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Question 1

(the Simplex method)

a) After changing sign of the second inequality and adding two slack variables

s1 and sg, a BFS cannot be found directly. We create the phase I problem
through an added artificial variable a; in the second linear constraint; the
value of a; is to be minimized.

We use the BFS based on the variable pair (s;,a;) as the starting BFS
for the phase I problem. In the first iteration of the Simplex method x; is
the only variable with a negative reduced cost; hence x; is picked as the
incoming variable. The minimum ratio test shows that s; should leave the
basis. In the next iteration the reduced cost for varialbe x3 is negative, and
x3 is picked as the incoming variable. The minimum ratio test shows that
a; should leave the basis. We have found an optimal basis, x5 = (2, 23)T,
to the phase I problem. We proceed to phase II, since the basis is feasible
in the original problem.

Starting phase II with this BFS, we see that all reduced costs are positive,
cn = (3,2,3)T > 0, and thus the BFS is optimal. zp = B~'b = (2,1)T so
r* = (2,0,3)T and z* = chwp = 3.

b) Yes. The reduced costs are positive.

(3p) Question 2

(1p)

(1p)

(strong duality in linear programming)

See Theorem 10.6 in The Book.

Question 3

(exterior penalty method)

a) Direct application of the KKT conditions yield that * = (£, 2)T and A* =

—1/5 uniquely.

b) Letting the penalty parameter be v > 0, it follows that x, = —%(3,2)".

1+5v
Clearly, as v — oo convergence to the optimal primal-dual solution follows.
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¢) From the stationarity conditions of the penalty function @ — f(x)+Ah(x)+
v|h(z)|? follow that @, fulfills V f(z,)+[2vh(z,)|Vh(z,) = 0%, and hence a
proper Lagrange multiplier estimate comes out as A, := 2vh(x,). Insertion

from b) yields A, = 7%, which tends to A" = —% as v — 00.

Question 4

(true or false claims in optimization)

a) True. Vf(z)Tp = —2.

b) False. Suppose, for example, that the Hessian of f at @ is negative definite,
and that x is not a stationary point. Then the Newton direction is well-
defined but it is an ascent direction.

c) True. The result follows rather immediately from the definition of descent
direction.

Question 5
(least-squares minimization)

We wish to minimize || Az — b||, or equivalently f(x) = ||Ax — b||3 over x € R",
i.e. we have a unconstrained optimization problem. We rewrite

fx)=(Az —b)"(Ax —b) =xTATAx —2"A"b — b Ax + "D

The hessian of f(z) is AT A and is always positive semi-definite since vT AT Av =
|Av||? > 0 Vw. Thus, the minimization problem is convex and from the opti-
mality conditions we know that stationarity is sufficient for a point to be optimal.

We have 7 f(z*) = 0 <= AT Ax* = A"b. If the rank of A is n then
||Av||?> > 0 Vo # 0, the hessian is positive definite and therefore invertible and
we get the wanted result.
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Question 6
(modelling)
Introduce the variables:

x;; Number of persons recruited in the beginning of month ¢
to the end of month 5,2 =1,...,24, j=14,...,24
y;  Value one if anyone is recruited month ¢, zero otherwise.
The objective is

24
i g i t=1i<t,j>t
and the constraints are

Z ZL‘Z‘jZdt, tzl,...,247

i<t,j>t
ZL’Z‘jZO, V(Z7J)Z:jvl:]+]-7
J

ys €B
Tij €Ly

where M is a big number. Constraint (1) sets the required work force. Constraint
(1) sets the recruitments to more than 3 months. Constraint (2) is present for

setting the auxiliary variable y.

Question 7

(duality in linear and nonlinear optimization)

a) The LP dual is to

maximize w = by, +byy, +ays
subject to Aly, +AJy, <ec,
B'y, +1%; <d,

Y Z Omla Yo € Rm2>?/3 € Ra

where 1™ is the m;-vector of ones.



(2p)

EXAM SOLUTION
TMA947/MAN280 — APPLIED OPTIMIZATION 4

b) With g(x) := —x1 + 229 — 4, the Lagrange function becomes

Lz, p) = f(®) + pg(x)
= 207 + 73 — 4wy — 63y + p(—x1 + 239 — 4).

Minimizing this function over & € R? yields [since L(-, i) is a strictly convex
quadratic function for every value of p, it has a unique minimum for every
value of p] that its minimum is attained where its gradient is zero. This
gives us that

zi(p) = (4+p)/4;
T2(p) =3 — p.

Inserting this into the Lagrangian function, we define the dual objective
function as

4+ p

o) = () ) = =2 (Y 5

This function is to be maximized over p > 0. We are done with task [1].

We attempt to optimize the one-dimensional function ¢ by setting the
derivative of ¢ to zero. If the resulting value of y is non-negative, then
it must be a global optimum; otherwise, the optimum is p* = 0.

We have that ¢/(u) =---=1-— %‘, so the stationary point of ¢ is u = 4/9.
Since its value is positive, we know that the global maximum of ¢ over
pu>01is u* =4/9. We are done with task [2].

Our candidate for the global optimum in the primal problem is x(u*) =
£(10,23)T. Checking feasibility, we see that g(x(u*)) = 0. Hence, without
even evaluating the values of ¢(u*) and f(x(n*)) we know they must be
equal, since q(p*) = f(x(u*))+p*g(x(p*)) = f(x(n*)), due to the fact that
we satisfy complementarity. We have proved that strong duality holds, and
therefore task [4] is done.

By the Weak Duality Theorem 7.4 follows that if a vector x is primal
feasible and f(x) = g(u) holds for some feasible dual vector u, then & must
be the optimal solution to the primal problem. (And g must be optimal in
the dual problem.) Task [4] is completed by the remark that this is exactly
the case for the pair (x(u*), u*).




