EXERCISE 8: THE SIMPLEX METHOD

NICLAS ANDRÉASSON

The Simplex algorithm

Step 0. (initialization): Assume that $\boldsymbol{x}^{\mathrm{T}} = (\boldsymbol{x}_{B}^{\mathrm{T}}, \boldsymbol{x}_{N}^{\mathrm{T}})$ is a BFS corresponding to the partition $\boldsymbol{A} = (\boldsymbol{B}, \boldsymbol{N})$.

Step 1. (entering variable, pricing): Calculate the reduced costs of the non-basic variables,

$$(\tilde{\boldsymbol{c}}_N)_j = (\boldsymbol{c}_N^{\mathrm{T}} - \boldsymbol{c}_B^{\mathrm{T}} \boldsymbol{B}^{-1} \boldsymbol{N})_j, \quad j = 1, \dots, n - m.$$

If $(\tilde{\boldsymbol{c}}_N)_j \geq 0$ for all $j = 1, \ldots, n-m$ then stop; \boldsymbol{x} is then optimal. Otherwise choose $(\boldsymbol{x}_N)_j$, where

$$j \in \arg \min_{j \in \{1,\dots,n-m\}} \{ (\tilde{\boldsymbol{c}}_N)_j \},$$

to enter the basis.

Step 2. (leaving variable): If

$$B^{-1}N_{i} \leq 0^{m}$$

then the problem is unbounded, stop; $((-\boldsymbol{B}^{-1}\boldsymbol{N}_j)^{\mathrm{T}}, \boldsymbol{e}_j^{\mathrm{T}})^{\mathrm{T}}$ is then a direction of unboundness. Otherwise choose $(\boldsymbol{x}_B)_i$, where

$$i \in \arg \min_{i \in \{i \mid (\boldsymbol{B}^{-1}\boldsymbol{N}_j)_i > 0\}} \frac{(\boldsymbol{B}^{-1}\boldsymbol{b})_i}{(\boldsymbol{B}^{-1}\boldsymbol{N}_j)_i},$$

to leave the basis.

Step 3. (change basis): Construct a new partition by swapping $(x_B)_i$ with $(x_N)_j$. Go to Step 1.

EXERCISE 1 (checking feasibility: phase I). Consider the system

$$\begin{aligned} & 3x_1 + 2x_2 \quad -x_3 \leq -3, \\ & -x_1 \quad -x_2 + 2x_3 \leq -1, \\ & x_1, \quad x_2, \quad x_3 \geq 0. \end{aligned}$$

Show that this system is infeasible!

EXERCISE 2 (the Simplex algorithm: phase | & ||). Consider the linear program

minimize
$$z = 3x_1 + 2x_2 + x_3$$

subject to $2x_1 + x_3 \ge 3$,
 $2x_1 + 2x_2 + x_3 = 5$,
 $x_1, \quad x_2, \quad x_3 \ge 0$.

Date: February 16, 2005.

- (a) Solve the linear program by using the Simplex algorithm with Phase I & II!
- (b) Is the solution obtained unique?

EXERCISE 3 (the Simplex algorithm). Consider the linear program in standard form,

minimize
$$z = c^{\mathrm{T}} x$$

subject to $Ax = b$
 $x \ge 0^{n}$.

Suppose that at a given step of the Simplex algorithm, there is only one possible entering variable, $(\boldsymbol{x}_N)_j$. Also assume that the current BFS is non-degenerate. Show that $(\boldsymbol{x}_N)_j > 0$ in any optimal solution!

EXERCISE 4 (sensitivity analysis: cost coefficients). Consider the linear program

maximize
$$z = -x_1 + 18x_2 + c_3x_3 + c_4x_4$$

subject to $x_1 + 2x_2 + 3x_3 + 4x_4 \le 3,$
 $-3x_1 + 4x_2 - 5x_3 - 6x_4 \le 1,$
 $x_1, x_2, x_3, x_4 \ge 0.$

Find the values of c_3 and c_4 such that the basic solution that corresponds to the partition $x_B = (x_1, x_2)^{\mathrm{T}}$ is an optimal basic feasible solution to the problem!