
Active set methods

already quite early on in the solution process. The basis for this be-
haviour is the congestion effects that imply that several OD pairs need
more than one route to have a positive volume at the solution; this
means that the optimal link volume is not an extreme point, and the
solutions to (12.2) will zig-zag between assigning the total volume onto
these routes.

12.6 Active set methods

Reduced gradient, Newton, MINOS
Manifold optimization—constrained Newton (Bertsekas)
Leyffer

12.7 ∗Algorithms given by closed maps

Previously in this chapter we have seen convergence theorems for a sam-
ple of algorithms for the optimization problem (12.1). While we did not
stress it, their convergence hinges on a special property of the map (or,
mapping) that describes the various steps defining a complete iteration
of the algorithm; it is this property that we shall here study in detail. In
so doing, we will not only provide alternative proofs of some convergence
theorems established previously, but we will also provide a framework
for proving convergence theorems for new algorithms.

12.7.1 Algorithmic maps

Consider the simplest algorithm from this and the previous chapter: the
steepest descent method using an exact line search. Given an iterate
xk ∈ Rn we can describe an iteration of this algorithm as follows: Let
the search direction be defined by pk := −∇f(xk); next, let αk ≥ 0 be a
step length for which f(xk + αpk) is minimal over all α ≥ 0; finally, let
xk+1 := xk + αkpk. This iteration, or algorithmic map, as we shall call
it, can then be described as the composition of maps two, namely the
construction of the search direction, followed by an exact line search:

xk+1 := E(D(xk)),

where

D(x) := {p ∈ Rn | p = −∇f(x) },

E(x, p) :=

{
y = x + αp ∈ Rn, α ≥ 0 | f(y) = min

`≥0
f(x + `p)

}
.
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Composite maps like E(D) above will, for simplicity, be written as ED.
Formally, suppose that X ⊂ Rn, Z ⊂ Rp and Y ⊂ Rq , and consider

the point-to-set maps B : X → Z and C : Z → Y . The composite map
A = CB then is the point-to-set map A : X → Y with

A(x) = ∪{C(z) | z ∈ B(x) }.

The map D is simple enough; if f ∈ C1(Rn) then D is a continuous
point-to-point map. The case of the exact line search map E is more
difficult, because the minimizing step length α need not be unique (unless
f is strictly convex, cf. Proposition 4.11). In general, therefore, the line
search map E is not a point-to-point map, but a point-to-set map.

A point-to-set map of type D arising in this chapter is the one de-
scribing the Frank–Wolfe subproblem, in which one assigns to an iterate
xk an optimal solution to a linear approximation of the original problem
through a first-order Taylor expansion of f around xk (cf. Section 12.2):

D(x) := {p ∈ Rn | p = y − x, y ∈ X,

and ∇f(x)Ty ≤ ∇f(x)Tz, ∀z ∈ X }.

Since linear programs are not always guaranteed to have unique optimal
solutions, the Frank–Wolfe algorithm is in fact then described by the
composition of two point-to-set maps of type D and E, respectively.

Let us next look at algorithmic maps for a small example problem.

Example 12.6 (algorithmic maps for a small example) Consider the prob-
lem of minimizing f(x) := 1

2x2 over R. Consider the following three
algorithmic maps:

(a) A1(x) = 1
2x, x ∈ R;

(b) A2(x) =

{
[ 12x, 0], if x < 0,

[0, 1
2x], if x ≥ 0,

; and

(c) A3(x) =

{
1
2x, if x < 2,

1 + 1
2x, if x ≥ 2.

Figure 12.4 illustrates the three maps.
Each figure shows the graph of a map A, namely a set of the form

{ (x, y) ∈ R × R | y ∈ A(x) }. An algorithm then is constructed thus:
choose x0 ∈ R, and let xk+1 ∈ A(xk) for k = 1, 2, . . . .

In all three cases, it holds that f(xk+1) < f(xk) if xk 6= 0, that
is, each algorithm produces sequences of descending objective values.
The first two maps induce convergent algorithms, as for any starting
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Figure 12.4: Three algorithmic maps.

point x0 the sequences generated converge to x∗ = 0. In case (a), the
sequence is given once x0 is, while in case (b) there is an infinite number
of possible sequences starting at x0 and converging to x∗ = 0. The third
mapping does not induce a convergent algorithm, because for starting
points x0 > 2 the sequence converges to 2, which is not an optimal
solution.

Summarizing the above, we see that the first two algorithms con-
verge, while the algorithm given in (c) does not converge in general; its
convergence depends on the starting point. It is also the case that they
are all descent algorithms, but as case (c) shows, that property alone
does not imply that an algorithm is convergent.

The algorithms are of course constructed especially for the problem
instance given. Typically when designing algorithms based on algorih-
mic maps one is interested in designing maps for which convergence is
induced for a larger class of problems and for any starting point. We next
turn to the important property of the closedness of a mapping, which is
present in cases (a) and (b) above, but not in case (c), thus explaining
the latter algorithm’s failure.

12.7.2 Closed maps

We recall that the concept of a closed map already appears in Proposi-
tion 6.17(b), there described as an intrinsic property of the subgradient
mapping of a convex function. We repeat the definition for ease of access.

Definition 12.7 (closed map) Let Z ⊆ Rp and Y ⊆ Rq be non-empty
and closed sets. Let A : Z → Y be a point-to-set map, that is, a map
for which Z(z) ⊆ Y holds for every z ∈ Z. Then, we say that the map
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A is closed at z ∈ Z if for any sequences {zk} and {yk} satisfying

zk ∈ Z, zk → z,

yk ∈ A(zk), yk → y,

we have that

y ∈ A(z).

We say that A is closed on Z0 ⊆ Z if it is closed at each point in Z0.

The meaning of the term closed is best understood through an ex-
ample. Suppose that Z = [a, b] and Y = [c, d] where a, b, c, and d are
reals with a < b and c < d. Then, for each z ∈ Z the value of A(z) is a
sub-interval of [b, c]. Consider then sequences {zk} ⊆ Z and {yk} ⊆ Y
such that yk ∈ A(zk) for all k, and limit points z and y, respectively.
Figure 12.5 illustrates that a closed map cannot “shrink”; at the point z
given, the map A is not continuous, but the set A(z) is larger than sets
A(w) for points w near w.

PSfrag replacements

a b

c

d

z

Figure 12.5: The graph of a closed map.

The graph of A is the set { (z, y) | z ∈ Z, y ∈ A(z) }. Notice that this
set is closed when A is a closed map; this is in fact a characterization of
closed maps, and the reason for its name.

Notice then that the map A in case (c) of Example 12.6 is not closed
at x = 2.

The closedness of a map is a property not only important for the
analysis of algorithms. It is also an important stability property of, for
example, sets of optimal solutions to parametric optimization problems.
The next example illustrates this.
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Theorem 12.8 (solution sets of linear programs are closed maps) Let
X ⊆ Rn be a nonempty polyhedron. Consider a sequence {ck} of cost
vectors ck ∈ Rn, and let c ∈ Rn be a limit point. Correspondingly, let
for each k

xk ∈ X∗(ck) := { x∗ ∈ Rn | x∗ minimizes cT
k x over x ∈ X }.

Then, any limit point of {xk} is in X∗(c), that is, any limit of the
sequence xk of optimal solutions solves the limit LP problem. In other
words, X∗ is a closed mapping on Rn.

Proof. We have that cT
k xk ≤ cT

k y for every y ∈ X . Letting k → ∞
then yields that cTx ≤ cTy for every y ∈ X , that is, x ∈ X(c).

One can in fact prove a stronger result still: there exists a neigh-
bourhood N(c) of c such that X∗(d) ⊂ X∗(c) for every d ∈ N(c). As
applied to the above setting it implies that xk ∈ X∗(c) already after a
finite integer k, and not just in the limit. Since this result requires more
theory about polyhedral sets, notably the concept of faces, we provide
references to the literature in the Notes section.

In the remainander of the section we establish the convergence of
descent algorithms described by closed algorithmic maps

12.7.3 A convergence theorem

Lemma 12.9 (convergence of monotone sequences) Let m : X → R be
a continuous function. Suppose there exists a sequence {xk} in X such
that

(1) m(xk+1) ≤ m(xk) for all k, and

(1) limk∈K xk = x∞, for some subsequence K ⊂ Z+.

Then
lim

k→∞
m(xk) = lim

k∈K
m(xk) = m(x∞).

Proof. the continuity of m ensures that

lim
k∈K

m(xk) = m(x∞). (12.22)

From (1) the sequence {m(xk)} is monotone, so for any l ∈ Z+ we have
that

m(xl) ≥ m(x∞). (12.23)
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Using (12.22) and the definition of limit, given ε > 0, there exists a
kε ∈ K such that for K 3 k ≥ kε

m(xk) − m(x∞) < ε. (12.24)

For l ≥ kε, by (a) it holds that

m(xl) ≤ m(xkε
). (12.25)

From (12.23)–(12.25) then follows that

|m(xl) − m(x∞)| < ε

for all l ≥ kε, and we are done.

Before stating and proving the main result we need to introduce one
further notion. We call a point x∗ a solution point if it belongs to the
solution set, the latter being denoted by Ω. In our context the set Ω
can be the set of stationary points, the local or global optimal solutions
to the optimization problem at hand, the pairs of primal–dual optimal
solutions to a convex program, or the primal–dual pair of KKT vectors
in a given problem. The main point is that the above algorithm will be
devised and established for the convergence of sequences to this set Ω.

The function m introduced in the above lemma will be the function
that monitors convergence; it will often be the objective function f but
it could also be chosen as another measure of distance from the solution
set, such as the norm of the gradient of f in the case of unconstrained
optimization. Clearly, in the convergence result to follow we see that the
solution set Ω and the function m are intimately connected.

Theorem 12.10 (convergence of a generic algorithm) Let the point-to-
set map A : V → V describe an algorithm that given x0 ∈ V generates
the sequence {xk}. Also, let a solution set Ω ⊂ V be given. Suppose

(1) all points xk lie in a compact subset X ⊂ V ;

(2) there exists a continuous function m : V → R such that:

(i) if x is not a solution, then for any y ∈ A(x) it holds that
m(y) < m(x);

(ii) if x is a solution then either the algorithm stops or for any
y ∈ A(x) it holds that m(y) ≤ m(x);

and

(3) the map A is closed at x if x is not a solution.
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Then, either the algorithm terminates finitely at a solution, or the limit
of any convergent subsequence is a solution. Further, for some x∗ ∈ Ω
it holds that m(xk) → m(x∗).

Proof. If the algorithm terminates, then it does so at a solution, cf.
(2)(ii), so suppose that the sequence generated is infinite.

By (1) there must be a convergent subsequence K such that limk∈K xk =
x∞. By (2) we can invoke Lemma 12.9 to state that

lim
k→∞

m(xk) = m(x∞). (12.26)

Consider next the subsequence {xk+1}k∈K. By (1) there must be a
subsequence K1 ⊂ K such that limk∈K1 xk+1 = x∞+1, and again from
Lemma 12.9 we must have that

lim
k→∞

m(xk+1) = m(x∞+1). (12.27)

Equations (12.26) and (12.27) then yield that

m(x∞+1) = m(x∞). (12.28)

To complete the proof we assume that x∞ is not a solution, and
proceed to establish a contradiction. It holds from the construction of
the algorithm, and the above, that

lim
k∈K1

xk = x∞,

xk+1 ∈ A(xk), k ∈ K1,

and

lim
k∈K1

xk+1 = x∞+1.

Then, by (3),
x∞+1 ∈ A(x∞).

Since we assumed x∞ is not a solution it follows from (2)(i) that

m(x∞+1) < m(x∞). (12.29)

But the two statements (12.28) and (12.29) are contradictory, whence
our assumption was wrong. We conclude that x∞ is a solution.

The second part of the theorem follows from the above and (12.26).
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Corollary 12.11 (convergence to unique solutions) Under the assump-
tions of the theorem, if Ω is the singleton x∗ then the sequence {xk}
converges to it.

Proof. Suppose that there exists a subsequence K such that for some
ε > 0, ‖xk − x∗‖ > ε holds for every k ∈ K. Then take a convergent
subsequence K1 of K, and assume that {xk}k∈K1 converges to x1. By
the first part of the theorem x1 ∈ Ω holds. But Ω = {x∗}, so x1 = x∗

must hold, contradicting our first claim.

12.7.4 Additional results on composite maps

We next provide additional results that will enable us to utilize the above
theorem in establishing the convergence of concrete algorithms. Recall
the examples in Section 12.7.1 showing that a typical algorithm is formed
as a composite map, including one that describes the generation of a
descent direction, and one that describes a line search. A convergence
analysis will be simpler if we can perform it for each map separately.
The below results provide examples of analyses for some simple maps,
as well as that of a map composed by closed algorithmic maps.

Proposition 12.12 (closed composite maps) Let X ⊂ Rn, Z ⊂ Rp, and
Y ⊂ Rq be nonempty, closed sets. Let B : X → Z and C : Z → Y be
point-to-set maps, and consider the composite map A : X → Y defined
by A = CB. Suppose that B is closed at x and that C is closed at B(x).
Moreover, suppose that if xk → x and zk ∈ B(xk) then there exists a
convergent subsequence of {zk}. Then the composite map A is closed
at x.

Proof. Let xk → x, yk ∈ A(xk), and yk → y. We must show that
y ∈ A(x). By the definition of A for each k there exists zk ∈ B(xk) with
yk ∈ C(zk). By assumption, there is a convergent subsequence {zk}k∈K
with limit z. Since B is closed at x, z ∈ B(x). Furthermore, since C
is closed on B(x), it is closed in particular at z, and hence y ∈ C(z).
Thus, y ∈ C(z) ∈ CB(x) = A(x), so A is indeed closed at x.

Corollary 12.13 (special cases) Let X ⊂ Rn, Z ⊂ Rp, and Y ⊂ Rq be
nonempty, closed sets. Let B : X → Z and C : Z → Y be point-to-set
maps, and consider the composite map A : X → Y defined by A = CB.

(a) Suppose that B is closed at x, C is closed on B(x), and that Z
is compact. Then, A = CB is closed at x.

(b) If B is continuous at x and C is closed on B(x) then A = CB is
closed at x.
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The existence of a convergent subsequence of {zk} (suffient condi-
tions for which are given in the corollary) is essential for the above the-
orem; without this assumption, the composite map A = CB may not be
closed even though both B and C are closed. Exercise 12.10 illustrates
this fact.

We can also utilize the above proposition to establish the closedness
of simple arithmetic maps; because of their simplicity we may weaken
the conditions somewhat compared to the above proposition. The proof
is left as an exercise.

Proposition 12.14 (closed arithmetic maps) Let X ⊂ Rn and Y ⊂ Rp.
(a) [the sum map] Let B : X → Y and C : X → Y be point-to-set

maps. The sum map A = B + C is defined as

A(x) = { b + c | b ∈ B(x), c ∈ C(x) }.

Suppose that both B and C are closed at x. Then the sum map A is
closed at x under any of the following additional conditions:

(1) Y is compact;
(2) either B or C is continuous at x;
(3) If xk → x and bk ∈ B(xk), k ∈ K, then there exists K1 ⊂ K such

that limk∈K1 bk = b.
(b) [the inner-product map] Let B : X → Y and C : X → Y be

point-to-set maps. The inner-product map A = BTC is defined as

A(x) = { bTc | b ∈ B(x), c ∈ C(x) }.

Suppose that that B and C are closed at x. Then the inner-product
map A is closed at x under any of the following additional conditions:

(1) Y is compact;
(2) both B and C are continuous at x;
(3) If xk → x, bk ∈ B(xk), and ck ∈ C(xk), k ∈ K, then there exists

K1 ⊂ K such that limk∈K1 bk = b and limk∈K1 ck = c hold.
(c) [the scalar-vector product map] Let B : X → V ⊂ R and C :

X → Y be point-to-set maps. The scalar-vector product map A = BĊ
is defined as

A(x) = { bc | b ∈ B(x), c ∈ C(x) }.
Suppose that both B and C are closed at x. Then the scalar-vector
product map A is closed at x under any of the following additional
conditions:

(1) both V and Y are compact;
(2i) both B and C are continuous at x;
(2ii) either B is continuous and Y is compact or C is continuous and

V is compact.
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(3i) If xk → x and bk ∈ B(xk), k ∈ K, then there exists K1 ⊂ K
such that limk∈K1 bk = b 6= 0.

(3ii) If xk → x and ck ∈ C(xk), k ∈ K, then there exists K1 ⊂ K
such that limk∈K1 ck = c 6= 0q .

The above simple proposition helps us to analyze the convergence
of an algorithmic map, through the analysis of it in terms of the maps
composing it.

Several practical algorithms are devised such that two different al-
gorithmic maps are used: one map, say C, is perhaps devised based on
experience and is such that the merit function m at least does not in-
crease but may otherwise involve quite arbitrary operations, while the
other map, B, is closed and satisfies the convergence requirements of
Theorem 12.10. While the overall (composite) map A = CB may not be
closed (and thus we cannot apply Theorem 12.10 directly) we establish
next that the map A does converge. The implication of this proposition
is that it is possible to establish the convergence of complex algorithms
that only occasionally (but enough often) are defined by a closed descent
map. In algorithms of this type the map A is referred to as the spacer
step.

Proposition 12.15 (convergence of algorithms based on spacer steps)
Let X ⊂ Rn be a closed set, and let a solution set Ω ⊂ X be given. Let
m : Rn → R be a continuous function, and consider the following two
maps.

(1) C : X → X is a point-to-set map that satisfies m(y) ≤ m(x) for
every x and y ∈ C(x).

(2) B : X → X is a point-to-set map that is closed over X \ Ω and
satisfies m(y) < m(x) for every x ∈ X \ Ω and y ∈ B(x).

Consider the algorithm defined by the composite map A = CB, with
arbitrary starting point x0 ∈ X , and with xk+1 ∈ A(xk), unless xk ∈ Ω
whence the algorithm stops. Suppose that the set M = {x ∈ X |
m(x) ≤ m(x0) } is bounded. Then, either the algorithm terminates
finitely at a solution, or the limit of any convergent subsequence is a
solution.

Proof. If for any k xk ∈ Ω holds, then the algorithm stops. Suppose
therefore that an infinite sequence is generated, and let {xk}k∈K denote
a convergent subsequence with limit x. Lemma 12.9 and the descent
property of the map A imply that not only does m(xk) → m(x) hold in
K but

lim
k→∞

m(xk) = m(x). (12.30)
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We want to show that x ∈ Ω. By contradiction, suppose that x 6∈ Ω and
consider the sequence {xk+1}k∈K. By the definition of A we have that
xk+1 ∈ C(yk) where yk ∈ B(xk). Note that yk ∈ M and xk+1 ∈ M
holds. Since M is compact there is a convergent subsequence K1 ⊂ K
with yk → y and xk+1 → x1 in K1. Since B is closed at x 6∈ Ω, y ∈ B(x)
and m(y) < m(x). Further, since xk+1 ∈ C(yk), by assumption we
have that m(xk+1) ≤ m(yk) in K1; in the limit then m(x1) ≤ m(y),
whence from m(y) < m(x) we obtain that m(x1) < m(x). Since
m(xk+1) → m(x1) in K1, this strict inequality contradicts (12.30).
Therefore, x ∈ Ω.

Since line searches are so often involved in the composition of an
algorithmic map, we finally analyze the closedness of such operations.
The following result applies to the exact line search and to the inexact
line search rule due to Armijo [Arm66]. The below version of the Armijo
rule is more general than the one provided in (11.11) in that an entire
interval is specified; the rule given by (11.11) is in this sense a discrete
version of the below rule (12.32) which at the same time produces a finite
time procedure for generating an acceptable step length. Further note
that normally l = 0 holds.

Proposition 12.16 (closedness of two line search maps) Let f : Rn → R
be a continuous function. Also, let I := [l, u] for some reals l and u with
l < u.

(a) Let the exact line search map E : R2n → Rn be given as follows:
for given vectors x ∈ Rn and p ∈ Rn,

E(x, p) :=

{
y = x + αp ∈ Rn, α ∈ I | f(y) = min

`∈I
f(x + `p)

}
.

(12.31)
Then, the map E is closed on R2n.

(b) Let f ∈ C1. Let the Armijo rule map EA : R2n → Rn be given
as follows: assuming µ ∈ (0, 1), for given vectors x ∈ Rn and p ∈ Rn,

E(x, p) :=
{

y = x + αp ∈ Rn, α ∈ I | f(y) ≤ f(x) + µα∇f(x)Tp
}

.
(12.32)

Then, the map EA is closed on R2n.

Proof. (a) Let (xk, pk) → (x, p) in R2n for some subsequence K, and
let further yk ∈ E(xk, pk) for all k. Our task is to show that any limit
y of {yk}k∈K satisfies y ∈ E(x, p). Because αk ∈ I for all k and I
is compact, {αk} is bounded and has a limit point α∞ in a convergent
subsequence K1 ⊂ K. It follows that α∞ ∈ I .
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For any α ∈ I , by the definition of yk we have that f(yk) ≤ f(xk +
αkpk). Due to the continuity of f , taking limits leads to the inequality
f(y) ≤ f(x + αp). Since this inequality holds for any α ∈ I it follows
that for any y∞ ∈ E(x, p), f(y) ≤ f(y∞) holds.

On the other hand, because y∞ ∈ E(x, p) and y = x + α∞p where
α∞ ∈ I , f(y) ≥ f(y∞) also holds.

Hence, y ∈ E(x, p), and we are done.
(b) Let (xk, pk) → (x, p) in R2n for some subsequence K, and let

further yk ∈ EA(xk, pk) for all k. Our task is to show that any limit
y of {yk}k∈K satisfies y ∈ E(x, p). Because αk ∈ I for all k and I
is compact, {αk} is bounded and has a limit point α∞ in a convergent
subsequence K1 ⊂ K. It follows that α∞ ∈ I .

By the continuity assumptions on f and its gradient, it follows from
taking the limit of K1 of the inequality (12.32) that f(y) ≤ f(x) +
µα∞∇f(x)Tp. It follows that y ∈ EA(x, p).

12.7.5 Convergence of some algorithms defined by
closed descent maps

We apply the above results to some of the algorithms of this and the last
chapter.

Theorem 12.17 (convergence of the steepest descent algorithm) Con-
sider the problem to minimize f(x) over x ∈ Rn, where f : Rn → R
is in C1. Suppose that we apply the steepest descent algorithm to this
problem, where the line search is performed either exactly or according
to the Armijo rule (11.11). Suppose further that the starting point x0

is such that the level set levf (f(x0)) := {x ∈ Rn | f(x) ≤ f(x0) } is
bounded. Then, the sequence {xk} is bounded, the sequence {f(xk)} is
descending and lower bounded and therefore has a limit, and every limit
point of {xk} is stationary.

Proof. With Ω = {x ∈ Rn | ∇f(x) = 0n } and m = f we wish to
apply Theorem 12.10. That {xk} lie in a compact set follows from the
boundedness of levf (f(x0)) and the continuity of f . The steepest de-
scent algorithm is moreover a descent algorithm, under either one of the
two step length rules used. It remains to establish that the algorith-
mic map is closed at every point x /∈ Ω. The algorithmic map has the
form A = ED where D(x) = −∇f(x) is single-valued and continuous
with respect to x, and E is closed on levf (f(x0)) according to Proposi-
tion 12.16. The composite map A is therefore also closed, thanks to the
result of Corollary 12.13(b).
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Theorem 12.18 (convergence of the Frank–Wolfe algorithm) Consider
the problem to minimize f(x) over x ∈ X , where f : Rn → R is in
C1 and X ⊂ Rn is a nonempty and bounded polyhedron. Suppose that
we apply the Frank–Wolfe algorithm to this problem, according to its
description in Section 12.2, where the line search is performed either
exactly or according to the Armijo rule with maximum step length one.
Then, the sequence {xk} is bounded, the sequence {f(xk)} is descending
and lower bounded and therefore has a limit, and every limit point of
{xk} is stationary.

Proof. The proof is left as Exercise 12.13.

Theorem 12.19 (convergence of the gradient projection algorithm) Con-
sider the problem to minimize f(x) over x ∈ X , where f : Rn → R is in
C1 and X ⊂ Rn is a nonempty and bounded polyhedron. Suppose that
we apply the gradient projection algorithm to this problem, according
to its description in Section 12.4, where the line search is performed ei-
ther exactly or according to the boundary Armijo rule presented therein.
Then, the sequence {xk} is bounded, the sequence {f(xk)} is descending
and lower bounded and therefore has a limit, and every limit point of
{xk} is stationary.

Proof. The proof is left as Exercise 12.14.

12.8 Notes and further reading

Algorithms for linearly constrained optimization problems are disappear-
ing from modern text books on optimization. It is perhaps a sign of ma-
turity, as we are now better at solving optimization problem with gen-
eral constraints, and therefore do no longer have to especially consider
the class of linearly constrained optimization problems. Nevertheless we
feel that it provides a link between linear programming and nonlinear
optimization problems with general constraints, being a subclass of non-
linear optimization problems for which primal feasibility can be retained
throughout the procedure.

The Frank–Wolfe method was developed for QP problems in [FrW56],
and later for more general problems, including non-polyhedral sets, in
[Gil66] and [PsD78, Section III.3], among others. The latter source in-
cludes several convergence results for the method under different step
length rules, assuming that ∇f is Lipschitz continuous, for example a
Newton-type step length rule. The convergence Theorem 12.1 for the
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Frank–Wolfe algorithm was taken from [Pat98, Theorem 5.8]. The con-
vergence result for convex problems given in Theorem 12.2 is due to
Dunn and Harshbarger [DuH78]. The version of the Frank–Wolfe algo-
rithm produced by the selection αk := 1/k is known as the method of
successive averages (MSA).

The simplicial decomposition algorithm was developed in [vHo77].
Restricted simplicial decomposition methods have been developed in
[HLV87, Pat98]. Note the strong relationships between the development
of simplicial decomposition and that of the column generation princi-
ple in Section 10.6. Both are based on the generation of information
from a relaxation to the original problem, followed by the solution of
a restriction of the original problem which is iteratively enriched with
the information generated from the relaxed problem. The subproblems
are relaxations of the outer representation of the original problem; while
simplicial decomposition utilizes a linearization as relaxation, column
generation is based on Lagrangian relaxation. The restrictions are, in
both approaches, based on the inner representation of the original for-
mulation through the application of the Representation Theorem 8.9.

The gradient projection method presented here was first given in
[Gol64, LeP66]; see also the textbook [Ber99]. Theorem 12.4 is due to
[Ius03], while Lemma 12.5 is due to [BGIS95].

The traffic equilibrium models of Section 12.5 are described and an-
alyzed more fully in [She85, Pat94].

The theory of closed maps underlying the development in Section 12.7
stems largely from Berge [Ber63]. Pioneering work on its application to
nonlinear programming appears in Zangwill [Zan69], which is also the
main source of inspiration for the text that appears here; some additional
results stem from [BSS93]. Proposition 12.15 on spacer steps stems from
[Lue84, p. 231], and several of its applications within nonlinear program-
ming appear in [LPS96, Pat98].

Apart from the algorithms developed here, there are other classical
algorithms for linearly constrained problems, including the reduced gra-
dient method, Rosen’s gradient projection method, active set methods,
and other sub-manifold methods. They are not treated here, as some of
them have fallen out of popularity. Reduced gradient methods still con-
stitute the main building block of some commercial software, however.

12.9 Exercises

Exercise 12.1 (extensions of the Frank–Wolfe algorithm to unbounded sets)
Develop an extension to the Frank–Wolfe algorithm applicable to cases where
X is unbounded. Which steps need to be changed? What can go wrong?
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(a) Show that the problem is convex.
(b) Apply one step of the Frank–Wolfe algorithm, starting at the origin.

Provide an interval where f∗ lies.

Exercise 12.4 (numerical example of the Frank–Wolfe algorithm) Consider the
problem to

maximize f( � ) := −x2
1 − 4x2

2 + 16x1 + 24x2,

subject to x1 + x2 ≤ 6,

x1 − x2 ≤ 3,

x1, x2 ≥ 0.

(a) Show that the problem is convex.
(b) Solve the problem by using the Frank–Wolfe algorithm, starting at the

origin.

Exercise 12.5 (numerical example of the Frank–Wolfe algorithm) Consider the
problem to

minimize f( � ) :=
1

2

�
x1 − 1

2 � 2

+
1

2
x2

2,

subject to x1 ≤ 1,

x2 ≤ 1,

x1, x2 ≥ 0.

Apply two iterations of the Frank–Wolfe algorithm, starting at �
0 :=

(1, 1)T. Give upper and lower bounds on the optimal value.

Exercise 12.6 (convergence of a gradient projection algorithm) Establish The-
orem 12.3.

Exercise 12.7 (numerical example of the simplicial decomposition algorithm)
Solve the problem in Exercise 12.3 by using the simplicial decomposition al-
gorithm.

Exercise 12.8 (numerical example of the simplicial decomposition algorithm)
Solve the problem in Exercise 12.4 by using the simplicial decomposition al-
gorithm.

Exercise 12.9 (numerical example of the simplicial decomposition algorithm)
On the problem in Exercise 12.5 apply two iterations of the simplicial decom-
position algorithm. Is �

2 optimal? Why/why not?

Exercise 12.10 (non-closedness of composite maps) Consider the maps B :� → �
and C :

� → �
given by

B(x) = � 1/x, if x 6= 0,

0, otherwise,
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and C(z) = { y ∈ � | |y| ≤ |z| }. Show that the maps B and C both are closed
on

�
but the composite map A = CB is not, in particular not at x = 0.

Exercise 12.11 (closedness of maps) Let X ⊂ � p and Y ⊂ � q , and let A :
X → Y be a function. Suppose that if we were to interpret the function A
as a map (where the image set then is a singleton) then it is closed at some� ∈ X. Prove that if Y is closed and bounded then A is actually continuous
at � .

Exercise 12.12 (closedness of maps) Consider the LP problem to

minimize �
T �

subject to
� � = � ,

� ≥ 0
n,

where
�

is an m × n matrix, � ∈ � n , and � ∈ � m is a parameter. Let
X∗( � ) denote the set of optimal solutions to this LP problem for the given
value of � . Show that the mapping X∗ is closed at � if the feasible set of the
corresponding LP problem is nonempty and bounded.

Exercise 12.13 (convergence of the Frank–Wolfe algorithm) Establish Theo-
rem 12.18.

Exercise 12.14 (convergence of the gradient projection algorithm) Establish
Theorem 12.19.
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