
LP duality and sensitivity analysis

it is invertible. (Why?) Further, the reduced cost of the basic variable
sm+1 is zero. (Why?) Therefore, we fulfil the condition for primal
optimality. In order to check if the additional constraint changes the
optimal solution, it remains therefore to check if sm+1 ≥ 0 (that is,
that the primal feasibility condition is fulfilled), which is simply done by
inserting the current BFS in the new constraint. If the new constraint
is fulfilled, then the BFS is both optimal and feasible and we are done;
otherwise, we have identified a violated primal constraint in the current
BFS, and may proceed to find the optimal solution to the new problem by
using, for example, the dual simplex method as explained in Section 10.4.

10.6 Column generation in linear program-
ming

In Section 1.1 we discussed the modeling of optimization problems.
Specifically, Remark 1.3 contains a discussion on a potential difficulty
in explicitly representing all the variables in a truly large-scale problem,
and the term “column generation” was introduced. The purpose of this
section is to explain, in the context of linear programming, what column
generation is and how it can be applied to a linear problem to yield a
large-scale linear programming algorithm. Our discussion will be cen-
tered around a concrete LP problem, to be introduced in the following.

10.6.1 The minimum cost multicommodity network
flow problem

A network is a finite set N of nodes i = 1, . . . , m and a finite set L of
ordered pairs of nodes, ` = (i, j), called links. Through the links flow
can be sent; link ` ∈ L is assumed to have a finite (positive) capacity
u` of flow. The goal is to send a particular amount of flows through the
network at minimum cost, where the flows are of different types (called
commodities), originating at and terminating in different nodes in the
network. Suppose we denote by the superscript k ∈ K the different
commodities. Each commodity k is assumed to have a single origin
and terminal node, ok ∈ N and tk ∈ N , respectively, and the demand
for transportation in commodity k is dk units of flow. Suppose further
that associated with the flow of commodity k along link ` is a unit
transportation cost of ck

` > 0.

We denote by xk
` the flow along link ` associated with a given com-

modity k. In order to describe a feasible flow we must represent the
constraints for meeting supplies and demands, keeping flow conservation

264

Column generation in linear programming

at transshipment nodes, and fulfilling the capacity constraints. To this
end, we introduce a first model, based on the node–link representation.

Let

Fi := { j ∈ N | (i, j) ∈ L} and Bi := { j ∈ N | (j, i) ∈ L}

denote the set of links initiated and terminating at node i ∈ N (the
forward and backward star, respectively). Then, the capacity and flow
conservation constraints can be written elementwise as

∑

k∈K
xk

ij ≤ uij , (i, j) ∈ L, (10.17a)

∑

j∈Bi

xk
ji −

∑

j∈Fi

xk
ij = dk, i ∈ N , k ∈ K, (10.17b)

xk
ij ≥ 0, (i, j) ∈ L, k ∈ K. (10.17c)

Hence, the minimum cost multicommodity network flow problem is that
to

minimize
x

z =
∑

k∈K

∑

`∈L
ck
` xk

` , (10.18a)

subject to
∑

k∈K
xk

ij ≤ uij , (i, j) ∈ L, (10.18b)

∑

j∈Bi

xk
ji −

∑

j∈Fi

xk
ij = dk, i ∈ N , k ∈ K, (10.18c)

xk
ij ≥ 0, (i, j) ∈ L, k ∈ K. (10.18d)

We develop however the column generation principle from a reformu-
lation of the problem wherein we utilize the Representation Theorem 8.9.
Therefore, let r ∈ Rk denote a route from node ok to node tk in the
network; we assume that all such routes utilize the links in their right
direction, that is, in the sequence of links comprising the route the node
orderings are kept. Let further hk

r denote the flow on route r ∈ Rk, and
ck
r denote its unit cost.

In order to relate flows and costs on routes and links we introduce a
link–route incidence matrix:

γk
`r :=

{
1, if ` ∈ Rk,

0, otherwise,
` ∈ L, r ∈ Rk, k ∈ K.

Hence, we have that

ck
r =

∑

`∈L
γk

`rc
k
` . (10.19)

265

LP duality and sensitivity analysis

The optimization problem stemming from the link–route formulation
then is that to

minimize
h

z =
∑

k∈K

∑

r∈Rk

ck
rhk

r , (10.20a)

subject to
∑

k∈K

∑

r∈Rk

γk
`rh

k
r ≤ u`, ` ∈ L, (10.20b)

∑

r∈Rk

hk
r = dk, k ∈ K, (10.20c)

hk
r ≥ 0, r ∈ Rk, k ∈ K. (10.20d)

In order to utilize our development of the constraints of the problem
at hand in a discussion on the Representation Theorem 8.9 we perform
one last formal manipulation, namely that to scale the variables hk

r by
the demand in the commodity: introduce the new variables

λk
r :=

hk
r

dk
, r ∈ Rk, k ∈ K.

The problem (10.20) then becomes that to

minimize
λ

z =
∑

k∈K

∑

r∈Rk

dkck
rλk

r , (10.21a)

subject to
∑

k∈K

∑

r∈Rk

dkγk
`rλ

k
r ≤ u`, ` ∈ L, (10.21b)

∑

r∈Rk

λk
r = 1, k ∈ K, (10.21c)

λk
r ≥ 0, r ∈ Rk, k ∈ K. (10.21d)

We can now compare the formulations (10.18) and (10.21). Suppose
that we let

Xk := {xk ∈ R|L| | (10.18c)–(10.18d) is fulfilled }.
Then, what we have done in the above transformation is to represent a
flow in Xk as xk

l = dk
∑

r∈Rk γk
`rλ

k
r , l ∈ L, for some vector

λk ∈ Λk :=

λk ∈ R

|Rk|
+

∣∣∣∣∣∣

∑

r∈Rk

λk
r = 1

 .

According to the Representation Theorem 8.9 the polyhedron Xk is the
sum of a polytope (the convex hull of its extreme points) and a polyhe-
dral cone (the cone of its extreme directions). The set Λk is a polytope,

266

Column generation in linear programming

described by the convex hull of flows along single routes. Let us lastly
introduce a further notion from graph theory. A cycle is a finite ordering
of nodes such that the last node equals the first and the node ordering
throughout follows the right orientation of the links formed by the conse-
qutive ordered node pairs. As flows along cycles do not change the node
balance and do no not reduce the flow in any link, such flows correspond
to feasible directions of the polyhedra Xk, and a subset of simple such
flows constitute the extremal vectors of the polyhedron Xk. Since such
flows are not represented in the problem statement (10.21) this problem
is not equivalent to that in (10.18), precisely because of the lack in the
former model of any flows along cycles in the network.

While the above two formulations are not equivalent in terms of the
size of their respective feasible sets, it is true that under the given as-
sumption that the link costs are positive they are computationally equiv-
alent, in the sense that their optimal solutions are the same and no
computations of flows along cycles need ever be made. The reason is
that flows along cycles only add to the total cost, so an optimal solution
cannot contain a cyclic flow.

10.6.2 The column generation principle

Suppose that the link flow capacity constraints (10.18b) [or, (10.21b)]
were not present. As can easily be seen from what remains of the prob-
lem formulation (10.21) the resulting problem is that to find, for each
individual commodity k ∈ K, a cheapest route from ok to tk, shipping
the full demand dk along it. The problem (10.21) can therefore be seen
as that to find a number of routes in each commodity, such that a selec-
tion of proportions of the demands to send along them results in a total
link flow that obeys the link flow capacity restrictions and that at the
same time provides the smallest total transportation cost.

“Column generation” refers to a principle for generating these routes
algorithmically rather than a priori. The word “column” refers to the
fact that each variable in a linear program corresponds to a given column
in the constraint matrix, so the word also signals that column generation
is a principle for generating variables in the optimization problem that
we believe should have non-zero values in an optimal solution. Note that
in the problem discussed in Remark 1.3 it is even impossible to enumer-
ate all the variables a priori, but the main point is that it might not
be advantageous to do so even if one could. The column generation is
performed through an ingeneous use of the simplex method’s criterion
for the selection of the incoming basic variable. The remainder of this
section explains in detail how column generation is performed and re-
lates the development both to the simplex method and to Lagrangian

267

LP duality and sensitivity analysis

relaxation.

To provide a framework for our discussion we develop an LP dual
of the link–route formulation (10.21). Let α`, ` ∈ L, and βk , k ∈ K,
denote the dual variables associated with the linear constraints (10.21b)
and (10.21c), respectively. Then, we can write the LP dual of (10.21) as
the problem to

maximize
(α,β)

z =
∑

k∈K
βk −

∑

`∈L
u`α`, (10.22a)

subject to βk −
∑

`∈L
dkyk

`rα` ≤ dkck
r , r ∈ Rk , k ∈ K, (10.22b)

α` ≥ 0, ` ∈ L. (10.22c)

As explained in Section 10.3 we attain an optimal primal BFS with
the simplex method precisely when the complementary dual basis is fea-
sible. Further, the incoming variable criterion of the simplex method is
to increase from zero a primal variable currently not in the basis (and
therefore at level zero) which has the most negative reduced cost, which
is equivalent to the primal variable corresponding to the most violated
dual constraint. (See the discussion following Theorem 10.15.)

Suppose then that we have access to a primal BFS in (10.21) and a
corresponding infeasible dual basis in (10.22), and wish to make progress
by using the simplex method. From the appearance of the dual problem
(10.22) we see that for each k ∈ K we should find either a route r ∈ Rk

that violates the dual constraint (10.22b), or choose a variable α` that
violates a dual constraint (10.22c). (The former are the dual constraints
corresponding to the primal variables λk

r , while the latter are the dual
constraints corresponding to the primal slack variables that one must in-
troduce into the link flow capacity constraints before using the simplex
method.) Following the usual standard of how to operate the simplex
method we should moreover choose an incoming variable with the least
reduced cost, which of course here corresponds to the most violated con-
straint in the dual problem (10.22). While it appears to be an expensive
operation to find the most violated constraint among those in (10.22b)
since the number of routes is so large, it actually corresponds to solving
a specially structured LP problem, as we shall see. Clearly, the appear-
ance of the common constants βk and dk does not influence this choice;
further, note that the route cost ck

r is given through (10.19). Hence,
finding

minimum
r∈Rk

dkck
r +

∑

`∈L
dkyk

`rαl

268

Column generation in linear programming

is the same as the problem of finding, for each k ∈ K,

minimum
x∈Xk

∑

`∈L
(ck

` + α`)x
k
` . (10.23)

This is nothing but the problem of finding a shortest route from node
ok to node tk when the link costs are given by ck

` + α`, ` ∈ L. (Notice
that since each ck

` > 0 and α` ≥ 0, no negative cycles can appear.) The
appearance of the additional link cost α` stemming from the capacity
constraint, illustrates that “good” routes for solving the overall problem
are not necessarily those that are the cheapest in terms of the original
costs.

In our context then, the incoming criterion of the simplex method
corresponds to a special linear program. We may in fact derive the same
problem equivalently by using arguments from Lagrangian duality, which
we do next.

With the same arguments as before, namely that the capacity con-
straints (10.18b) are complicating, we introduce Lagrange multipliers α`,
` ∈ L, and form the Lagrangian

L(x, α) :=
∑

k∈K

∑

`∈L
ck
` xk

` +
∑

`∈L
α`

(
∑

k∈K
xk

` − u`

)

= −
∑

`∈L
α`u` +

∑

k∈K

∑

`∈L
(ck

` + α`)x
k
` ,

to be minimized over the remaining constraints, that is,
∏

k∈K Xk. We
already knew from the development in Section 6.2.4 that Lagrangian
duality is equivalent to LP duality in the context of linear programming,
and we confirm that here, as the Lagrangian minimization problem is
precisely (10.23).

As we know from the theory of strong duality developed above, if
α = α∗ is optimally chosen then among the minimizers of L(·, α∗)
over

∏
k∈K Xk we identify an optimal solution to (10.18). Therefore,

by choosing proper additional “prices” α for using the links, the com-
modities are made to “cooperate” to optimally utilize the link capacities.
Moreover, these prices are the optimal dual variable values for the ca-
pacity constraints. It is therefore not surprising that the decomposition
principle sometimes is referred to as “price-directive decomposition.”

10.6.3 An algorithm instance

Constructing an algorithm from the above development is straightfor-
ward, as is the subject of convergence.

269

LP duality and sensitivity analysis

Given a BFS and the corresponding vector of dual multipliers, solve
(10.23) for each k ∈ K. If, at the solutions to these problems, (10.22b)
is fulfilled and α` ≥ 0 for all ` ∈ L, then we are done, since it means
that the dual basis is dual feasible; the current BFS then describes an
optimal multicommodity flow.

If, for some for some k ∈ K, (10.22b) is not fulfilled, then let r̄ ∈ Rk

be a route solving (10.23) for each k ∈ K. In the problem (10.21) the
column to be added to the basis has the form

(
(dkγ`r̄)`∈L

1

)

k∈K
.

This is a vector of length |K|(|L| + 1). In a streamlined version of the
algorithm, we would store subvectors (that is, routes) individually for
each commodity in order not to duplicate the information stored; see
below. Notice that this incoming variable corresponds to a vector of
concatenated extreme point vectors xk ∈ Xk (together with additional
1:s).

If (10.22b) holds but α` < 0 for some link ` ∈ L, then the primal slack
variable in the corresponding link capacity constraint is a candidate in
the selection of the incoming variable, signaling that the flow should be
decreased on that link.

The pricing step of the (revised version of the) simplex method for
solving the problem (10.21) has exactly this appearance. If we let the
primal variable with the most negative reduced cost be the incoming
variable and pivot in the usual manner, then the algorithm is nothing
but the primal simplex method for the problem (10.21). One of the main
ideas behind a column generation method is however to utilize the infor-
mation that has been generated to a greater extent than in the standard
simplex method. Perhaps the most important motivation is the fact
that the column generation can be a costly operation in general; in the
present problem column generation is performed through the solution of
a number of shortest route problems, which can be quite costly when
the network is large. We next explain how a column generation algo-
rithm would continue after the pricing step, and finally discuss the main
differences to the standard simplex method.

Following a number of iterations, in particular a number of column
generation steps corresponding to the pricing step of the simplex method,
we have solved a series of shortest route problems for each commodity k;
we have therefore also generated a subset of these, say R̄k ⊂ Rk, k ∈ K.
Rather than simply pivoting on the current basis and perform another
pricing step, we will utilize the routes in R̄k to solve a restricted master
problem. The name refers to the fact that the original (or, master)

270

Notes and further reading

problem is (10.21) which includes all the routes in each set Rk, while
the restricted problem is the restriction of this problem to the route
sets R̄k ⊂ Rk. The idea is to use the standard simplex method on
this problem, which in particular means that the pricing part reduces to
a simple comparison, for each commodity k, among the routes’ reduced
costs. (This is of course a much cheaper operation than to solve a shortest
route problem for each commodity.) At convergence, we have access to
a BFS in the original problem which solves the current restriction to the
original problem (10.21). Only then follows the pricing step, amounting
to solving k shortest route problems. If any new routes are generated, we
store this information and thereby augment the sets R̄k, and continue.
The algorithm terminates when the BFS solving the current restriction
has a non-negative reduced cost, as explained earlier.

Variations of this process exist, of course. For example, one could
include more than one route in a given commodity if more than one
route is found to have a negative reduced cost. One could also imagine
a version of the algorithm, in which one does not solve each restriction
to optimality before performing a pricing in the overall problem; this
algorithm then is a variation somewhere in between the standard sim-
plex method for the problem (10.21) and the column generation method
developed above.

A feature of the column generation method is that the solution to
the pricing problem (10.23) provides a lower bound on the optimal value
of the problem (10.21). (The problem (10.23) is indeed the result of a
Lagrangian relaxation, as already explained, so the Weak Duality The-
orem 6.5 applies.) This is in contrast to the ordinary pricing step of the
simplex method: it is based on solving the problem to

minimize c̃T
NxN ,

subject to xN ∈ [0, 1]n−m.

Check that the solution to this problem provides the set of non-basic
variables with the most negative reduced costs, and that this problem is
not a Lagrangian relaxation.

10.7 Notes and further reading

For an account of the early history of LP duality theory, see [LRS91].
Linear programming duality theory was introduced by John von Neu-

mann [vNe47]. His results build upon his earlier work in game theory.
The first published proof of the Strong Duality Theorem is found in Gale,
Kuhn, and Tucker [GKT51]. The Complementary Slackness Theorem is
due to Dantzig and Orden [DaO53].

271

LP duality and sensitivity analysis

Text books that discuss LP duality and sensitivity analysis are [Dan63,
Chv83, Mur83, Sch86, DaT97, Pad99, Van01, DaT03, DaM05].

More on the modelling of, and algorithms and duality for, linear
network optimization can be found in [AMO93].

The decomposition principle is often referred to as the Dantzig–Wolfe
algorithm, following [DaW60, DaW61]. (In his classic text book on linear
programming George Dantzig himself refers to it as “centralized planning
without complete information at the center;” see [Dan63, Chapter 23].)
This algorithm is in fact an application of the decomposition principle
to the outer representation (10.18), whereas column generation refers to
the solution of the inner representation (10.21). The column genaration
principle can also be applied to integer programs, whence the master
problem always is a linear program while the column generation (or,
Lagrangian relaxation) problem would be an integer program. Such a
type of problem is in fact more common to use when introducing col-
umn generation. The best general description of column generation,
and of classic algorithms based on this principle, is still that in Las-
don [Las70, Chapters 3–4]; column generation is there illustrated for
the integer programming problem known as the cutting stock problem,
originally formulated by Gilmore and Gomory [GiG61, GiG63]. More
modern expositions on column generation are found in [Wol98, LaP06].

10.8 Exercises

Exercise 10.1 (constructing the LP dual) Consider the linear program

maximize z = 6x1 −3x2−2x3+5x4,

subject to 4x1 +3x2−8x3+7x4 = 11,

3x1 +2x2+7x3+6x4 ≥ 23,

7x1 +4x2+3x3+2x4 ≤ 12,

x1, x2 ≥ 0,

x3 ≤ 0,

x4 free.

Construct its linear programming dual.

Exercise 10.2 (constructing the LP dual) Consider the linear program

minimize z = � T � ,
subject to

� � = � ,
� ≤ � ≤ � .

(a) Construct its linear programming dual.

272

