# EXERCISE 3: OPTIMALITY CONDITIONS FOR UNCONSTRAINTED AND CONVEXLY CONSTRAINTED OPTIMIZATION 

NICLAS ANDRÉASSON

ExERCISE 1. Find the rectangular parallelepiped of unit volume that has the minimum surface area.

Exercise 2. Consider the parametric minimization problem to

$$
\begin{equation*}
\underset{x_{1}, x_{2}}{\operatorname{minimize}} \frac{3}{2}\left(x_{1}^{2}+x_{2}^{2}\right)+(1+a) x_{1} x_{2}-\left(x_{1}+x_{2}\right)+b, \tag{1}
\end{equation*}
$$

where $a$ and $b$ are some unknown real-valued parameters.
Find all possible values of $a$ and $b$ such that the problem (1) possesses a unique globally optimal solution. Write down this solution (in terms of the parameters $a$ and $b$ ).

Exercise 3. Let $\boldsymbol{A}$ be a symmetric $n \times n$ matrix. For $\boldsymbol{x} \in \mathbb{R}^{n}$ such that $\boldsymbol{x} \neq \mathbf{0}^{n}$, consider the function

$$
\rho(\boldsymbol{x})=\frac{\boldsymbol{x}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}}{\boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}}
$$

and the related optimization problem to

$$
\begin{equation*}
\underset{x \neq 0^{n}}{\operatorname{minimize}} \rho(\boldsymbol{x}) \tag{2}
\end{equation*}
$$

Determine all the stationary points as well as the global minima in the minimization problem (2).

EXERCISE 4 (the variational inequality). Among all rectangles contained in a given circle, show that the one that has maximal area must be a square.

EXERCISE 5 (the variational inequality). Consider the positive orthant

$$
S=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{x} \geq \mathbf{0}^{n}\right\}
$$

Derive necessary optimality conditions for the problem to

$$
\begin{array}{ll}
\operatorname{minimize} & f(\boldsymbol{x}) \\
\text { subject to } & \boldsymbol{x} \in S
\end{array}
$$

where $f \in C^{1}$.

[^0]EXERCISE 6 (the variational inequality). Consider the problem to

$$
\begin{array}{ll}
\operatorname{maximize} & x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}} \\
\text { subject to } & \sum_{i=1}^{n} x_{i}=1, \quad x_{i} \geq 0, \quad i=1, \ldots, n
\end{array}
$$

where $a_{i}$ are given positive scalars. Find a global maximum and show that it is unique.


[^0]:    Date: January 26, 2005.

