TMA947/MAN280

 APPLIED OPTIMIZATIONDate: 05-03-14
Examiner: Michael Patriksson

Question 1

(the Simplex method and sensitivity analysis in linear programming)
The problem in standard form is to

$$
\begin{array}{lrl}
\operatorname{minimize} & z=-2 x_{1}+(5+c) x_{2}-2 x_{3} \\
\text { subject to } & x_{1} & -3 x_{2}+4 x_{3}+x_{4} \quad=2, \\
& 3 x_{1} & -x_{2}-3 x_{3}+x_{5}=3-b, \\
& x_{1}, & x_{2}, \quad x_{3} \geq 0 .
\end{array}
$$

$(\mathbf{1 p}) \quad$ a) The reduced costs of $\boldsymbol{x}_{N}=\left(x_{2}, x_{4}, x_{5}\right)^{\mathrm{T}}$ are $(2.2,0.8,0.4)^{\mathrm{T}}>(0,0,0)^{\mathrm{T}}$ which means that $\boldsymbol{x}_{B}=\left(x_{1}, x_{3}\right)^{\mathrm{T}}$ corresponds to the unique optimal solution.
$(\mathbf{1 p}) \quad$ b) For $b=0$ the current basis is optimal if and only if $c \geq-11 / 5$, and for $c=0$ the basis is optimal if and only if $-3 \leq b \leq 18 / 4$.
$\mathbf{(1 p)}$ c) By choosing the entering and leaving variables according to the dual simplex method we get that x_{3} is the leaving variable and x_{2} the entering. The new basis becomes $\boldsymbol{x}_{B}=\left(x_{1}, x_{2}\right)^{\mathrm{T}}$, and it turns out that it is primal feasible and hence corresponds to an optimal solution to the modified problem.

(3p) Question 2

(Newton's method)
We have

$$
\nabla f(x, y)=\left(x^{2} / 2, y\right)^{\mathrm{T}} \quad \text { and } \quad \nabla^{2} f(x, y)=\left(\begin{array}{ll}
x & 0 \\
0 & 1
\end{array}\right)
$$

Hence the first search direction is computed by solving the system

$$
\left(\begin{array}{cc}
x_{0} & 0 \\
0 & 1
\end{array}\right) \boldsymbol{p}_{0}=\binom{-x_{0}^{2} / 2}{-y_{0}} \quad \Longleftrightarrow \quad \boldsymbol{p}_{0}=\binom{-x_{0} / 2}{-y_{0}}
$$

Hence we get that $\boldsymbol{x}_{1}=\boldsymbol{x}_{0}+\boldsymbol{p}_{0}=\left(x_{0} / 2,0\right)^{\mathrm{T}}$, and it follows that the assertion is true for $k=1$. Then use induction to show the general assertion.

The method converges to $(0,0)^{\mathrm{T}}$, which is not an optimal solution since the problem is unbounded.

Question 3

(Farkas' Lemma and other theorems of the alternative)
(2p) a) Farkas' Lemma is proved in the course notes.
$(\mathbf{1 p}) \quad$ b) We rewrite the system (I') by adding slack variables, thus producing

$$
\begin{align*}
\boldsymbol{A} \boldsymbol{x}-\boldsymbol{I}^{n} \boldsymbol{s} & =\boldsymbol{b} \tag{J'}\\
\left(\boldsymbol{x}^{\mathrm{T}}, \boldsymbol{s}^{\mathrm{T}}\right)^{\mathrm{T}} & \geq \mathbf{0}^{n} \times \mathbf{0}^{m} .
\end{align*}
$$

This system is of the form (I) where the matrix \boldsymbol{A} is replaced by $\left(\boldsymbol{A}, \boldsymbol{I}^{n}\right)$ and \boldsymbol{x} by $\left(\boldsymbol{x}^{\mathrm{T}}, \boldsymbol{s}^{\mathrm{T}}\right)^{\mathrm{T}}$. Thus, we can apply Farkas' Lemma to this system and obtain a corresponding dual system,

$$
\begin{align*}
\boldsymbol{A}^{\mathrm{T}} \boldsymbol{y} & \leq \mathbf{0}^{n}, \tag{JJ'}\\
-\boldsymbol{y} & \leq \mathbf{0}^{n}, \\
\boldsymbol{b}^{\mathrm{T}} \boldsymbol{y} & >0 .
\end{align*}
$$

This system then has a solution if and only if (J^{\prime}) does not, and vice versa. Since the system (JJ^{\prime}) is the same as (II'), we have completed the proof.

Question 4

(optimality)
(1p) a) Abadie's CQ is fulfilled, since the four constraints all are linear (or, affine).
At \boldsymbol{x}^{*} we satisfy all primal constraints, so it is primal feasible. The active constraints have the form

$$
\begin{aligned}
g_{1}(\boldsymbol{x}) & :=-x_{1}+1 \leq 0, \\
g_{3}(\boldsymbol{x}) & :=-x_{2}+1 \leq 0 .
\end{aligned}
$$

Since we have that $\nabla f\left(\boldsymbol{x}^{*}\right)=(\mathrm{e}, 1)^{\mathrm{T}}$, solving the system of equations

$$
\nabla f\left(\boldsymbol{x}^{*}\right)+\sum_{i \in \mathcal{I}\left(x^{*}\right)} \mu_{i}^{*} \nabla g_{i}\left(\boldsymbol{x}^{*}\right)=\mathbf{0}^{n}
$$

yields $\boldsymbol{\mu}^{*}=(\mathrm{e}, 0,1,0)^{\mathrm{T}}$. Since $\boldsymbol{\mu}^{*} \geq \mathbf{0}^{4}$, we satisfy the KKT conditions.
$(\mathbf{1 p}) \quad$ b) At \boldsymbol{x}^{*} the matrix $\nabla^{2} f\left(\boldsymbol{x}^{*}\right)$ is not positive semi-definite; it is actually indefinite, so the problem is not convex. Therefore, the fact that the KKT conditions are satisfied cannot be used to conclude that \boldsymbol{x}^{*} is a global optimum.

However, we can conclude that it is a global optimum, in fact the unique global optimum, by studying the objective function on the feasible region. It is clear that the first term is non-negative on this set, and the second term is strictly increasing in x_{1} and therefore has a minimum at $x_{1}=1$. A lower bound for the objective value on the feasible set therefore is e, which is exactly what is attained at \boldsymbol{x}^{*}. Hence, it is globally optimal.
$\mathbf{(1 p)} \quad$ c) Since the problem is convex, the KKT conditions imply that \boldsymbol{x}^{*} is globally optimal, regardless of any CQ being fulfilled or not.

(3p) Question 5

(the variational inequality)
Consider the equivalent problem (in the sense that it has the same set of optimal solutions as the original problem) to

$$
\begin{array}{ll}
\operatorname{minimize} & g(\boldsymbol{x}):=-\ln \left(\sum_{i=1}^{n} c_{i} x_{i}\right)-\ln \left(\sum_{i=1}^{n} \frac{1}{c_{i}} x_{i}\right) \\
\text { subject to } & \sum_{i=1}^{n} x_{i}=1, \\
& x_{i} \geq 0, \quad i=1, \ldots, n .
\end{array}
$$

From the variational inequality it follows that

$$
\begin{equation*}
x_{i}>0 \Longrightarrow \frac{\partial g}{\partial x_{i}}(\boldsymbol{x}) \leq \frac{\partial g}{\partial x_{j}}(\boldsymbol{x}), \quad j=1, \ldots, n \tag{1}
\end{equation*}
$$

for every optimal solution \boldsymbol{x}. We have

$$
\frac{\partial g}{\partial x_{i}}(\boldsymbol{x})=-\frac{c_{i}}{\sum_{k=1}^{n} c_{k} x_{k}}-\frac{1}{c_{i}\left(\sum_{k=1}^{n} x_{k} / c_{k}\right)}
$$

Let $a:=\sum_{k=1}^{n} c_{k} x_{k}$ and $b:=\sum_{k=1}^{n} x_{k} / c_{k}$, and consider the function

$$
h(t):=-a t-\frac{1}{b t} \Longrightarrow h\left(c_{i}\right)=\frac{\partial g}{\partial x_{i}}(\boldsymbol{x}) .
$$

We have that

$$
h^{\prime}(t)=-a+\frac{1}{b t^{2}}, \quad h^{\prime \prime}(t)=-\frac{2}{b t^{3}}
$$

which means that h is strictly concave for all $t>0$. Hence, since $c_{1}<c_{i}<c_{n}$ for $i=2, \ldots, n-1$, it holds that

$$
h\left(c_{i}\right)>\min \left\{h\left(c_{1}\right), h\left(c_{n}\right)\right\}, \quad i=2, \ldots, n-1 .
$$

This together with (1) imply that $x_{2}=x_{3}=\cdots=x_{n-1}=0$ for every optimal solution. Now, assume that $x_{1}, x_{n}>0$. Then by (1) it must hold that

$$
h\left(c_{1}\right)=h\left(c_{n}\right) \quad \Longleftrightarrow \quad x_{1}=x_{n}
$$

and since $\sum_{i=1}^{n} x_{i}=1$ we get $x_{1}=x_{n}=1 / 2$. The other possibilities are that $x_{1}=1, x_{n}=0$, or $x_{1}=0, x_{n}=1$. Assume that $x_{1}=1$ and $x_{n}=0$. Then it follows that $h\left(c_{1}\right)=-2$. But we also have that

$$
h\left(c_{n}\right)=-\frac{c_{n}}{c_{1}}-\frac{c_{1}}{c_{n}}=-\frac{\left(c_{n}-c_{1}\right)^{2}}{c_{1} c_{n}}-2<-2,
$$

which means that $h\left(c_{1}\right)>h\left(c_{n}\right)$, so (1) is not fulfilled and $x_{1}=1, x_{n}=0$ cannot be an optimal solution. Similarly it follows that $x_{1}=0, x_{n}=1$ cannot be optimal. Therefore we only have one solution, i.e. $x_{1}=x_{n}=1 / 2$, that might fulfill the variational inequality, and since the existence of an optimal solution is clear, this solution must be the unique optimal solution.

(3p) Question 6

(modelling)

Introduce the variables
$x_{i j d}= \begin{cases}1 & \text { if player } i \text { meets player } j \text { day } d, \\ 0 & \text { otherwise },\end{cases}$
$z_{i j}= \begin{cases}1 & \text { if there has been a meeting between player } i \text { and } j \text { during the week, } \\ 0 & \text { otherwise },\end{cases}$
and introduce the set $I=\{1, \ldots, 20\}$. Then the following integer linear program
solves the problem:

$$
\begin{array}{ll}
\text { maximize } & \sum_{i=1}^{19} \sum_{j=i+1}^{20} z_{i j} \\
\text { subject to } & \sum_{j \in I \backslash\{i\}} x_{i j d}=3, \quad i \in I, \quad d=1, \ldots, 7, \\
& x_{i j d}=x_{j i d}, \quad i, j \in I, \quad d=1, \ldots, 7, \\
& x_{i k d}-x_{j k d} \leq 1-x_{i j d}, \quad i \in I, \quad j \in I \backslash\{i\}, \quad k \in I \backslash\{i, j\}, \\
& z_{i j} \leq \sum_{d=1}^{7} x_{i j d}, \quad i=1, \ldots, 19, \quad j=i+1, \ldots, 20, \\
& x_{i j d}, \quad z_{i j} \in\{0,1\} .
\end{array}
$$

Note that the integer requirements on the $z_{i j}$-variables can be relaxed.

Question 7

(convex analysis)

(2p) a) We establish the result thus: $1 \Longrightarrow 2 \Longrightarrow 3 \Longrightarrow 1$:
$[1 \Longrightarrow 2]$ By the statement 1., we have that $f(\boldsymbol{y}) \geq f\left(\boldsymbol{x}^{*}\right)$ for every $y \in$ \mathbb{R}^{n}. This implies that for $\boldsymbol{g}=\mathbf{0}^{n}$, we satisfy the subgradient inequality (1). This establishes the statement 2.
[2 $\Longrightarrow 3]$ With $\boldsymbol{g}=\mathbf{0}^{n}$ the definition of $\partial f\left(\boldsymbol{x}^{*}\right)$ in (4) yields immediately the statement 3.
[3 $\Longrightarrow 1]$ By (3) and the compactness of the subdifferential (cf. Weierstrass' Theorem) the maximum is attained at some $\boldsymbol{g} \in \partial f\left(\boldsymbol{x}^{*}\right)$. It follows that, in the subgradient inequality, we get that

$$
f\left(\boldsymbol{x}^{*}+\boldsymbol{p}\right) \geq f\left(\boldsymbol{x}^{*}\right)+\boldsymbol{g}^{\mathrm{T}} \boldsymbol{p} \geq f\left(\boldsymbol{x}^{*}\right), \quad \forall p \in \mathbb{R}^{n}
$$

which is equivalent to the statement 1 .
(1p) b) The answer is no.
Example 1: $f(x):=x^{3}$, and $x^{*}=0$. This is an example where the derivative is zero, yet $p=-1$ is a descent direction.
Example 2: Any non-convex function $f \in C^{2}$ where \boldsymbol{x}^{*} is a saddle point. In this case, $\nabla f\left(\boldsymbol{x}^{*}\right)=\mathbf{0}^{n}$, but there exists a descent direction given by an eigenvector corresponding to a negative eigenvalue of $\nabla^{2} f\left(\boldsymbol{x}^{*}\right)$. Suppose
that λ is a negative eigenvalue of $\nabla^{2} f\left(\boldsymbol{x}^{*}\right)$, and that \boldsymbol{p} is a corresponding eigenvector. Then,

$$
\begin{aligned}
\nabla^{2} f\left(\boldsymbol{x}^{*}\right) \boldsymbol{p} & =\lambda \boldsymbol{p} \quad \Longrightarrow \\
\boldsymbol{p}^{\mathrm{T}} \nabla^{2} f\left(\boldsymbol{x}^{*}\right) \boldsymbol{p} & =\lambda\|\boldsymbol{p}\|^{2}<0 \quad \Longrightarrow \\
f\left(\boldsymbol{x}^{*}+\alpha \boldsymbol{p}\right) & =f\left(\boldsymbol{x}^{*}\right)+\alpha \nabla f\left(\boldsymbol{x}^{*}\right)^{\mathrm{T}} \boldsymbol{p}+\frac{\alpha^{2}}{2} \boldsymbol{p}^{\mathrm{T}} \nabla^{2} f\left(\boldsymbol{x}^{*}\right) \boldsymbol{p}+o\left(\alpha^{2}\right) \\
& <f\left(\boldsymbol{x}^{*}\right)
\end{aligned}
$$

for every small enough $\alpha>0$.

