EXERCISE 12: METHODS FOR CONSTRAINED OPTIMIZATION PROBLEMS

NICLAS ANDRÉASSON

Exercise 1 (the exterior point method). Consider the optimization problem to

$$
\begin{array}{ll}
\operatorname{minimize} & f(\boldsymbol{x})=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right) \\
\text { subject to } & x_{1}=1
\end{array}
$$

Apply the exterior penalty method with quadratic penalty function.
EXERCISE 2 (the interior point method). Consider the optimization problem to

$$
\begin{array}{ll}
\operatorname{minimize} & f(\boldsymbol{x})=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right) \\
\text { subject to } & x_{1} \leq 1
\end{array}
$$

Apply the interior penalty method with logarithmic penalty function.
ExERCISE 3 (the interior point method in linear programming). Consider the optimization problem to

$$
\begin{array}{lr}
\operatorname{maximize} & -y_{1}+y_{2} \\
\text { subject to } & y_{2} \leq 1 \\
& -y_{1} \\
& \leq-1 \\
& y_{1}, y_{2}
\end{array} \geq 0
$$

Apply the interior penalty method by relaxing the positivity restrictions of the slackness variables with the logarithmic penalty function.

[^0]
[^0]: Date: March 2, 2005.

