Errata and comments list for
 "An Introduction to Continuous Optimization"

Michael Patriksson
February 13, 2007

Page	Row	Reads	Should read/Comment
11	eq. (1.1)	$\geq b_{i}$ and $=d_{j}$	≥ 0 and $=0$
76	-2	has a lower value	has a lower function value
94	-13	than the other	than any of the other
98	11	simplicity	the readers' convenience
139	Exercise $5.6(\mathrm{a})$	$x_{j}^{*}=$ min $\left\{0, c_{j}\right\} /\left(2 \lambda^{*}\right)$	$x_{j}^{*}=-\min \left\{0, c_{j}\right\} /\left(2 \lambda^{*}\right)$
165	17	means fast	means that fast
165	20	$\alpha_{k}=\gamma+\beta /(k+1)$	$\alpha_{k}=\beta /(k+1)$
165	21	where $\beta>0, \gamma \geq 0$	where $\beta>0$
171	Figure 6.4	A convex min-function	A concave min-function
175	14	$k \leq m+1$ such that	$k \leq m+1$, such that
191	Exercise 6.1(a)	q differentiable	q differentiable on R_{++}
		$\boldsymbol{x}(\mu)$ defined on R	$\boldsymbol{x}(\mu)$ defined on R_{++}
276	Figure 11.2(b)	$\boldsymbol{x}_{k}+\alpha^{*} \boldsymbol{p}_{k}$	α^{*}
361	Exercise 6.1(a)	$q(0)=-\infty$	$q(0)=0$, but $\boldsymbol{x}(0)$ not attained
362	Exercise 6.3		$\boldsymbol{x}^{*}=(4 / 3,2 / 3)^{\mathrm{T}}$,
			$\boldsymbol{\mu}^{*}=(8 / 3,0)^{\mathrm{T}}$,
			$f^{*}=q^{*}=8 / 3$
365	Exercise 8.4	$z^{\prime}=z-2$	$z^{\prime}=z+2$
367	Exercise 10.5	$\boldsymbol{y} \geq \mathbf{0}^{m}$	$\boldsymbol{y} \leq \mathbf{0}^{m}$
368	Exercise 10.13	$c_{4} \geq 8$	$c_{4} \leq 8$
369	Exercise 11.6(b)	The gradient is zero	The point obtained is a strict local minimum
369	Exercise 11.6(c)	-	The function f is convex
369	Exercise 11.12	no second RHS	$=-\left(\boldsymbol{Q} \boldsymbol{x}_{k}+\boldsymbol{q}\right) ;$
			strike last part of proof.
370	Exercise 11.13	Case IV	$f(x):=\frac{1}{4} x^{4}-\frac{1}{2} x^{2} ;$
			$f\left(x_{k}\right) \rightarrow-\frac{1}{4}$
371	Exercise 12.5	$\boldsymbol{x}_{2}=(13 / 20,5 / 20)$	$\boldsymbol{x}_{2}=(11 / 20,3 / 20)$
371	Exercise 12.5	z values	the f-value has been added

