Lecture 4: Unconstrained optimization algorithms

Method of choice

Consider the unconstrained optimization problem to

$$
\begin{equation*}
\underset{\boldsymbol{x} \in \mathbb{R}^{n}}{\operatorname{minimize}} f(\boldsymbol{x}), \tag{1}
\end{equation*}
$$

where $f \in C^{0}$ on \mathbb{R}^{n} (f is continuous). Mostly, we assume that $f \in C^{1}$ holds (f is continuously differentiable), sometimes even C^{2}

- Size of the problem (n) ?
- Are $\nabla f(\boldsymbol{x})$ and/or $\nabla^{2} f(\boldsymbol{x})$ available; to what cost?
- What it is the goal? (Global/local minimum, stationary point?)
- What are the convexity properties of f ?
- Do we have a good estimate of the location of a stationary point \boldsymbol{x}^{*} ? (Can we use locally-only convergent methods?)

Example: curve fitting by least-squares

- Suppose we have m data points $\left(t_{i}, b_{i}\right)$ believed to be related as

$$
x_{1}+x_{2} \exp \left(x_{3} t_{i}\right)+x_{4} \exp \left(x_{5} t_{i}\right)=b_{i}, \quad i=1, \ldots, m
$$

with unknown parameters x_{1}, \ldots, x_{5}. (Here, $\exp (x)=\mathrm{e}^{x}$.) The best description minimizes the total "residual error," given by the norm of the residual

$$
f_{i}(\boldsymbol{x}):=b_{i}-\left[x_{1}+x_{2} \exp \left(x_{3} t_{i}\right)+x_{4} \exp \left(x_{5} t_{i}\right)\right], \quad i=1, \ldots, m
$$

- Resulting optimization problem:

$$
\min _{x \in \mathbb{R}^{5}} f(\boldsymbol{x}):=\sum_{i=1}^{m}\left|f_{i}(\boldsymbol{x})\right|^{2}=\sum_{i=1}^{m}\left(b_{i}-\left[x_{1}+x_{2} \exp \left(x_{3} t_{i}\right)+x_{4} \exp \left(x_{5} t_{i}\right)\right]\right)^{2}
$$

- Very often solved problem type within numerical analysis and mathematical statistics

Typical algorithm

Step 0. Starting point: $\boldsymbol{x}_{0} \in \mathbb{R}^{n}$. Set $k:=0$
Step 1. Search direction: $\boldsymbol{p}_{k} \in \mathbb{R}^{n}$
Step 2. Step length: $\alpha_{k}>0$ such that $f\left(\boldsymbol{x}_{k}+\alpha_{k} \boldsymbol{p}_{k}\right)<f\left(\boldsymbol{x}_{k}\right)$ holds
Step 3. Let $\boldsymbol{x}_{k+1}:=\boldsymbol{x}_{k}+\alpha_{k} \boldsymbol{p}_{k}$
Step 4. Termination criterion: If fulfilled, then stop! Otherwise, let $k:=k+1$ and go to step 1

Notes

- The figure was plotted using several thousands of function evaluations
- Never possible in reality! (And total waste of time)
- An "orienteering map" never exists
- Most algorithms are inherently local, only based on info at the current point \boldsymbol{x}_{k}, that is, $f\left(\boldsymbol{x}_{k}\right), \nabla f\left(\boldsymbol{x}_{k}\right)$, and $\nabla^{2} f\left(\boldsymbol{x}_{k}\right)$
- Possibly also on previous points passed
- An algorithm is a "near-sighted mountain climber" when trying to reach the summit (for a max problem!)
- The mountain climber is in a deep fog and can only check her barometer for the height and feel the steepness of the slope under her feet

Step 1: Search directions

- If $\nabla f\left(\boldsymbol{x}_{k}\right) \neq \mathbf{0}^{n}$, then $\boldsymbol{p}=-\nabla f\left(\boldsymbol{x}_{k}\right)$ is a descent direction for f at \boldsymbol{x}_{k} (Part of necessary condition proof!)
- This steepest descent direction solves the problem to

$$
\underset{\boldsymbol{p} \in \mathbb{R}^{n}:\|\boldsymbol{p}\|=1}{\operatorname{minimize}} \nabla f\left(\boldsymbol{x}_{k}\right)^{\mathrm{T}} \boldsymbol{p}
$$

- Suppose $\boldsymbol{Q} \in \mathbb{R}^{n \times n}$ is a symmetric, positive definite matrix. Then $\boldsymbol{p}=-\boldsymbol{Q} \nabla f\left(\boldsymbol{x}_{k}\right)$ is a descent direction for f at \boldsymbol{x}_{k}, because

$$
\nabla f\left(\boldsymbol{x}_{k}\right)^{\mathrm{T}} \boldsymbol{p}=-\nabla f\left(\boldsymbol{x}_{k}\right)^{\mathrm{T}} \boldsymbol{Q} \nabla f\left(\boldsymbol{x}_{k}\right)<0
$$

due to the positive definiteness of \boldsymbol{Q}

- Special case: $\boldsymbol{Q}=\boldsymbol{I}^{n}$ yield steepest descent
- Special case: $\boldsymbol{Q}^{-1}=\nabla^{2} f\left(\boldsymbol{x}_{k}\right)$, if the Hessian is positive definite. This is Newton's method

Additional requirements

$$
\left|\nabla f\left(\boldsymbol{x}_{k}\right)^{\mathrm{T}} \boldsymbol{p}_{k}\right| \geq s_{1}\left\|\nabla f\left(\boldsymbol{x}_{k}\right)\right\|^{2}, \quad \text { and } \quad\left\|\boldsymbol{p}_{k}\right\| \leq s_{2}\left\|\nabla f\left(\boldsymbol{x}_{k}\right)\right\|,
$$

or

$$
-\frac{\nabla f\left(\boldsymbol{x}_{k}\right)^{\mathrm{T}} \boldsymbol{p}_{k}}{\left\|\nabla f\left(\boldsymbol{x}_{k}\right)\right\| \cdot\left\|\boldsymbol{p}_{k}\right\|} \geq s_{1}, \quad \text { and } \quad\left\|\boldsymbol{p}_{k}\right\| \geq s_{2}\left\|\nabla f\left(\boldsymbol{x}_{k}\right)\right\|
$$

- Purpose: prevent the descent directions to deteriorate in quality, and prevent premature convergence
- $\nabla f\left(\boldsymbol{x}_{k}\right)^{\mathrm{T}} \boldsymbol{p}_{k}$ is the directional derivative of f at \boldsymbol{x}_{k} in the direction of \boldsymbol{p}_{k}. Make sure it stays away from zero!
- Also, make sure that \boldsymbol{p}_{k} stays bounded and that it tends to zero if and only if $\nabla f\left(\boldsymbol{x}_{k}\right)$ does
- These conditions hold for the above examples

Newton's method

- Steepest descent is most often not a very good algorithm. Why?
- It fails to take into account more than information about ∇f
- Let

$$
f(\boldsymbol{x}+\boldsymbol{p})-f(\boldsymbol{x}) \approx \varphi_{x}(\boldsymbol{p})=\nabla f(\boldsymbol{x})^{\mathrm{T}} \boldsymbol{p}+\frac{1}{2} \boldsymbol{p}^{\mathrm{T}} \nabla^{2} f(\boldsymbol{x}) \boldsymbol{p}
$$

Minimize by setting gradient of $\varphi_{x}(\boldsymbol{p})$ to zero:

$$
\nabla_{p} \varphi_{x}(\boldsymbol{p})=\nabla f(\boldsymbol{x})+\nabla^{2} f(\boldsymbol{x}) \boldsymbol{p}=\mathbf{0}^{n}
$$

- $n=1: f^{\prime}(x)+f^{\prime \prime}(x) p=0 \Longrightarrow p=-f^{\prime}(x) / f^{\prime \prime}(x)$
- Provides descent if $f^{\prime \prime}(x)>0: f^{\prime}(x) p=-\left[f^{\prime}(x)\right]^{2} / f^{\prime \prime}(x)<0$
- Corresponding story in $\mathbb{R}^{n}: \boldsymbol{p}=-\left[\nabla^{2} f(\boldsymbol{x})\right]^{-1} \nabla f(\boldsymbol{x})$, yields descent at non-stationary points if $\nabla^{2} f(\boldsymbol{x})$ is positive definite!

Why do we not always choose Newton directions?

- Lack of positive definiteness. $\nabla^{2} f(\boldsymbol{x})$ is not positive definite (PD). Solution: add diagonal matrix so that the result is PD : $\nabla^{2} f(\boldsymbol{x})+\gamma \boldsymbol{I}^{n}$ for $\gamma>0$ large enough
- Note: If value of γ is very large $\Longrightarrow \approx$ steepest descent
- Name: Levenberg-Marquardt
- Lack of enough differentiability. If $f \notin C^{2}$, what do we do?
- $n=1$: the secant method:

$$
f^{\prime \prime}\left(x_{k}\right) \approx \frac{f^{\prime}\left(x_{k}\right)-f^{\prime}\left(x_{k-1}\right)}{x_{k}-x_{k-1}}
$$

- $n>1$: quasi-Newton: choose approximate matrix \boldsymbol{B}_{k} so that

$$
\boldsymbol{B}_{k}\left(\boldsymbol{x}_{k}-\boldsymbol{x}_{k-1}\right)=\nabla f\left(\boldsymbol{x}_{k}\right)-\nabla f\left(\boldsymbol{x}_{k-1}\right),
$$

and more choices (the above does not specify the entire matrix!)

- Computational burden. It may be too much to ask for to solve a linear system many times when $n>1000$ or so; it is enough to do some work on the linear system and still get a descent property. (See book for an example)
- Specific choices of matrices \boldsymbol{B}_{k} lead to quasi-Newton methods

Step 2: Line search

- Approximately solve the one-dimensional problem to

$$
\underset{\alpha \geq 0}{\operatorname{minimize}} \varphi(\alpha):=f\left(\boldsymbol{x}_{k}+\alpha \boldsymbol{p}_{k}\right)
$$

Its optimality conditions are that

$$
\varphi^{\prime}\left(\alpha^{*}\right) \geq 0, \quad \alpha^{*} \cdot \varphi^{\prime}\left(\alpha^{*}\right)=0, \quad \alpha^{*} \geq 0
$$

that is,

$$
\nabla f\left(\boldsymbol{x}_{k}+\alpha^{*} \boldsymbol{p}_{k}\right)^{\mathrm{T}} \boldsymbol{p}_{k} \geq 0, \quad \alpha^{*} \cdot \nabla f\left(\boldsymbol{x}_{k}+\alpha^{*} \boldsymbol{p}_{k}\right)^{\mathrm{T}} \boldsymbol{p}_{k}=0, \quad \alpha^{*} \geq 0
$$

holds

- If $\alpha^{*}>0$, then $\varphi^{\prime}\left(\alpha^{*}\right)=0$ holds, hence $\nabla f\left(\boldsymbol{x}_{k}+\alpha^{*} \boldsymbol{p}_{k}\right)^{\mathrm{T}} \boldsymbol{p}_{k}=0$
- The search direction \boldsymbol{p}_{k} is orthogonal to the gradient of f at the point $\boldsymbol{x}_{k}+\alpha^{*} \boldsymbol{p}_{k}$

Figure 1: A line search in a descent direction

Approximate line search

- No point solving the one-dimensional problem exactly! Why? The optimum to the entire problem lies elsewhere!
- Interpolation: Use $f\left(\boldsymbol{x}_{k}\right), \nabla f\left(\boldsymbol{x}_{k}\right), \nabla f\left(\boldsymbol{x}_{k}\right)^{\mathrm{T}} \boldsymbol{p}_{k}$ to model a quadratic function approximating f along \boldsymbol{p}_{k}. Minimize it by using the analytic formula for quadratics
- Newton's method: Repeat the improvements gained from a quadratic approximation: $\alpha:=\alpha-\varphi^{\prime}(\alpha) / \varphi^{\prime \prime}(\alpha)$
- Golden section: Derivative-free method that shrinks an interval where $\varphi^{\prime}(\alpha)=0$ lies

Armijo rule

- Idea: quickly generate a step α which provides "sufficient" decrease in f. Note: $f\left(\boldsymbol{x}_{k}+\alpha \boldsymbol{p}_{k}\right) \approx f\left(\boldsymbol{x}_{k}\right)+\alpha \cdot \nabla f\left(\boldsymbol{x}_{k}\right)^{\mathrm{T}} \boldsymbol{p}_{k}$, valid for small values of $\alpha>0$
- Requirement: we get a decrease in f which is at least a fraction of that predicted in the right-hand side above. Let $\mu \in(0,1)$ be this fraction. Acceptable step lengths are $\alpha>0$ satisfying

$$
\begin{equation*}
\varphi(\alpha)-\varphi(0) \leq \mu \alpha \varphi^{\prime}(0) \tag{2a}
\end{equation*}
$$

that is,

$$
\begin{equation*}
f\left(\boldsymbol{x}_{k}+\alpha \boldsymbol{p}_{k}\right)-f\left(\boldsymbol{x}_{k}\right) \leq \mu \alpha \nabla f\left(\boldsymbol{x}_{k}\right) \boldsymbol{p}_{k} \tag{2b}
\end{equation*}
$$

- Can add condition making α also large enough (Wolfe)

Figure 2: The interval (R) accepted by the Armijo step length rule

Typical convergence result

- Suppose that $f \in C^{1}$, and that for the starting point \boldsymbol{x}_{0} it holds that the level set $\operatorname{lev}_{f}\left(f\left(\boldsymbol{x}_{0}\right)\right)=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid f(\boldsymbol{x}) \leq f\left(\boldsymbol{x}_{0}\right)\right\}$ is bounded. Consider the iterative algorithm defined on Page 1, with the following choices for each k :
- \boldsymbol{p}_{k} satisfies the second sufficient descent condition on Page 6;
- $\left\|\boldsymbol{p}_{k}\right\| \leq M$, where M is some positive constant; and
- the Armijo step length rule is used

Then, the sequence $\left\{\boldsymbol{x}_{k}\right\}$ is bounded, the sequence $\left\{f\left(\boldsymbol{x}_{k}\right)\right\}$ is descending, lower bounded and therefore converges, and every limit point of $\left\{\boldsymbol{x}_{k}\right\}$ is stationary

- For convex f much stronger convergence properties:

Optimum exists $\Longleftrightarrow\left\{\boldsymbol{x}_{k}\right\}$ converges to an optimal solution
(Theorem proved for gradient projection method later)

Step 4: Termination criteria

- Lesson number one: Cannot terminate based on the exact optimality conditions, because $\nabla f(\boldsymbol{x})=\mathbf{0}^{n}$ rarely happens!
- The recommendation is the combination of the following:

1. $\left\|\nabla f\left(\boldsymbol{x}_{k}\right)\right\| \leq \varepsilon_{1}\left(1+\left|f\left(\boldsymbol{x}_{k}\right)\right|\right), \varepsilon_{1}>0$ small;
2. $f\left(\boldsymbol{x}_{k-1}\right)-f\left(\boldsymbol{x}_{k}\right) \leq \varepsilon_{2}\left(1+\left|f\left(\boldsymbol{x}_{k}\right)\right|\right), \varepsilon_{2}>0$ small; and
3. $\left\|\boldsymbol{x}_{k-1}-\boldsymbol{x}_{k}\right\| \leq \varepsilon_{3}\left(1+\left\|\boldsymbol{x}_{k}\right\|\right), \varepsilon_{3}>0$ small

- Why? Need to cover cases of very steep and very flat functions
- May need to use ∞-norm: $\|\boldsymbol{x}\|_{\infty}:=\max _{1 \leq j \leq n}\left|x_{j}\right|$, for large n
- Problem with the scaling of the problem: If

$$
\begin{aligned}
\boldsymbol{x}_{k-1} & =(1.44453,0.00093,0.0000079)^{\mathrm{T}} \\
\boldsymbol{x}_{k} & =(1.44441,0.00012,0.0000011)^{\mathrm{T}} ; \\
\left\|\boldsymbol{x}_{k-1}-\boldsymbol{x}_{k}\right\|_{\infty} & =\left\|(0.00012,0.00081,0.0000068)^{\mathrm{T}}\right\|_{\infty} \\
& =0.00081
\end{aligned}
$$

- Small absolute error but large relative error!
- Better to apply the algorithm from a scaled problem where elements of \boldsymbol{x} have similar magnitude
- Newton methods define good such scalings

Why is the C^{1} property important?

- Suppose f is only in C^{0}, not C^{1}. Example:

$$
f(\boldsymbol{x}):=\operatorname{maximum}_{i \in\{1, \ldots, m\}}\left\{\boldsymbol{c}_{i}^{\mathrm{T}} \boldsymbol{x}+b_{i}\right\}, \quad \boldsymbol{x} \in \mathbb{R}^{n}
$$

- This is a piece-wise linear and convex function (see next page)
- It is differentiable almost everywhere, but not at the optimal solution!
- Ignoring non-differentiability may lead to the convergence to a non-optimal point
- Convex functions always has subgradients, corresponding to all the possible slopes of the function
- More on these when looking at Lagrangian duality!

Figure 3: A piece-wise linear convex function

Trust region methods

- Trust region methods use quadratic models (as Newton)
- Avoids line searches by bounding the length of the search direction, at the same time influencing its direction
- Let $\psi_{k}(\boldsymbol{p}):=f\left(\boldsymbol{x}_{k}\right)+\nabla f\left(\boldsymbol{x}_{k}\right)^{\mathrm{T}} \boldsymbol{p}+\frac{1}{2} \boldsymbol{p}^{\mathrm{T}} \nabla^{2} f\left(\boldsymbol{x}_{k}\right) \boldsymbol{p}$
- The model ψ_{k} is trusted in a neighbourhood of $\boldsymbol{x}_{k}:\|\boldsymbol{p}\| \leq \Delta_{k}$
- Very useful when $\nabla^{2} f\left(\boldsymbol{x}_{k}\right)$ is not positive semi-definite
- Easy to minimize $\psi_{k}(\boldsymbol{p})$ subject to $\|\boldsymbol{p}\| \leq \Delta_{k}$
- Idea: when $\nabla^{2} f\left(\boldsymbol{x}_{k}\right)$ is badly conditioned, Δ_{k} should be small (more of a steepest descent method); if well conditioned, Δ_{k} should be large to allow for unit steps (Newton! fast convergence)
- If Δ_{k} is small enough, $f\left(\boldsymbol{x}_{k}+\boldsymbol{p}_{k}\right)<f\left(\boldsymbol{x}_{k}\right)$ holds
- Even if $\nabla f\left(\boldsymbol{x}_{k}\right)=\mathbf{0}^{n}$ holds, $f\left(\boldsymbol{x}_{k}+\boldsymbol{p}_{k}\right)<f\left(\boldsymbol{x}_{k}\right)$ still holds, if
$\nabla^{2} f\left(\boldsymbol{x}_{k}\right)$ is not positive definite
- Progress from stationary points if saddle points or local maxima
- Update of trust region size based on a measure of similarity between the model ψ_{k} and f : Let

$$
\rho_{k}=\frac{f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}_{k}+\boldsymbol{p}_{k}\right)}{f\left(\boldsymbol{x}_{k}\right)-\psi_{k}\left(\boldsymbol{p}_{k}\right)}=\frac{\text { actual reduction }}{\text { predicted reduction }}
$$

If $\rho_{k} \leq \mu$ let $\quad \boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}$ (unsuccessful step), else

$$
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\boldsymbol{p}_{k}(\text { successful step })
$$

Value of Δ_{k+1} depends on ρ_{k} :

$$
\begin{aligned}
\rho_{k} \leq \mu & \Longrightarrow \Delta_{k+1}=\frac{1}{2} \Delta_{k} \\
\mu<\rho_{k}<\eta & \Longrightarrow \Delta_{k+1}=\Delta_{k} \\
\rho_{k} \geq \eta & \Longrightarrow \Delta_{k+1}=2 \Delta_{k}
\end{aligned}
$$

Figure 4 illustrates the trust region subproblem

Figure 4: Trust region and line search step. The ellipses are level curves of the quadratic model; the circle defines the trust region

Minimizing implicit functions

- Common in engineering and natural science applications that f is not explicitly given but through a simulation:

- Wish is to minimize a function of both \boldsymbol{x} and $\boldsymbol{y}: f(\boldsymbol{x}, \boldsymbol{y})$; find the vector \boldsymbol{x} that gives the best response \boldsymbol{y} for f
- The form of the response $\boldsymbol{y}=\boldsymbol{y}(\boldsymbol{x})$ from the input \boldsymbol{x} is normally unknown
- Cannot differentiate $\boldsymbol{x} \mapsto f(\boldsymbol{x}, \boldsymbol{y}(\boldsymbol{x}))$
- Two distinct possibilities!
- (1) Numerical differentiation of f by using a difference formula:
- Let $\boldsymbol{e}_{i}=(0,0, \ldots, 0,1,0, \ldots, 0)^{\mathrm{T}}$ be the unit vector in \mathbb{R}^{n}. Then,

$$
\begin{aligned}
f\left(\boldsymbol{x}+\alpha \boldsymbol{e}_{i}\right) & =f(\boldsymbol{x})+\alpha \boldsymbol{e}_{i}^{\mathrm{T}} \nabla f(\boldsymbol{x})+\left(\alpha^{2} / 2\right) \boldsymbol{e}_{i}^{\mathrm{T}} \nabla^{2} f(\boldsymbol{x}) \boldsymbol{e}_{i}+\ldots \\
& =f(\boldsymbol{x})+\alpha \partial f(\boldsymbol{x}) / \partial x_{i}+\left(\alpha^{2} / 2\right) \partial^{2} f(\boldsymbol{x}) / \partial x_{i}^{2}+\ldots
\end{aligned}
$$

- So, for small $\alpha>0$,

$$
\begin{aligned}
& \frac{\partial f(\boldsymbol{x})}{\partial x_{i}} \approx \frac{f\left(\boldsymbol{x}+\alpha \boldsymbol{e}_{i}\right)-f(\boldsymbol{x})}{\alpha} \quad \text { (forward difference) } \\
& \frac{\partial f(\boldsymbol{x})}{\partial x_{i}} \approx \frac{f\left(\boldsymbol{x}+\alpha \boldsymbol{e}_{i}\right)-f\left(\boldsymbol{x}-\alpha \boldsymbol{e}_{i}\right)}{2 \alpha} \quad \text { (central difference) }
\end{aligned}
$$

- Value of α typically set to a function of the machine precision; if too large, we get a bad approximation of the partial derivative, while a too small value might result in numerical cancellation
- May work well if the simulation is accurate, otherwise bad derivative information. Requires cheap simulations!
- (2) Derivative-free methods are available. (Not counting subgradient methods, because they demand f to be convex!) Either builds explicit models \hat{f} of the objective function by evaluating f at test points, or evaluates f at grid points that are moved around, shrunk or expanded. Names: Nelder-Mead, Pattern search
- Check hand-out!
- Alternative: create explicit algebraic (e.g., polynomial) model \tilde{f} based on visited points \boldsymbol{x}_{k}; solve this problem with gradient methods; evaluate its optimum in the real problem (i.e., perform a simulation); update \tilde{f} with the new information. \Longrightarrow minimizes the number of simulations!

Conjugate gradient methods

- Algorithm for strictly convex quadratic programs to minimize $f(\boldsymbol{x}):=\frac{1}{2} \boldsymbol{x}^{\mathrm{T}} \boldsymbol{Q} \boldsymbol{x}-\boldsymbol{q}^{\mathrm{T}} \boldsymbol{x}$, that is, solve $\boldsymbol{Q} \boldsymbol{x}=\boldsymbol{q}$
- Non-quadratic extensions available
- Basic scheme:

$$
\begin{align*}
& \boldsymbol{p}_{0}=-\nabla f\left(\boldsymbol{x}_{0}\right) \tag{3a}\\
& \boldsymbol{p}_{k}=-\nabla f\left(\boldsymbol{x}_{k}\right)+\beta_{k} \boldsymbol{p}_{k-1}, \quad k=1,2, \ldots, n-1, \tag{3b}
\end{align*}
$$

where

$$
\begin{equation*}
\beta_{k}=\frac{\nabla f\left(\boldsymbol{x}_{k}\right)^{\mathrm{T}} \nabla f\left(\boldsymbol{x}_{k}\right)}{\nabla f\left(\boldsymbol{x}_{k-1}\right)^{\mathrm{T}} \nabla f\left(\boldsymbol{x}_{k-1}\right)} \tag{3c}
\end{equation*}
$$

- Use exact line search
- Crucial properties:
(a) Step k minimizes f over a k-dimensional manifold; after at most n steps we find the optimal solution
(b) All directions \boldsymbol{p}_{k} are "conjugate", that is, $\boldsymbol{p}_{i}^{T} \boldsymbol{Q} \boldsymbol{p}_{j}=0$ for $i \neq j$ (Type of orthogonality; generation a type of Gram-Schmidt procedure applied to the negative gradients)
(c) Need only store the previous gradient to get new direction
(d) Strictly better convergence than steepest descent
(e) Direction vector \boldsymbol{p}_{i} is an eigenvector corresponding to a largest eigenvalue λ_{i} not yet found
(f) Meaning: Takes care of most difficult part of the problem first. Less sensitive to the size of the condition number $\kappa(\boldsymbol{Q}):=\lambda_{n} / \lambda_{1}$ than steepest descent

