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Optimization

“Optimum:” Latin for “the ultimate ideal;” similarly, “optimus:”

“the best.” To optimize is to bring something to its ultimate state

Example problem: Consider a hospital ward which operates 24

hours a day. At different times of day, the staff requirement differs.

Table 1 shows the demand for reserve wardens during six work shifts

Shift 1 2 3 4 5 6

Hours 0–4 4–8 8–12 12–16 16–20 20–24

Demand 8 10 12 10 8 6

Table 1: Staff requirements at a hospital ward

Each member of staff works in 8 hour shifts. The goal is to fulfill the

demand with the least total number of reserve wardens

Lecture 1: Modelling and classification

0-0
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Optimal solution: x
∗, a vector of decision variable values which gives

the objective function its minimal value among the feasible solutions

Two optimal solutions: x
∗ = (4, 6, 6, 4, 4, 4)T, x

∗ = (8, 2, 10, 0, 8, 0)T

Optimal value: f(x∗) = 28

The above model is a crude simplification of any real application

Should add requirements on individual competence, more detailed

restrictions, longer planning horizon, employment rules etcetera

More complex models in practice
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A staff planning problem

minimize
x

f(x) :=
6∑

j=1

xj ,

subject to x6 + x1 ≥ 8, (work ends at shift 1)

x1 + x2 ≥ 10,

x2 + x3 ≥ 12,

x3 + x4 ≥ 10,

x4 + x5 ≥ 8,

x5 + x6 ≥ 6, (work ends at shift 6)

xj ≥ 0, j = 1, . . . , 6,

xj integer, j = 1, . . . , 6
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Difficulties

� Communication can often be difficult (the two parties speak

different languages in terms of describing the problem)

� Problems with data collection:

– Quantification difficult

– Enough accuracy obtained?

– Uncertainties (sometimes part of the problem, sometimes not)

� Conflict between problem solvability and problem realism

� Problems with the result:

– Interpretation of the result must make sense to users

– Must be possible to transfer the solution back into the

“fluffy” world where the problem came from
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Modelling practice

Figure 1 illustrates several issues in the modelling process

PSfrag replacements

Communication
Simplification
Quantification

Limitation

Data

Modification

Algorithms

Interpretation

Reality

Evaluation

Optimization model Results

Figure 1: Flow chart of the modelling process
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Problem classification, I: General problem

The optimization problem then is to

minimize
x

f(x),

subject to gi(x) ≥ 0, i ∈ I,

gi(x) = 0, i ∈ E ,

x ∈ X

(If it is really a maximization problem, then we change the sign of f)
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Problem classification, I: General problem

x ∈ R
n : vector of decision variables xj , j = 1, 2, . . . , n;

f : R
n → R ∪ {±∞} : objective function;

X ⊆ R
n : ground set defined logically/physically;

gi : R
n → R : constraint function defining restriction on x :

gi(x) ≥ 0, i ∈ I; (inequality constraints)

gi(x) = 0, i ∈ E (equality constraints)
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Continuous optimization f, gi (i ∈ I ∪ E) are continuous on an

open set containing X;

X is closed and convex

Integer programming X ⊆ {0, 1}n or X ⊆ Z
n

Unconstrained optimization I ∪ E = ∅;

X = R
n

Constrained optimization I ∪ E 6= ∅ and/or X ⊂ R
n
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Example problems

(LP) Linear programming Objective function linear:

f(x) = c
T
x =

∑n

j=1
cjxj (c ∈ R

n);

constraint functions affine: gi(x) = a
T

i x − bi (ai ∈ R
n, bi ∈ R,

i ∈ I ∪ E);

X = {x ∈ R
n | xj ≥ 0, j = 1, 2, . . . , n }

(NLP) Nonlinear programming Some function(s) f, gi

(i ∈ I ∪ E) are nonlinear
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Relations among NLP, IP, and LP:

PSfrag replacements

NLP

IP

LP

LP special case of NLP: a linear function is a special kind of

nonlinear function (cf. Taylor expansion)

IP special case of NLP: xj ∈ {0, 1} equivalent to xj(1 − xj) = 0

Some IP problems are equivalent to LP—integrality property.

(Example: The shortest path problem)
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Differentiable optimization f, gi (i ∈ I ∪ E) are at least once

continuously differentiable on an open set containing X (that is, “in

C1 on X,” which means that ∇f and ∇gi exist there and the

gradients are continuous);

further, X is closed and convex

Non-differentiable optimization At least one of f, gi (i ∈ I ∪ E)

is non-differentiable

(CP) Convex programming f is convex; gi (i ∈ I) are concave;

gi (i ∈ E) are affine;

X is closed and convex

Non-convex programming The complement of the above
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What then is optimization?

� If there are no ≥- or ≤-constraints then the problem is essentially

unconstrained

� =-constraints are treated through numerical analysis techniques.

So, unconstrained optimization is essentially a numerical analysis

subject

� With ≥- or ≤-constraints we face problems such as which are the

active constraints. One-sidedness

� Results in difficult “non-differentiabilities”

� Largely a subject of convex and variational analysis. This is

optimization!
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Rough distinctions between LP and NLP

LP Linear programming ≈ applied linear algebra. LP is “easy,”

because there exist algorithms that can solve every LP problem

instance efficiently in practice

NLP Nonlinear programming ≈ applied analysis in several variables.

NLP is “hard,” because there does not exist an algorithm that

can solve every NLP problem instance efficiently in practice.

NLP is such a large problem area that it contains very hard

problems as well as very easy problems. The largest class of NLP

problems that are solvable with some algorithm in reasonable

time is CP (of which LP is a special case)



15'

&

$

%

Figure 2: A non-optimal (left) and optimal (right) spanning tree

n total time

10 0.1 s.
15 22.5 days
20 8.3 million years

� MST can be solved in a time proportional to n log n; it is hence

“easy” (the complexity term is “polynomial”)
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Computer communication

� Problem statement: connect computers so that they can all

communicate; minimize the total length of the cables

� These connections are known as spanning trees—hence we wish

to solve the minimum spanning tree (MST) problem

� If the number of computers is n, then the number of possible

connections is nn−2

� “Method:” enumerate them all, compare. Suppose it takes 10−9

s. to evaluate one spanning tree
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The traveling salesman problem, II

� Practical application: masters project at LiU 1988 with Philips,

Norrköping

� Philips produce hundreds of circuit boards per day in batches

� The drilling machine is connected to a microcomputer that

selects the ordering of the holes to be drilled, given their

coordinates

� Algorithm: a simple sorting operation—for every fixed

x-coordinate, the y-coordinates are sorted in increasing order

� Takes too long to drill one circuit board (the path is too long)
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The traveling salesman problem (TSP), I

� Problem statement: visit n cities in an order which minimizes

the total distance traveled, then return to the initial city; do not

revisit any other city

� Interesting in that it has many practical applications: vehicle

routing, paper cutting, job sequencing on single machines, . . .

� Total number of traveling salesman tours (“Hamilton cycles”) is

n!; similar combinatorial explosion as in MST. Does there exist

an efficient algorithm?

� No! (Unless P = NP; unsolved complexity problem)

� Heuristics often used for large-scale examples
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� This is a TSP problem! Each hole corresponds to a city which is

to visited = hole to be drilled exactly once

� The masters students implemented a heuristic algorithm based

on Lagrangian duality and solutions of MST problems, which

produces a feasible solution quickly (Section 6.7.2)

� Moreover, the algorithm produced bounds on the solution such

that one gets a quality measure

� Example: the optimal path is around 2 meters long, and the

heuristic solution provides a drilling pattern no more than 7 %

longer than an optimal one

� Result: Philips could increase their production by about 70 %
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Figure 4: Near-optimal drill pattern


