
1'

&

$

%

Feasible-direction methods

� Consider the problem to find

f ∗ = infimum f(x), (1a)

subject to x ∈ X, (1b)

X ⊆ R
n nonempty, closed and convex; f : R

n → R is

C1 on X

� Most methods for (1) manipulate the constraints

defining X; in some cases even such that the sequence

{xk} is infeasible until convergence. Why?

Lecture 11: Linearly constrained

nonlinear optimization

0-0

3'

&

$

%

Feasible-direction descent methods

Step 0. Determine a starting point x0 ∈ R
n such that

x0 ∈ X. Set k := 0

Step 1. Determine a search direction pk ∈ R
n such that

pk is a feasible descent direction

Step 2. Determine a step length αk > 0 such that

f(xk + αkpk) < f(xk) and xk + αkpk ∈ X

Step 3. Let xk+1 := xk + αkpk

Step 4. If a termination criterion is fulfilled, then stop!

Otherwise, let k := k + 1 and go to Step 1

2'

&

$

%

� Consider a constraint “gi(x) ≤ bi,” where gi is

nonlinear

� Checking whether p is a feasible direction at x, or what

the maximum feasible step from x in the direction of p

is, is very difficult

� For which step length α > 0 does it happen that

gi(x + αp) = bi? This is a nonlinear equation in α!

� Assuming that X is polyhedral, these problems are not

present

� Note: KKT always necessary for a local min for

polyhedral sets; methods will find such points

5'

&

$

%

LP-based algorithm, I: The Frank–Wolfe method

� The Frank–Wolfe method is based on a first-order

approximation of f around the iterate xk. This means

that the relaxed problems are LPs, which can then be

solved by using the Simplex method

� Remember the first-order optimality condition: If

x∗ ∈ X is a local minimum of f on X then

∇f(x∗)T(x − x∗) ≥ 0, x ∈ X,

holds

� Remember also the following equivalent statement:

minimum
x∈X

∇f(x∗)T(x − x∗) = 0

4'

&

$

%

Notes

� Similar form as the general method for unconstrained

optimization

� Just as local as methods for unconstrained optimization

� Search directions typically based on the approximation

of f—a “relaxation”

� Search direction often of the form pk = yk − xk, where

yk ∈ X solves an approximate problem

� Line searches similar; note the maximum step

� Termination criteria and descent based on first-order

optimality and/or fixed-point theory (pk ≈ 0n)

7'

&

$

%

� We assume that X is bounded in order to ensure that

the LP always has a finite solution. The algorithm can

be extended to allow for unbounded polyhedra

� The search directions then are either towards an

extreme point (finite solution to LP) or in the direction

of an extreme ray of X (unbounded solution to LP)

� Both cases identified in the Simplex method

6'

&

$

%

� Follows that if, given an iterate xk ∈ X,

minimum
y∈X

∇f(xk)
T(y − xk) < 0,

and yk is a solution to this LP problem, then the

direction of pk := yk − xk is a feasible descent direction

with respect to f at x

� Search direction towards an extreme point of X [one

that is optimal in the LP over X with costs

c = ∇f(xk)]

� This is the basis of the Frank–Wolfe algorithm

9'

&

$

%

Algorithm description, Frank–Wolfe

Step 0. Find x0 ∈ X (for example any extreme point in

X). Set k := 0

Step 1. Find a solution yk to the problem to

minimize
y∈X

zk(y) := ∇f(xk)
T(y − xk) (2)

Let pk := yk − xk be the search direction

Step 2. Approximately solve the problem to minimize

f(xk + αpk) over α ∈ [0, 1]. Let αk be the step length

Step 3. Let xk+1 := xk + αkpk

Step 4. If, for example, zk(yk) or αk is close to zero, then

terminate! Otherwise, let k := k + 1 and go to Step 1

8'

&

$

%

The search-direction problem

−5 0 5 10
−5

0

5

10

15

20

PSfrag replacements

xk

yk

pk

∇f(xk)

X

11'

&

$

%

The convex case: Lower bounds

� Remember the following characterization of convex

functions in C1 on X: f is convex on X ⇐⇒

f(y) ≥ f(x) + ∇f(x)T(y − x), x,y ∈ X

� Suppose f is convex on X. Then, f(xk) + zk(xk) ≤ f ∗

(lower bound, LBD), and f(xk) + zk(xk) = f ∗ if and

only if xk is globally optimal. A relaxation—cf. the

Relaxation Theorem!

� Utilize the lower bound as follows: we know that

f ∗ ∈ [f(xk) + zk(xk), f(xk)]. Store the best LBD, and

check in Step 4 whether [f(xk) − LBD]/|LBD| is small,

and if so terminate

10'

&

$

%

Convergence

� Suppose X ⊂ R
n nonempty polytope; f in C1 on X

� In Step 2 of the Frank–Wolfe algorithm, we either use

an exact line search or the Armijo step length rule

� Then: the sequence {xk} is bounded and every limit

point (at least one exists) is stationary;

� {f(xk)} is descending, and therefore has a limit;

� zk(yk) → 0 (∇f(xk)
Tpk → 0)

� If f is convex on X, then every limit point is globally

optimal

� Proof:

13'

&

$

%

LP-based algorithm, II: Simplicial decomposition

� Remember the Representation Theorem (special case

for polytopes): Let P = {x ∈ R
n | Ax = b; x ≥ 0n},

be nonempty and bounded, and V = {v1, . . . ,vK} be

the set of extreme points of P . Every x ∈ P can be

represented as a convex combination of the points in V ,

that is,

x =
K

∑

i=1

αiv
i,

for some α1, . . . , αk ≥ 0 such that
∑K

i=1 αi = 1

12'

&

$

%

Notes

� Frank–Wolfe uses linear approximations—works best

for almost linear problems

� For highly nonlinear problems, the approximation is

bad—the optimal solution may be far from an extreme

point. (Compare Steepest descent!)

� In order to find a near-optimum requires many

iterations—the algorithm is slow

� Another reason is that the information generated (the

extreme points) is forgotten. If we keep the linear

subproblem, we can do much better by storing and

utilizing this information

15'

&

$

%

Algorithm description, Simplicial decomposition

Step 0. Find x0 ∈ X, for example any extreme point in

X. Set k := 0. Let P0 := ∅

Step 1. Let yk be a solution to the LP problem (2)

Let Pk+1 := Pk ∪ {k}

14'

&

$

%

� The idea behind the Simplicial decomposition method

is to generate the extreme points vi which can be used

to describe an optimal solution x∗, that is, the vectors

vi with positive weights αi in

x∗ =
K

∑

i=1

αiv
i

� The process is still iterative: we generate a “working

set” Pk of indices i, optimize the function f over the

convex hull of the known points, and check for

stationarity and/or generate a new extreme point

17'

&

$

%

� This basic algorithm keeps all information generated,

and adds one new extreme point in every iteration

� An alternative is to drop columns (vectors yi) that

have received a zero (or, low) weight, or to keep only a

maximum number of vectors

� Special case: maximum number of vectors kept = 1 =⇒

the Frank–Wolfe algorithm!

� We obviously improve the Frank–Wolfe algorithm by

utilizing more information

� Compare with the difference between Newton and

steepest descent in unconstrained optimization

16'

&

$

%

Step 2. Let (µk,νk+1) be an approximate solution to the

restricted master problem (RMP) to

minimize
(µ, �)

f

µxk +
∑

i∈Pk+1

νiy
i

 , (3a)

subject to µ +
∑

i∈Pk+1

νi = 1, (3b)

µ, νi ≥ 0, i ∈ Pk+1 (3c)

Step 3. Let xk+1 := µk+1xk +
∑

i∈Pk+1
(νk+1)iy

i

Step 4. If, for example, zk(yk) is close to zero, or if

Pk+1 = Pk, then terminate! Otherwise, let k := k + 1

and go to Step 1

19'

&

$

%

An illustration of FW vs. SD

� A large-scale nonlinear network flow problem which is

used to estimate traffic flows in cities

� Model over the small city of Sioux Falls in North

Dakota, USA; 24 nodes, 76 links, and 528 pairs of

origin and destination

� Three algorithms for the RMPs were tested—a Newton

method and two gradient projection methods (see the

next section). A MATLAB implementation

� Remarkable difference—The Frank–Wolfe method

suffers from very small steps being taken. Why? Many

extreme points active = many routes used

18'

&

$

%

Convergence

� It does at least as well as the Frank–Wolfe algorithm:

line segment [xk,yk] feasible in RMP

� If x∗ unique then convergence is finite if the RMPs are

solved exactly, and the maximum number of vectors

kept is ≥ the number needed to span x∗

� Much more efficient than the Frank–Wolfe algorithm in

practice (consider the above FW example!)

� We can solve the RMPs efficiently, since the constraints

are simple

21'

&

$

%

QP-based algorithm: The gradient projection

algorithm

� The gradient projection algorithm is based on the

projection characterization of a stationary point:

x∗ ∈ X is a stationary point if and only if, for any

α > 0,

x∗ = ProjX [x∗ − α∇f(x∗)]

20'

&

$

%

0 10 20 30 40 50 60 70 80 90 100
10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1
Sioux Falls network

CPU time (s)

M
ax

 re
la

tiv
e

ob
je

ct
ive

 fu
nc

tio
n

er
ro

r

SD/Grad. proj. 1
SD/Grad. proj. 2
SD/Newton
Frank−Wolfe

Figure 1: The performance of SD vs. FW on the Sioux Falls network

23'

&

$

%

� Let p := ProjX [x − α∇f(x)] − x, for any α > 0. Then,

if and only if x is non-stationary, p is a feasible descent

direction of f at x

� The gradient projection algorithm is normally stated

such that the line search is done over the projection

arc, that is, we find a step length αk for which

xk+1 := ProjX [xk − αk∇f(xk)], k = 1, . . . (4)

has a good objective value. Use the Armijo rule to

determine αk.

� Gradient projection becomes steepest descent with

Armijo line search when X = R
n!

22'

&

$

%

�
��
�

PSfrag replacements

X

y

x∗ −∇f(x∗)

x∗

NX(x∗)

25'

&

$

%

Convergence, I

� X ⊆ R
n nonempty, closed, convex; f ∈ C1 on X;

� for the starting point x0 ∈ X it holds that the level set

levf (f(x0)) intersected with X is bounded

� In the algorithm (4), the step length αk is given by the

Armijo step length rule along the projection arc

� Then: the sequence {xk} is bounded;

� every limit point of {xk} is stationary;

� {f(xk)} descending, lower bounded, hence convergent

� Convergence arguments similar to steepest descent one

24'

&

$

%

PSfrag replacements

X

xk

xk − ᾱ∇f(xk)

xk − (ᾱ/2)∇f(xk)

xk − (ᾱ/4)∇f(xk)

xk − α∇f(xk)

26'

&

$

%

Convergence, II

� X ⊆ R
n nonempty, closed, convex;

� f ∈ C1 on X; f convex;

� an optimal solution x∗ exists

� In the algorithm (4), the step length αk is given by the

Armijo step length rule along the projection arc

� Then: the sequence {xk} converges to an optimal

solution

� Note: with X = R
n =⇒ convergence of steepest

descent for convex problems with optimal solutions!

