TMA947/MAN280

APPLIED OPTIMIZATION

Date: 05-04-02
Examiner: Michael Patriksson

Question 1

(the simplex method)
$(2 \mathbf{p})$ a) The problem in standard form is to

$$
\begin{array}{rlr}
\operatorname{minimize} & x_{1}+2 x_{2}-x_{3} \\
\text { subject to } & x_{1}+2 x_{2}-x_{3}+x_{4}=1 \\
& 2 x_{1}-x_{2},-x_{5}=1 \\
& x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4}, \quad x_{5} \geq 0
\end{array}
$$

Introduce an artificial variable in the second constraint to get the phase I problem to

$$
\begin{aligned}
& \operatorname{minimize} w= \\
& \text { subject to } x_{1}+2 x_{2}-x_{3}+x_{4} \\
& 2 x_{1}- \\
& x_{2}-x_{5}+a=1 \\
& x_{1}, \\
& x_{2}, x_{3}, \\
& x_{4}, x_{5}, \quad a \geq 0
\end{aligned}
$$

Start with the basis $\boldsymbol{x}_{B}=\left(x_{4}, a\right)^{\mathrm{T}}$. The simplex method then gives that x_{1} is the entering variable and a the leaving. Hence we have found a feasible solution for which $a=0$, which means that $\boldsymbol{x}_{B}=\left(x_{4}, x_{1}\right)^{\mathrm{T}}$ is a feasible solution to the phase II problem. The reduced costs of the nonbasic variables $\boldsymbol{x}_{N}=\left(x_{2}, x_{3}, x_{5}\right)^{\mathrm{T}}$ become

$$
\boldsymbol{c}_{N}^{\mathrm{T}}-\boldsymbol{c}_{B}^{\mathrm{T}} \boldsymbol{B}^{-1} \boldsymbol{N}=(5 / 2,-1,1 / 2)^{\mathrm{T}},
$$

which means that x_{3} is the entering variable. Further, we have that

$$
\begin{aligned}
\boldsymbol{B}^{-1} \boldsymbol{b} & =(1 / 2,1 / 2)^{\mathrm{T}} \\
\boldsymbol{B}^{-1} \boldsymbol{N}_{2} & =(-1,0)^{\mathrm{T}}
\end{aligned}
$$

Hence it follows that the phase II problem is unbounded, and we can draw the conclusion that the original problem (P) is unbounded.
$(\mathbf{1 p}) \quad$ b) Since (P) is unbounded it follows from weak duality that its linear programming dual is infeasible.

(3p) Question 2

(application of the Levenberg-Marquardt algorithm)

With a unit step the Levenberg-Marquardt algorithm is, for a given \boldsymbol{x}_{k}, to generate \boldsymbol{x}_{k+1} through the formula

$$
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-\nabla^{2} f\left(\boldsymbol{x}_{k}+\gamma_{k} \boldsymbol{I}^{n}\right)^{-1} \nabla f\left(\boldsymbol{x}_{k}\right),
$$

where $\gamma_{k} \geq 0$ is the shift used in iteration k.
For the given problem and starting point,

$$
f\left(\boldsymbol{x}_{0}\right)=0 ; \nabla f\left(\boldsymbol{x}_{0}\right)=\binom{1}{-1} ; \nabla^{2} f\left(\boldsymbol{x}_{0}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 2
\end{array}\right)
$$

With the shift γ_{0} the next iterate therefore is

$$
\binom{1}{1}-\binom{1 / \gamma_{0}}{-1 /\left(2+\gamma_{0}\right)}
$$

Inserting this into f yields that it is enough to set the value of γ_{0} to something slightly larger than 1 , while a choice of $\gamma_{0}=1$ would produce an undefined value of f (notice the presence of the logarithmic terms).

With $\gamma_{0}=2$ we obtain $\boldsymbol{x}_{1}=(1 / 2,5 / 4)^{\mathrm{T}}$ with $f\left(\boldsymbol{x}_{1}\right) \approx-0.76$.

(3p) Question 3

(on the SQP algorithm and the KKT conditions)
The result is based on a comparison between the KKT conditions of the original problem,

$$
\begin{align*}
\operatorname{minimize} & f(\boldsymbol{x}), \tag{1a}\\
\text { subject to } & g_{i}(\boldsymbol{x}) \leq 0, \tag{1b}\\
h_{j}(\boldsymbol{x})=0, & i=1, \ldots, m \tag{1c}\\
& j=1, \ldots, \ell
\end{align*}
$$

and those of the SQP subproblem,

$$
\begin{array}{rlr}
\underset{p}{\operatorname{minimize}} & \frac{1}{2} \boldsymbol{p}^{\mathrm{T}} \boldsymbol{B}_{k} \boldsymbol{p}+\nabla f\left(\boldsymbol{x}_{k}\right)^{\mathrm{T}} \boldsymbol{p}, \\
\text { subject to } & g_{i}\left(\boldsymbol{x}_{k}\right)+\nabla g_{i}\left(\boldsymbol{x}_{k}\right)^{\mathrm{T}} \boldsymbol{p} \leq 0, \quad i=1, \ldots, m \\
& h_{j}\left(\boldsymbol{x}_{k}\right)+\nabla h_{j}\left(\boldsymbol{x}_{k}\right)^{\mathrm{T}} \boldsymbol{p}=0, \quad j=1, \ldots, \ell \tag{2c}
\end{array}
$$

We first note that the latter problem is a convex one (the matrix \boldsymbol{B}_{k} was assumed to be positive semidefinite), and that the solution \boldsymbol{p}_{k} is characterized by its KKT conditions, since the constraints are linear (so that Abadie's CQ is fulfilled). It remains to compare the two problems' KKT conditions. With $\boldsymbol{p}_{k}=\mathbf{0}^{n}$ they are in fact identical!

(3p) Question 4

(convexity)
We have the following convexity characterization:

$$
f(y) \geq f(z)+f^{\prime}(z)^{\mathrm{T}}(y-z)
$$

The assertion follows by letting $y=g(x)$ and $z=\int_{\mathbb{R}} h(x) g(x) d x$, then multiply both the sides by $h(x)$, and finally integrate both sides over \mathbb{R}.

(3p) Question 5

(strong duality in linear programming)
See the notes for the proof.

Question 6

(Lagrangian duality)
(1p) a) We obtain that

$$
q(\mu)= \begin{cases}2 \mu+3 \frac{1}{2}, & \text { if } \mu \leq 2 \\ -\frac{1}{2}(\mu-1)^{2}+3 \mu+2, & \text { if } 2 \leq \mu \leq 6 \\ -\frac{1}{2}(\mu-1)^{2}-4 \frac{(2+\mu)}{8}^{2}+4 \mu, & \text { if } \mu \geq 6\end{cases}
$$

$(1 \mathbf{p}) \quad$ b) $q(0)=3 \frac{1}{2} ; q\left(\frac{5}{2}\right)=\frac{65}{8} ; q(5)=9$. $f(2,2)=16 ; f(1,3)=31 \frac{1}{2} ; f(3,1)=9 \frac{1}{2}$.
Conclusion: $f^{*} \in\left[9,9 \frac{1}{2}\right]$.
$(1 p)$ c) From a) we obtain that

$$
q(\mu)= \begin{cases}2, & \text { if } \mu \leq 2 \\ -(\mu-1)+3, & \text { if } 2 \leq \mu \leq 6 \\ -(\mu-1)-\frac{2+\mu}{8}+4, & \text { if } \mu \geq 6\end{cases}
$$

$q^{\prime}(0)=2 ; q^{\prime}\left(\frac{5}{2}\right)=\frac{3}{2} ; q^{\prime}(5)=-1$.
We note that the function q is concave and differentiable, and therefore its derivative is decreasing. According to the above, it must have a stationary point, hence the optimal solution, within the closed interval $\left[\frac{5}{2}, 5\right]$ which hence defines an interval wherein the optimum lies.

(3p) Question 7

(modelling)

For $d=1, \ldots, 6$ and $m=1, \ldots, 7$, introduce the integer variables

$$
x_{d m}=\text { number of mesh panels of type } m \text { used between door } d-1 \text { and } d,
$$

where "door" 0 is the wall on the left-hand side and "door" 6 is the wall on the right-hand side. Further, let c_{m} and w_{m}, respectively, be the cost and the width, respectively, of mesh panel m for $m=1, \ldots, 7$, and let l_{1}, \ldots, l_{5} denote the lengths of the sections $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DE}$, and EF . Then the following integer linear program solves the problem:

$$
\begin{array}{ll}
\text { minimize } & \sum_{m=1}^{7} \sum_{d=1}^{6} c_{m} x_{d m} \\
\text { subject to } & \sum_{m=1}^{7} \sum_{d=1}^{k} w_{m} x_{d m}+90 k \leq \sum_{i=1}^{k} l_{i}, \quad k=1, \ldots, 5, \\
& \sum_{m=1}^{7} \sum_{d=1}^{k+1} w_{m} x_{d m}+90 k \geq \sum_{i=1}^{k} l_{i}, \quad k=1, \ldots, 4, \\
& \sum_{m=1}^{7} \sum_{d=1}^{k+1} w_{m} x_{d m}+90 k=\sum_{i=1}^{k} l_{i}, \quad k=5, \\
& x_{d m} \in \mathbb{Z}_{+}^{6 \times 7} .
\end{array}
$$

