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Question 1

(the simplex method)

a) The problem in standard form is to(2p)

minimize x1 + 2 x2− x3

subject to x1 + 2 x2− x3+ x4 = 1,

2 x1− x2 −x5= 1,

x1, x2, x3, x4, x5 ≥ 0.

Introduce an artificial variable in the second constraint to get the phase I
problem to

minimize w = a

subject to x1 + 2 x2− x3+ x4 = 1,

2 x1− x2 − x5+a= 1,

x1, x2, x3, x4, x5, a≥ 0.

Start with the basis xB = (x4, a)T. The simplex method then gives that x1

is the entering variable and a the leaving. Hence we have found a feasible
solution for which a = 0, which means that xB = (x4, x1)

T is a feasible so-
lution to the phase II problem. The reduced costs of the nonbasic variables
xN = (x2, x3, x5)

T become

cT
N − cT

BB−1N = (5/2,−1, 1/2)T,

which means that x3 is the entering variable. Further, we have that

B−1b = (1/2, 1/2)T,

B−1N 2 = (−1, 0)T.

Hence it follows that the phase II problem is unbounded, and we can draw
the conclusion that the original problem (P) is unbounded.

b) Since (P) is unbounded it follows from weak duality that its linear program-(1p)
ming dual is infeasible.
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Question 2(3p)

(application of the Levenberg–Marquardt algorithm)

With a unit step the Levenberg–Marquardt algorithm is, for a given xk, to gen-
erate xk+1 through the formula

xk+1 = xk −∇
2f(xk + γkI

n)−1
∇f(xk),

where γk ≥ 0 is the shift used in iteration k.

For the given problem and starting point,

f(x0) = 0; ∇f(x0) =

(

1
−1

)

; ∇
2f(x0) =

(

0 0
0 2

)

.

With the shift γ0 the next iterate therefore is
(

1
1

)

−

(

1/γ0

−1/(2 + γ0)

)

.

Inserting this into f yields that it is enough to set the value of γ0 to something
slightly larger than 1, while a choice of γ0 = 1 would produce an undefined value
of f (notice the presence of the logarithmic terms).

With γ0 = 2 we obtain x1 = (1/2, 5/4)T with f(x1) ≈ −0.76.

Question 3(3p)

(on the SQP algorithm and the KKT conditions)

The result is based on a comparison between the KKT conditions of the original
problem,

minimize f(x), (1a)

subject to gi(x) ≤ 0, i = 1, . . . , m, (1b)

hj(x) = 0, j = 1, . . . , ℓ, (1c)

and those of the SQP subproblem,

minimize
p

1

2
pTBkp + ∇f(xk)

Tp, (2a)

subject to gi(xk) + ∇gi(xk)
Tp ≤ 0, i = 1, . . . , m, (2b)

hj(xk) + ∇hj(xk)
Tp = 0, j = 1, . . . , ℓ. (2c)
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We first note that the latter problem is a convex one (the matrix Bk was assumed
to be positive semidefinite), and that the solution pk is characterized by its KKT
conditions, since the constraints are linear (so that Abadie’s CQ is fulfilled). It
remains to compare the two problems’ KKT conditions. With pk = 0n they are
in fact identical!

Question 4(3p)

(convexity)

We have the following convexity characterization:

f(y) ≥ f(z) + f ′(z)T(y − z).

The assertion follows by letting y = g(x) and z =
∫R h(x)g(x) dx, then multiply

both the sides by h(x), and finally integrate both sides over R.

Question 5(3p)

(strong duality in linear programming)

See the notes for the proof.

Question 6

(Lagrangian duality)

a) We obtain that(1p)

q(µ) =



















2µ + 31
2
, if µ ≤ 2,

−1
2
(µ − 1)2 + 3µ + 2, if 2 ≤ µ ≤ 6,

−1
2
(µ − 1)2 − 4 (2+µ)

8

2
+ 4µ, if µ ≥ 6.

b) q(0) = 31
2
; q(5

2
) = 65

8
; q(5) = 9.(1p)

f(2, 2) = 16; f(1, 3) = 311
2
; f(3, 1) = 91

2
.

Conclusion: f ∗ ∈ [9, 91
2
].
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c) From a) we obtain that(1p)

q(µ) =















2, if µ ≤ 2,

−(µ − 1) + 3, if 2 ≤ µ ≤ 6,

−(µ − 1) − 2+µ

8
+ 4, if µ ≥ 6.

q′(0) = 2; q′(5
2
) = 3

2
; q′(5) = −1.

We note that the function q is concave and differentiable, and therefore its
derivative is decreasing. According to the above, it must have a stationary
point, hence the optimal solution, within the closed interval [5

2
, 5] which

hence defines an interval wherein the optimum lies.

Question 7(3p)

(modelling)

For d = 1, . . . , 6 and m = 1, . . . , 7, introduce the integer variables

xdm = number of mesh panels of type m used between door d − 1 and d,

where “door” 0 is the wall on the left-hand side and “door” 6 is the wall on
the right-hand side. Further, let cm and wm, respectively, be the cost and the
width, respectively, of mesh panel m for m = 1, . . . , 7, and let l1, . . . , l5 denote
the lengths of the sections AB, BC, CD, DE, and EF. Then the following integer
linear program solves the problem:

minimize
7
∑

m=1

6
∑

d=1

cmxdm

subject to
7
∑

m=1

k
∑

d=1

wmxdm + 90k ≤

k
∑

i=1

li, k = 1, . . . , 5,

7
∑

m=1

k+1
∑

d=1

wmxdm + 90k ≥

k
∑

i=1

li, k = 1, . . . , 4,

7
∑

m=1

k+1
∑

d=1

wmxdm + 90k =
k
∑

i=1

li, k = 5,

xdm ∈ Z
6×7
+ .


