2)

Product

Sales (# units)

Unit revenue

Raw material

Unit cost

Machine 1

Machine 2

Machine 3

(2400 min)

(2400 min)

(2400 min)
(7) (1) (2)

x1 x2 x3

y1 y2 y3 y4

w1 w2 w3

z1 z2 z3 z4

Figure 1: Variable definitions.

Process balances, Machine 2:

z1 ≥ y1 + y2, z2 ≥ y1 + y2, z3 ≥ y3 + y4, z4 ≥ y3 + y4. (3)

Process balances, Machine 3:

w1 ≥ z1, w2 ≥ z2 + z3, w3 ≥ z4. (4)

Weekly capacity, Machine 1:

2x1 + 4x2 + 6x3 ≤ 2400. (5)

Weekly capacity, Machine 2:

6(y1 + y2) + 4(y3 + y4) ≤ 2400. (6)
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Weekly capacity, Machine 3:

7z1 + (z2 + z3) + 2z4 ≤ 2400. (7)

Objective function:

f(x, w) = 12x1 + 21x2 + 8x3 − 4w1 − 3w2 − 2w3.

We end up with the linear integer program

maximize f(x, w),

subject to (1) − (7),

x, y, z, w ≥ 0 and integer.

Question 4

(applications of the Newton algorithm)

a) The objective function f(x) = ax − log(x) is strictly convex inside the
feasible set { x ∈ R | x > 0 }, since f ′′(x) = 1/x2 > 0 there; therefore,
every local minimum in this problem is also a global one, and the global
minimum is unique, provided any exists. Now we can test the necessary
(and sufficient in this case, owing to the convexity) optimality conditions

f ′(x) = a − x−1 = 0,

x > 0,

which is uniquely solvable, giving us x∗ = a−1 > 0.

b) Direct calculations show that

xk+1 = xk − f ′(xk)/f
′′(xk) = xk(2 − axk),

which does not involve any divisions.

Assuming that xk → x̄ (and thus also xk+1 → x̄) gives us

x̄ = x̄(2 − ax̄),

which has two solutions: x̄1 = a−1 or x̄2 = 0. It is the latter solution that is
not a global/local optimum of the original problem (it is not even feasible,
to start with). One can easily obtain this solution by starting from the
point x0 = 2/a > 0, which generates x1 = 0, and thus xk = 0 for all k ≥ 1.
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c) One can for example start from the optimality conditions

g′(x) = a − x−2 = 0,

x > 0,

to end up with the strictly convex minimization problem to

minimize g(x) = ax + x−1,

subject to x > 0.

It is verified as in b) that Newton’s method for this problem involves only
simple operations (additions/subtractions and multiplications).

Question 5

(optimality conditions)

Farkas’ Lemma can be stated as follows:

Let A be an m × n matrix and b an m × 1 vector. Then exactly one of the
systems

Ax = b, (I)

x ≥ 0n,

and

ATy ≤ 0n, (II)

bTy > 0,

has a feasible solution, and the other system is inconsistent.

a) Farkas’ Lemma is proved in Theorem 11.10.

b) At x̄ := (0, 0)T, the cone of feasible directions is

RS(x̄) = {p ∈ R
2 | 2p1 − p2 = 0; p ≥ 02 }

= {p ∈ R
2 | 2p1 − p2 ≤ 0; −2p1 + p2 ≤ 0; −p1 ≤ 0; −p2 ≤ 0 }.

At x̄ := (0, 0)T, the cone of descent directions is

◦

F (x̄) = {p ∈ R
2 | ∇f(x̄)Tp < 0 } = {p ∈ R

2 | p1 + p2 > 0 }.
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To prove that the set RS(x̄)∩
◦

F (x̄) is non-empty (that is, that there exists
a feasible descent direction), we define

A :=

(

2 −2 −1 0
−1 1 0 −1

)

and b =

(

1
1

)

.

The consistency of the system (II) then is equivalent to the existence of a
feasible descent direction (with p = y). We therefore need to establish that
the system (I) is inconsistent. The consistency of this system is equivalent
to the possibility to choose a non-negative x ∈ R

4 such that

(

2 −2 −1 0
−1 1 0 −1

)

x =

(

1
1

)

.

This is however impossible. (One way to check this is via Phase I in the
Simplex method.)

We are done.

Question 6

(convexity)

The proof of Carathéodory’s Theorem can be found in Theorem 3.8 in the Course
Notes.

Question 7

(duality in linear and nonlinear optimization)

a) The LP dual is to

maximize w = bT

1 y1 +bT

2 y2 +ay3

subject to AT

1 y1 +AT

2 y2 ≤ c,
BTy1 +1`y3 ≤d,

y1 ≥ 0m1 , y2 ∈ R
m2 , y3 ∈ R,

where 1m1 is the m1-vector of ones.
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b) With g(x) := −x1 + 2x2 − 4, the Lagrange function becomes

L(x, µ) = f(x) + µg(x)

= 2x2

1 + x2

2 − 4x1 − 6x2 + µ(−x1 + 2x2 − 4).

Minimizing this function over x ∈ R
2 yields [since L(·, µ) is a strictly convex

quadratic function for every value of µ, it has a unique minimum for every
value of µ] that its minimum is attained where its gradient is zero. This
gives us that

x1(µ) = (4 + µ)/4;

x2(µ) = 3 − µ.

Inserting this into the Lagrangian function, we define the dual objective
function as

q(µ) = L(x(µ), µ) = · · · = −2

(

4 + µ

4

)2

− (3 − µ)2 − 4µ.

This function is to be maximized over µ ≥ 0. We are done with task [1].

We attempt to optimize the one-dimensional function q by setting the
derivative of q to zero. If the resulting value of µ is non-negative, then
it must be a global optimum; otherwise, the optimum is µ∗ = 0.

We have that q′(µ) = · · · = 1 − 9µ

4
, so the stationary point of q is µ = 4/9.

Since its value is positive, we know that the global maximum of q over
µ ≥ 0 is µ∗ = 4/9. We are done with task [2].

Our candidate for the global optimum in the primal problem is x(µ∗) =
1

9
(10, 23)T. Checking feasibility, we see that g(x(µ∗)) = 0. Hence, without

even evaluating the values of q(µ∗) and f(x(µ∗)) we know they must be
equal, since q(µ∗) = f(x(µ∗))+µ∗g(x(µ∗)) = f(x(µ∗)), due to the fact that
we satisfy complementarity. We have proved that strong duality holds, and
therefore task [4] is done.

By the Weak Duality Theorem 7.4 follows that if a vector x is primal
feasible and f(x) = q(µ) holds for some feasible dual vector µ, then x must
be the optimal solution to the primal problem. (And µ must be optimal in
the dual problem.) Task [4] is completed by the remark that this is exactly
the case for the pair (x(µ∗), µ∗).


