Lecture 11: Linearly constrained nonlinear optimization

0-0

Feasible-direction methods

• Consider the problem to find

 $f^* = \inf \min f(\boldsymbol{x}), \tag{1a}$

subject to $\boldsymbol{x} \in X$, (1b)

 $X\subseteq \mathbb{R}^n$ nonempty, closed and convex; $f:\mathbb{R}^n\to \mathbb{R}$ is C^1 on X

• Most methods for (1) manipulate the constraints defining X; in some cases even such that the sequence $\{x_k\}$ is infeasible until convergence. Why? • Consider a constraint " $g_i(\boldsymbol{x}) \leq b_i$," where g_i is nonlinear

• Checking whether p is a feasible direction at x, or what the maximum feasible step from x in the direction of pis, is very difficult

- For which step length $\alpha > 0$ does it happen that $g_i(\boldsymbol{x} + \alpha \boldsymbol{p}) = b_i$? This is a nonlinear equation in α !
- Assuming that X is polyhedral, these problems are not present
- Note: KKT always necessary for a local min for polyhedral sets; methods will find such points

Feasible-direction descent methods

- Step 0. Determine a starting point $\boldsymbol{x}_0 \in \mathbb{R}^n$ such that $\boldsymbol{x}_0 \in X$. Set k := 0
- Step 1. Determine a search direction $p_k \in \mathbb{R}^n$ such that p_k is a feasible descent direction

Step 2. Determine a step length $\alpha_k > 0$ such that $f(\boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k) < f(\boldsymbol{x}_k)$ and $\boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k \in X$

Step 3. Let $\boldsymbol{x}_{k+1} := \boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k$

Step 4. If a termination criterion is fulfilled, then stop! Otherwise, let k := k + 1 and go to Step 1

Notes

- Similar form as the general method for unconstrained optimization
- Just as *local* as methods for unconstrained optimization
- Search directions typically based on the approximation of f—a "relaxation"
- Search direction often of the form $\boldsymbol{p}_k = \boldsymbol{y}_k \boldsymbol{x}_k$, where $\boldsymbol{y}_k \in X$ solves an approximate problem
- Line searches similar; note the maximum step
- Termination criteria and descent based on first-order optimality and/or fixed-point theory $(p_k \approx 0^n)$

LP-based algorithm, I: The Frank–Wolfe method

- The Frank–Wolfe method is based on a first-order approximation of f around the iterate x_k . This means that the relaxed problems are LPs, which can then be solved by using the Simplex method
- Remember the first-order optimality condition: If $x^* \in X$ is a local minimum of f on X then

$$\nabla f(\boldsymbol{x}^*)^{\mathrm{T}}(\boldsymbol{x}-\boldsymbol{x}^*) \ge 0, \qquad \boldsymbol{x} \in X,$$

holds

• Remember also the following equivalent statement:

$$\min_{\boldsymbol{x} \in X} \nabla f(\boldsymbol{x}^*)^{\mathrm{T}}(\boldsymbol{x} - \boldsymbol{x}^*) = 0$$

 $\mathbf{5}$

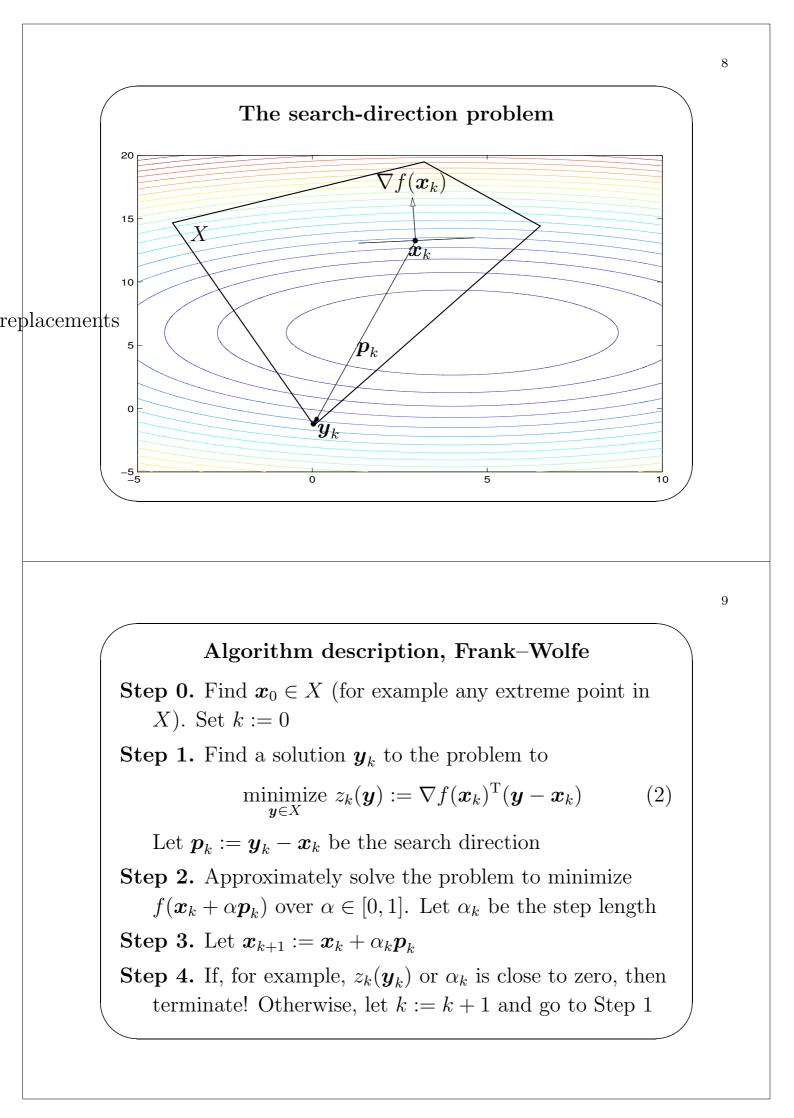
• Follows that if, given an iterate $\boldsymbol{x}_k \in X$,

$$\min_{\boldsymbol{y} \in X} \nabla f(\boldsymbol{x}_k)^{\mathrm{T}}(\boldsymbol{y} - \boldsymbol{x}_k) < 0,$$

and \boldsymbol{y}_k is a solution to this LP problem, then the direction of $\boldsymbol{p}_k := \boldsymbol{y}_k - \boldsymbol{x}_k$ is a feasible descent direction with respect to f at \boldsymbol{x}

- Search direction towards an extreme point of X [one that is optimal in the LP over X with costs $\boldsymbol{c} = \nabla f(\boldsymbol{x}_k)$]
- This is the basis of the Frank–Wolfe algorithm

- We assume that X is bounded in order to ensure that the LP always has a finite solution. The algorithm can be extended to allow for unbounded polyhedra
- The search directions then are either towards an extreme point (finite solution to LP) or in the direction of an extreme ray of X (unbounded solution to LP)
- Both cases identified in the Simplex method



Convergence

- Suppose $X \subset \mathbb{R}^n$ nonempty polytope; f in C^1 on X
- In Step 2 of the Frank–Wolfe algorithm, we either use an exact line search or the Armijo step length rule
- Then: the sequence {x_k} is bounded and every limit point (at least one exists) is stationary;
- $\{f(\boldsymbol{x}_k)\}$ is descending, and therefore has a limit;

•
$$z_k(\boldsymbol{y}_k) \to 0 \ (\nabla f(\boldsymbol{x}_k)^{\mathrm{T}} \boldsymbol{p}_k \to 0)$$

- If f is convex on X, then every limit point is globally optimal
- Proof:

The convex case: Lower bounds

• Remember the following characterization of convex functions in C^1 on X: f is convex on $X \iff$

$$f(\boldsymbol{y}) \ge f(\boldsymbol{x}) + \nabla f(\boldsymbol{x})^{\mathrm{T}}(\boldsymbol{y} - \boldsymbol{x}), \quad \boldsymbol{x}, \boldsymbol{y} \in X$$

- Suppose f is convex on X. Then, $f(\boldsymbol{x}_k) + z_k(\boldsymbol{x}_k) \leq f^*$ (lower bound, LBD), and $f(\boldsymbol{x}_k) + z_k(\boldsymbol{x}_k) = f^*$ if and only if \boldsymbol{x}_k is globally optimal. A relaxation—cf. the Relaxation Theorem!
- Utilize the lower bound as follows: we know that $f^* \in [f(\boldsymbol{x}_k) + z_k(\boldsymbol{x}_k), f(\boldsymbol{x}_k)]$. Store the best LBD, and check in Step 4 whether $[f(\boldsymbol{x}_k) \text{LBD}]/|\text{LBD}|$ is small, and if so terminate

Notes

- Frank–Wolfe uses linear approximations—works best for almost linear problems
- For highly nonlinear problems, the approximation is bad—the optimal solution may be far from an extreme point. (Compare Steepest descent!)
- In order to find a near-optimum requires many iterations—the algorithm is slow
- Another reason is that the information generated (the extreme points) is forgotten. If we keep the linear subproblem, we can do much better by storing and utilizing this information

13

LP-based algorithm, II: Simplicial decomposition

Remember the Representation Theorem (special case for polytopes): Let P = { x ∈ ℝⁿ | Ax = b; x ≥ 0ⁿ }, be nonempty and bounded, and V = {v¹,...,v^K} be the set of extreme points of P. Every x ∈ P can be represented as a convex combination of the points in V, that is,

$$oldsymbol{x} = \sum_{i=1}^{K} lpha_i oldsymbol{v}^i,$$

for some $\alpha_1, \ldots, \alpha_k \ge 0$ such that $\sum_{i=1}^K \alpha_i = 1$

• The idea behind the Simplicial decomposition method is to generate the extreme points v^i which can be used to describe an optimal solution x^* , that is, the vectors v^i with positive weights α_i in

$$oldsymbol{x}^* = \sum_{i=1}^K lpha_i oldsymbol{v}^i$$

• The process is still iterative: we generate a "working set" \mathcal{P}_k of indices *i*, optimize the function *f* over the convex hull of the known points, and check for stationarity and/or generate a new extreme point

15

Algorithm description, Simplicial decomposition

Step 0. Find $\boldsymbol{x}_0 \in X$, for example any extreme point in X. Set k := 0. Let $\mathcal{P}_0 := \emptyset$

Step 1. Let \boldsymbol{y}_k be a solution to the LP problem (2) Let $\mathcal{P}_{k+1} := \mathcal{P}_k \cup \{k\}$ Step 2. Let $(\mu_k, \boldsymbol{\nu}_{k+1})$ be an approximate solution to the restricted master problem (RMP) to $\begin{array}{l} \underset{(\mu, \boldsymbol{\nu})}{\text{minimize}} \quad f\left(\mu \boldsymbol{x}_k + \sum_{i \in \mathcal{P}_{k+1}} \nu_i \boldsymbol{y}^i\right), \quad (3a)\\ \text{subject to} \quad \mu + \sum_{i \in \mathcal{P}_{k+1}} \nu_i = 1, \quad (3b)\\ \mu, \nu_i \geq 0, \quad i \in \mathcal{P}_{k+1} \quad (3c)\end{array}$ Step 3. Let $\boldsymbol{x}_{k+1} := \mu_{k+1} \boldsymbol{x}_k + \sum_{i \in \mathcal{P}_{k+1}} (\boldsymbol{\nu}_{k+1})_i \boldsymbol{y}^i$ Step 4. If, for example, $z_k(\boldsymbol{y}_k)$ is close to zero, or if $\mathcal{P}_{k+1} = \mathcal{P}_k$, then terminate! Otherwise, let k := k + 1and go to Step 1

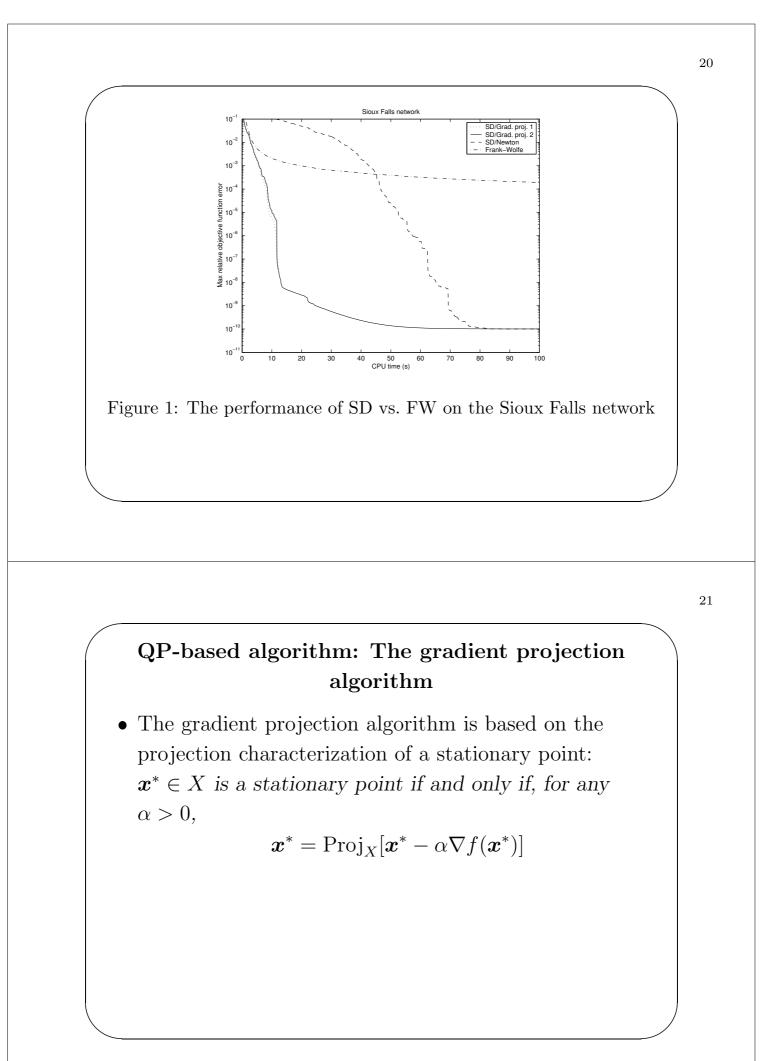
- This basic algorithm keeps all information generated, and adds one new extreme point in every iteration
- An alternative is to drop columns (vectors y^i) that have received a zero (or, low) weight, or to keep only a maximum number of vectors
- Special case: maximum number of vectors kept = $1 \implies$ the Frank–Wolfe algorithm!
- We obviously improve the Frank–Wolfe algorithm by utilizing more information
- Compare with the difference between Newton and steepest descent in unconstrained optimization

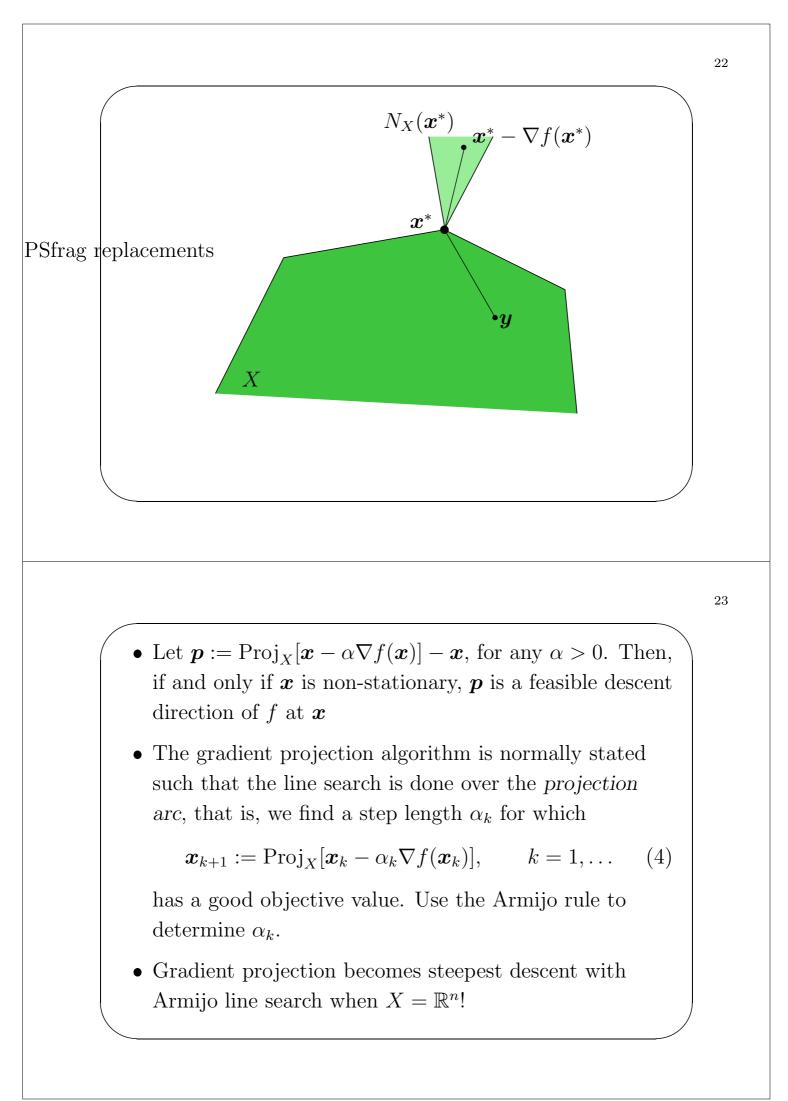
Convergence

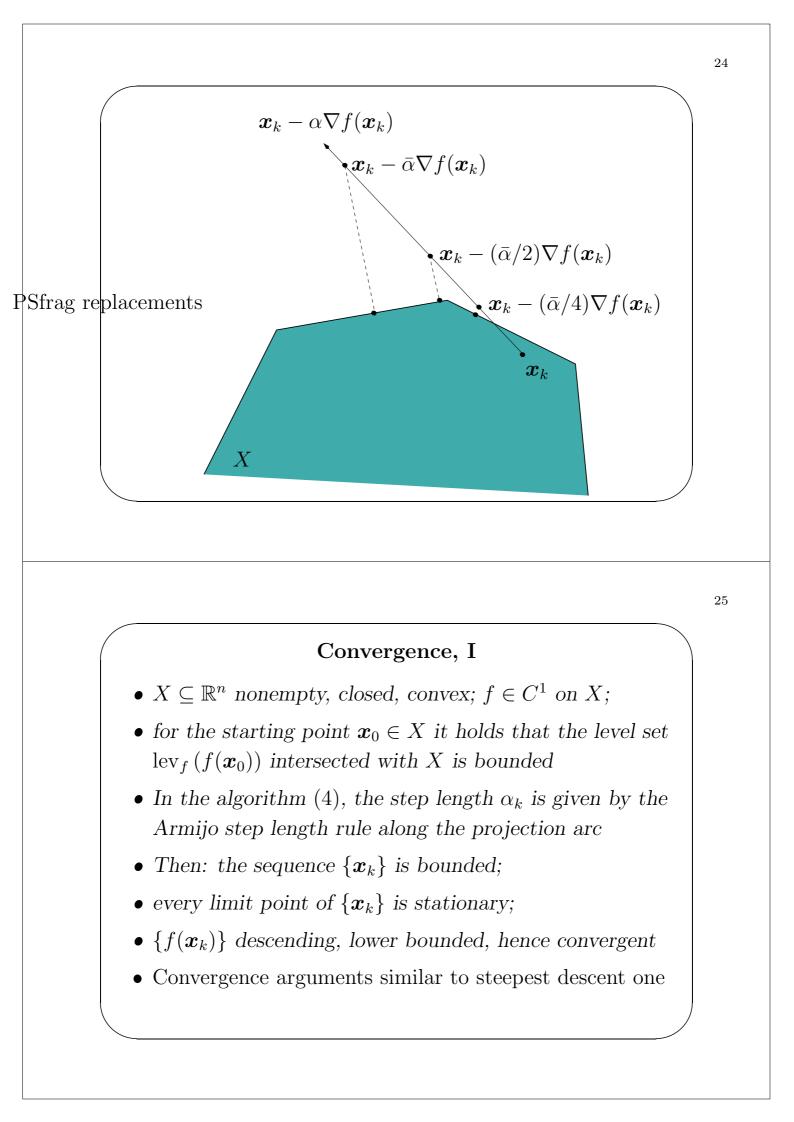
- It does at least as well as the Frank–Wolfe algorithm: line segment $[\boldsymbol{x}_k, \boldsymbol{y}_k]$ feasible in RMP
- If x^* unique then convergence is finite if the RMPs are solved exactly, and the maximum number of vectors kept is \geq the number needed to span x^*
- Much more efficient than the Frank–Wolfe algorithm in practice (consider the above FW example!)
- We can solve the RMPs efficiently, since the constraints are simple

An illustration of FW vs. SD

- A large-scale nonlinear network flow problem which is used to estimate traffic flows in cities
- Model over the small city of Sioux Falls in North Dakota, USA; 24 nodes, 76 links, and 528 pairs of origin and destination
- Three algorithms for the RMPs were tested—a Newton method and two gradient projection methods (see the next section). A MATLAB implementation
- Remarkable difference—The Frank–Wolfe method suffers from very small steps being taken. Why? Many extreme points active = many routes used







Convergence, II

- $X \subseteq \mathbb{R}^n$ nonempty, closed, convex;
- $f \in C^1$ on X; f convex;
- an optimal solution \boldsymbol{x}^* exists
- In the algorithm (4), the step length α_k is given by the Armijo step length rule along the projection arc
- Then: the sequence $\{x_k\}$ converges to an optimal solution
- Note: with $X = \mathbb{R}^n \implies$ convergence of steepest descent for convex problems with optimal solutions!