Lecture 2: Convexity

0 - 0

Convexity of sets

Let $S \subseteq \mathbb{R}^n$. The set S is convex if

$$\left. egin{aligned} m{x}^1, m{x}^2 \in S \ \lambda \in (0,1) \end{aligned}
ight. \implies \lambda m{x}^1 + (1-\lambda) m{x}^2 \in S$$

A set S is convex if, from anywhere in S, all other points are "visible." (See Figure 1)

PSfrag replacements

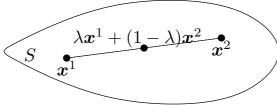


Figure 1: A convex set. (For the intermediate vector shown, the value of λ is $\approx 1/2$)

Examples

- The empty set is a convex set
- The set $\{x \in \mathbb{R}^n \mid ||x|| \le a\}$ is convex for every value of $a \in \mathbb{R}$
- The set $\{x \in \mathbb{R}^n \mid ||x|| = a\}$ is non-convex for every a > 0
- The set $\{0,1,2\}$ is non-convex

Two non-convex sets are shown in Figure 2

First replacements x^1 $\lambda x^1 + (1-\lambda)x^2$ x^2 x^2 x^2 x^2 x^2 x^2 x^2 x^2

Figure 2: Two non-convex sets

3

Intersections of convex sets

Suppose that S_k , $k \in \mathcal{K}$, is any collection of convex sets. Then, the intersection $\cap_{k \in \mathcal{K}} S_k$ is a convex set

Proof.

Convex and affine hulls

The affine hull of a finite set $V = \{v^1, \dots, v^k\} \subset \mathbb{R}^n$ is the set

aff
$$V := \left\{ \lambda_1 \boldsymbol{v}^1 + \dots + \lambda_k \boldsymbol{v}^k \mid \lambda_1, \dots, \lambda_k \in \mathbb{R}; \sum_{i=1}^k \lambda_i = 1 \right\}$$

The convex hull of a finite set $V = \{ \boldsymbol{v}^1, \dots, \boldsymbol{v}^k \} \subset \mathbb{R}^n$ is the set

$$\operatorname{conv} V := \left\{ \lambda_1 \boldsymbol{v}^1 + \dots + \lambda_k \boldsymbol{v}^k \mid \lambda_1, \dots, \lambda_k \ge 0; \ \sum_{i=1}^k \lambda_i = 1 \right\}$$

The sets are defined by all possible affine (convex) combinations of the k points

Examples

 $oldsymbol{v}^2$

PSfrag replacements

 $v^{\scriptscriptstyle 1} ullet$

(a)

 v^1 (b)

 $v^1 \stackrel{\checkmark}{ullet}$ (c)

Figure 3: (a) The set V (b) The set aff V (c) The set conv V

Carathéodory's Theorem

- The convex hull of $V \subset \mathbb{R}^n$ is the smallest convex set containing V
- Let $V \subseteq \mathbb{R}^n$. Then, conv V is the set of all convex combinations of points of V
- Every point of the convex hull of a set can be written as a convex combination of points from the set. How many do we need?
- [Car.:] Let $x \in \text{conv } V$, where $V \subseteq \mathbb{R}^n$. Then x can be expressed as a convex combination of n+1 or fewer points of V
- Proof by contradiction: if more than n+1 points are needed then these points must be affinely dependent \Longrightarrow can remove at least one such point. Etcetera

Polytope

- A subset P of \mathbb{R}^n is a polytope if it is the convex hull of finitely many points in \mathbb{R}^n
- The set shown in Figure 4 is a polytope

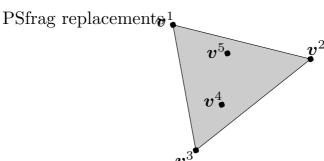


Figure 4: The convex hull of five points in \mathbb{R}^2

• A cube and a tetrahedron are polytopes in \mathbb{R}^3

Extreme points

- A point v of a convex set P is called an extreme point if whenever $v = \lambda x^1 + (1 \lambda)x^2$, where $x^1, x^2 \in P$ and $\lambda \in (0, 1)$, then $v = x^1 = x^2$
- Examples: The set shown in Figure 3(c) has the extreme points v^1 and v^2 . The set shown in Figure 4 has the extreme points v^1 , v^2 , and v^3 . The set shown in Figure 3(b) does not have any extreme points
- Let P be the polytope conv V, where $V = \{v^1, \dots, v^k\} \subset \mathbb{R}^n$. Then P is equal to the convex hull of its extreme points

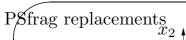
9

Polyhedra

• A subset P of \mathbb{R}^n is a polyhedron if there exist a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and a vector $\mathbf{b} \in \mathbb{R}^m$ such that

$$P = \{ x \in \mathbb{R}^n \mid Ax \le b \}$$

- $Ax \le b \iff a_ix \le b_i$ for all i (a_i is row i of A)
- Intersection of half-spaces. [Hyperplane: $\{x \in \mathbb{R}^n \mid a_i x = b_i\}$]
- Examples: (a) Figure 5 shows the bounded polyhedron $P = \{ \boldsymbol{x} \in \mathbb{R}^2 \mid x_1 \geq 2; \ x_1 + x_2 \leq 6; \ 2x_1 x_2 \leq 4 \}$
- (b) The unbounded polyhedron $P = \{ \mathbf{x} \in \mathbb{R}^2 \mid x_1 + x_2 \ge 2; \ x_1 x_2 \le 2; \ 3x_1 x_2 \ge 0 \} \text{ is shown}$ in Figure 6



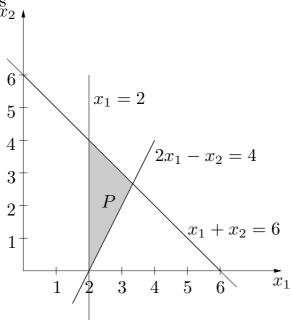


Figure 5: Illustration of the bounded polyhedron $P = \{ \boldsymbol{x} \in \mathbb{R}^2 \mid x_1 \geq 2; x_1 + x_2 \leq 6; 2x_1 - x_2 \leq 4 \}$

Sfrag replacements

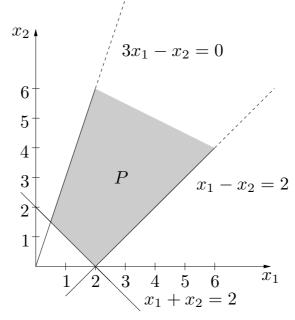


Figure 6: Illustration of the unbounded polyhedron $P = \{ \boldsymbol{x} \in \mathbb{R}^2 \mid x_1 + x_2 \geq 2; \ x_1 - x_2 \leq 2; \ 3x_1 - x_2 \geq 0 \}$

Algebraic characterizations of extreme points

- Let $\tilde{\boldsymbol{x}} \in P = \{ \boldsymbol{x} \in \mathbb{R}^n \mid \boldsymbol{A}\boldsymbol{x} \leq \boldsymbol{b} \}$, where $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ with rank $\boldsymbol{A} = n$ and $\boldsymbol{b} \in \mathbb{R}^m$. Further, let $\tilde{\boldsymbol{A}}\tilde{\boldsymbol{x}} = \tilde{\boldsymbol{b}}$ be the equality subsystem of $\boldsymbol{A}\tilde{\boldsymbol{x}} \leq \boldsymbol{b}$. Then $\tilde{\boldsymbol{x}}$ is an extreme point of P if and only if rank $\tilde{\boldsymbol{A}} = n$
- Of great importance in Linear Programming: A then always has full rank! Hence, can solve special subsystem of linear equalities to obtain an extreme point
- Corollary: The number of extreme points of P is finite
- Corollary: Since the number of extreme points is finite, the convex hull of the extreme points of a polyhedron is a polytope
- Consequence: Algorithm for linear programming!

Cones

- A subset C of \mathbb{R}^n is a cone if $\lambda x \in C$ whenever $x \in C$ and $\lambda > 0$
- Example: Let $A \in \mathbb{R}^{m \times n}$. The set $\{x \in \mathbb{R}^n \mid Ax \leq \mathbf{0}^m\}$ is a cone
- Figure 7(a) illustrates a convex cone and Figure 7(b) illustrates a non-convex cone in \mathbb{R}^2

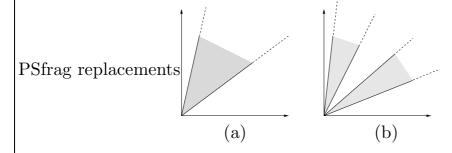


Figure 7: (a) A convex cone in \mathbb{R}^2 (b) A non-convex cone in \mathbb{R}^2

Representation Theorem

- Let $Q = \{ x \in \mathbb{R}^n \mid Ax \leq b \}$, P be the convex hull of the extreme points of Q, and $C := \{ x \in \mathbb{R}^n \mid Ax \leq \mathbf{0}^m \}$. If rank A = n then $Q = P + C = \{ x \in \mathbb{R}^n \mid x = u + v \text{ for some } u \in P \text{ and } v \in C \}$ In other words, every polyhedron (that has at least one extreme point) is the direct sum of a polytope and a polyhedral cone
- ullet Proof by induction on the rank of the subsystem matrix $ilde{A}$
- Central in Linear Programming. Can be used to establish:

 Optimal solutions to LP problems are found at extreme points!

PSfrag replacements

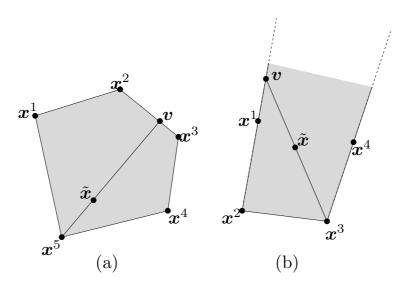


Figure 8: Illustration of the Representation Theorem (a) in the bounded case, and (b) in the unbounded case

Separation Theorem

- "If a point y does not lie in a closed and convex set C, then there exists a hyperplane that separates y from C"
- Suppose that the set $C \subseteq \mathbb{R}^n$ is closed and convex, and that the point y does not lie in C. Then there exist $\alpha \in \mathbb{R}$ and $\pi \neq \mathbf{0}^n$ such that $\pi^T y > \alpha$ and $\pi^T x \leq \alpha$ for all $x \in C$
- Proof later—requires existence and optimality conditions
- Consequence: A set P is a polytope if and only if it is a bounded polyhedron. $[\Leftarrow$ trivial; \Longrightarrow constructive]
- A finitely generated cone has the form $\operatorname{cone} \left\{ \boldsymbol{v}^1, \dots, \boldsymbol{v}^m \right\} := \left\{ \left. \lambda_1 \boldsymbol{v}^1 + \dots + \lambda_m \boldsymbol{v}^m \mid \lambda_1, \dots, \lambda_m \geq 0 \right. \right\}$
- A convex cone is finitely generated iff it is polyhedral

Figure 9: Illustration of the Separation Theorem: the unit disk is separated from \boldsymbol{y} by the line $\{\boldsymbol{x} \in \mathbb{R}^2 \mid x_1 + x_2 = 2\}$

Farkas' Lemma

• Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Then, exactly one of the systems

$$Ax = b,$$
 (I) $x \ge 0^n,$

and

$$A^{\mathrm{T}} \pi \leq \mathbf{0}^{n},$$
 (II) $b^{\mathrm{T}} \pi > 0.$

has a feasible solution, and the other system is inconsistent

- Farkas' Lemma has many forms. "Theorems of the alternative"
- Crucial for LP theory and optimality conditions
- Simple proof later!

Convexity of functions

• Suppose that $S \subseteq \mathbb{R}^n$ is convex. A function $f : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is convex at $\bar{x} \in S$ if

$$\left. \begin{array}{l} \boldsymbol{x} \in S \\ \lambda \in (0,1) \end{array} \right\} \Longrightarrow f(\lambda \bar{\boldsymbol{x}} + (1-\lambda)\boldsymbol{x}) \le \lambda f(\bar{\boldsymbol{x}}) + (1-\lambda)f(\boldsymbol{x}) \end{array}$$

- The function f is convex on S if it is convex at every $\bar{x} \in S$
- The function f is strictly convex on S if < holds in place of \le above for every $x \ne \bar{x}$
- A convex function is such that a linear interpolation never is lower than the function itself. For a strictly convex function the linear interpolation lies above the function
- (Strict) concavity of $f \iff$ (strict) convexity of -f

Sfrag replacements

• Figure 10 illustrates a convex function

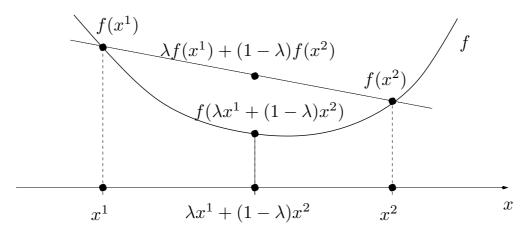


Figure 10: A convex function

• The function $f: \mathbb{R}^n \to \mathbb{R}$ defined by $f(\boldsymbol{x}) := \|\boldsymbol{x}\|$ is convex on \mathbb{R}^n ; $f(\boldsymbol{x}) := \|\boldsymbol{x}\|^2$ is strictly convex in \mathbb{R}^n

• Let $c \in \mathbb{R}^n$. The linear function $x \mapsto f(x) := c^T x = \sum_{j=1}^n c_j x_j$ is both convex and concave on \mathbb{R}^n

Sfrag replacements
• Figure 11 illustrates a non-convex function

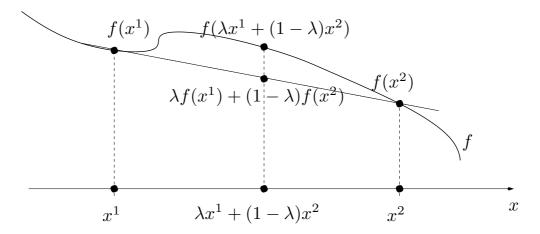


Figure 11: A non-convex function

- Sums of convex functions are convex
- Composite function: $\mathbf{x} \mapsto f(g(\mathbf{x}))$
- Suppose that $S \subseteq \mathbb{R}^n$ and $P \subseteq \mathbb{R}$. Let further $g: S \to \mathbb{R}$ be a function which is convex on S, and $f: P \to \mathbb{R}$ be convex and non-decreasing $(y \ge x \Longrightarrow f(y) \ge f(x))$ on P. Then, the composite function f(g) is convex on the set $\{x \in \mathbb{R}^n \mid g(x) \in P\}$
- The function $\boldsymbol{x} \mapsto -\log(-g(\boldsymbol{x}))$ is convex on the set $\{\boldsymbol{x} \in \mathbb{R}^n \mid g(\boldsymbol{x}) < 0\}$

Epigraphs

• Characterize convexity of a function on \mathbb{R}^n by the convexity of its epigraph in \mathbb{R}^{n+1} . [Note: the graph of a function $f: \mathbb{R}^n \to \mathbb{R}$ is the boundary of epi f]

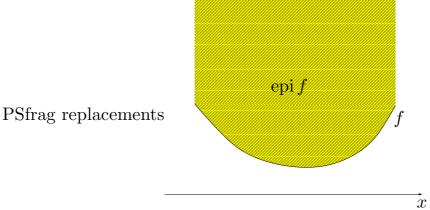


Figure 12: A convex function and its epigraph

• The epigraph of a function $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is the set

$$\operatorname{epi} f := \{ (\boldsymbol{x}, \alpha) \in \mathbb{R}^{n+1} \mid f(\boldsymbol{x}) \le \alpha \}$$

The epigraph of the function f restricted to the set $S \subseteq \mathbb{R}^n$ is

$$\operatorname{epi}_{S} f := \{ (\boldsymbol{x}, \alpha) \in S \times \mathbb{R} \mid f(\boldsymbol{x}) \leq \alpha \}$$

- Connection between convex sets and functions; in fact the definition of a convex function stems from that of a convex set!
- Suppose that $S \subseteq \mathbb{R}^n$ is a convex set. Then, the function $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is convex on S if, and only if, its epigraph restricted to S is a convex set in \mathbb{R}^{n+1}

Convexity characterizations in C^1

- C^1 : Differentiable once, gradient continuous
- Let $f \in C^1$ on an open convex set S
 - (a) f is convex on $S \iff f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^{\mathrm{T}}(\mathbf{y} \mathbf{x}), \mathbf{x}, \mathbf{y} \in S$
 - (b) f is convex on $S \iff [\nabla f(\boldsymbol{x}) \nabla f(\boldsymbol{y})]^{\mathrm{T}}(\boldsymbol{x} \boldsymbol{y}) \geq 0, \boldsymbol{x}, \boldsymbol{y} \in S$
- (a): "Every tangent plane to the function surface lies on, or below, the epigraph of f", or, that "a first-order approximation is below f"
- (b) ∇f is "monotone on S." [Note: when n=1, the result states that f is convex if and only if its derivative f' is non-decreasing, that is, that it is monotonically increasing]
- Proofs use Taylor expansion, convexity and Mean-value Theorem

• Figure 13 illustrates part (a) PSfrag replacements

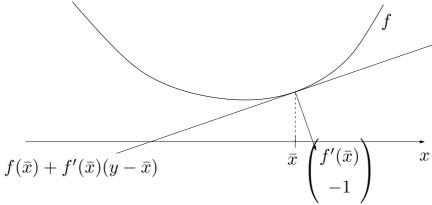


Figure 13: A tangent plane to the graph of a convex function

Convexity characterizations in C^2

- Let f be in C² on an open, convex set S ⊆ ℝⁿ
 (a) f is convex on S ⇔ ∇²f(x) is positive semidefinite for all x ∈ S
 - (b) $\nabla^2 f(\mathbf{x})$ is positive definite for all $x \in S \Longrightarrow f$ is strictly convex on S
- Note: n = 1, S is an open interval: (a) f is convex on S if and only if $f''(x) \ge 0$ for every $x \in S$; (b) f is strictly convex on S if f''(x) > 0 for every $x \in S$
- Proofs use Taylor expansion, convexity and Mean-value Theorem
- Not the direction \Leftarrow in (b)! $[f(x) = x^4 \text{ at } x = 0]$
- ullet Difficult to check convexity; matrix condition for every $oldsymbol{x}$
- Quadratic function: $f(x) = (1/2)x^{\mathrm{T}}Qx q^{\mathrm{T}}x$ convex on \mathbb{R}^n iff Q is psd (Q is the Hessian of f, and is independent of x)

Convexity of feasible sets

• Let $g: \mathbb{R}^n \to \mathbb{R}$ be a function. The level set of g with respect to the value $b \in \mathbb{R}$ is the set

$$\operatorname{lev}_g(b) := \{ \boldsymbol{x} \in \mathbb{R}^n \mid g(\boldsymbol{x}) \le b \}$$

• Figure 14 illustrates a level set of a convex function

PSfrag replacements

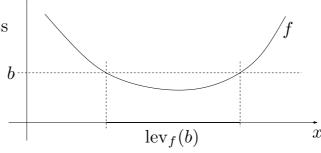


Figure 14: A level set of a convex function

• Suppose that the function $g: \mathbb{R}^n \to \mathbb{R}$ is convex. Then, for every value of $b \in \mathbb{R}$, the level set $\text{lev}_g(b)$ is a convex set. It is moreover closed

Proof.

• We speak of a convex problem when f is convex (minimization) and for constraints $g_i(\mathbf{x}) \leq 0$, the functions g_i are convex; and for constraints $h_j(\mathbf{x}) = 0$, the functions h_j are affine

Euclidean projection

• The Euclidean projection of $\boldsymbol{w} \in \mathbb{R}^n$ is the nearest (in Euclidean norm) vector in S to \boldsymbol{w} . The vector $\boldsymbol{w} - \operatorname{Proj}_S(\boldsymbol{w})$ is normal to S

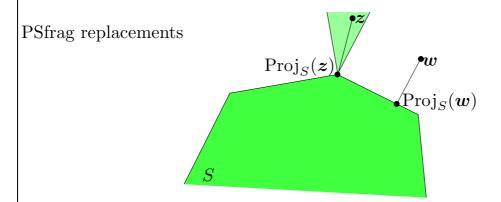


Figure 15: The projection of two vectors onto a convex set

The distance function below is convex:

$$\operatorname{dist}_S(\boldsymbol{x}) := \|\boldsymbol{x} - \operatorname{Proj}_S(\boldsymbol{x})\|, \qquad \boldsymbol{x} \in \mathbb{R}^n$$

PSfrag replacements

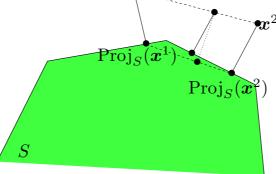


Figure 16: From the intermediate vector $\lambda x^1 + (1 - \lambda)x^2$ shown the distance to the vector $\lambda \text{Proj}_S(x^1) + (1 - \lambda)\text{Proj}_S(x^2)$ [dotted line segment] clearly is longer than to its projection on S [solid line]