EXERCISE 4: UNCONSTRAINED OPTIMIZATION

NICLAS ANDRÉASSON

EXERCISE 1 (descent directions). Consider the function

$$f(\mathbf{x}) = x_1^2 + x_1 x_2 - 4x_2^2 + 10.$$

Show that the direction $d = (2, -1)^{\mathrm{T}}$ is not a descent direction at $x^1 = (1, 1)^{\mathrm{T}}$.

EXERCISE 2 (descent directions). Let $f : \mathbb{R}^n \to \mathbb{R}$ and $f \in C^2$. Assume that x^0 is a point such that $\nabla f(x^0) = \mathbf{0}^n$ and $\nabla^2 f(x^0)$ is indefinite. Show that there exists a descent direction.

 $\ensuremath{\mathsf{EXERCISE}}\xspace{3}$ (Steepest descent method with exact line search). Consider the problem to

$$\underset{x \in \mathbb{R}^2}{\text{minimize}} \ f(x) = (2x_1^2 - x_2)^2 + 3x_1^2 - x_2.$$

- (a) Perform one iteration of the steepest descent method with exact line search (yielding the point x^{1}). Start from the point $x^{0} = (1/2, 5/4)^{T}$.
- (b) Is the function convex in a small neighbourhood of x^{1} ?
- (c) Will the method converge to a global optimum?

EXERCISE 4 (Newton's method with exact line search). Consider the problem to

$$\min_{x \in \mathbb{R}^2} f(x) = (x_1 + 2x_2 - 3)^2 + (x_1 - 2)^2.$$

- (a) Start from $\mathbf{x}^0 = (0, 0)^{\mathrm{T}}$ and perform one iteration of Newton's method with exact line search (yielding \mathbf{x}^1).
- (b) Are there any descent directions at the point $x^{1?}$
- (c) Is x^1 an optimal solution?

EXERCISE 5 (Newton's method with Armijos's step length rule). Consider the problem to

$$\min_{x \in \mathbb{R}^2} f(x) = \frac{1}{2} (x_1 - 2x_2)^2 + x_1^4.$$

- (a) Start from $x^0 = (2,1)^{\text{T}}$ and use the fraction requirement $\mu = 0.3$. Perform one iteration of Newton's method with Armijo's step length rule.
- (b) Determine the values of the fraction requirement $\mu \in (0, 1)$ for which Armijo's step length rule accept the step length $\alpha = 1$.

Date: February 1, 2005.

EXERCISE 6 (Levenberg-Marquardt's method). Consider the problem to

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} f(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^{\mathrm{T}} \boldsymbol{Q} \boldsymbol{x} + \boldsymbol{q}^{\mathrm{T}} \boldsymbol{x},$$

where $Q \in \mathbb{R}^{n \times n}$ is symmetric and positive semi-definite, but not postivie definite. At iteration step k, by using Levenberg-Marquardt's method, we find the descent direction p_k . Let

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \boldsymbol{p}_k.$$

Show that x_{k+1} is an optimal solution to

$$\min_{\boldsymbol{y}\in\mathbb{R}^n} ext{if } g(\boldsymbol{y}) = f(\boldsymbol{y}) + rac{\gamma}{2} \| \boldsymbol{y} - \boldsymbol{x}_k \|^2,$$

where $\gamma > 0$ is the "shift".