EXERCISE 5: KARUSH-KUHN-TUCKER OPTIMALITY CONDITIONS

NICLAS ANDRÉASSON

EXERCISE 1 (KKT-conditions: Finding optimal solutions). Find the area of the largest isosceles triangle that is contained in the unit circle. \Box

EXERCISE 2 (KKT-conditions: Finding optimal solutions). Consider the problem to

minimize
$$f(x) = \sum_{j=1}^{n} c_j x_j$$

subject to $\sum_{j=1}^{n} x_j^2 \le 1$,
 $x_j \ge 0$, $j = 1, \dots, n$,

where $\min_{j=1,\ldots,n} \{c_j\} < 0$. Find an optimal solution to the problem!

EXERCISE 3 (KKT-conditions: Finding optimal solutions). Consider the problem to

minimize
$$f(\boldsymbol{x}) = \sum_{j=1}^{n} c_j x_j^2$$

subject to $\sum_{j=1}^{n} x_j = b$,

where b and c_j are all strictly positive constants. Find an optimal solution to the problem and show that it is unique!

EXERCISE 4 (KKT-conditions: Investigating feasible solutions). Consider the problem to

minimize
$$f(x) = 4x_1^2 + 2x_2^2 - 6x_1x_2 + x_1$$

subject to $-2x_1 + 2x_2 \ge 1$,
 $2x_1 - x_2 \le 0$,
 $x_1 \le 0$,
 $x_2 \ge 0$.

Is $\boldsymbol{x} = (0, 1/2)^{\mathrm{T}}$ a KKT point? Can you draw any conclusions from this regarding optimality of \boldsymbol{x} ?

Date: February 2, 2005.

 $\ensuremath{\mathsf{EXERCISE}}\xspace{5}$ (KKT-conditions: Investigating feasible solutions). Consider the problem to

$$\begin{array}{ll} \text{minimize} & f(x) = x_1^2 + 3x_2^2 - x_1 \\ \text{subject to} & x_1^2 - x_2 \leq 1, \\ & x_1 + x_2 \geq 1. \end{array}$$

Is the point $\boldsymbol{x} = (1, 0)^{\mathrm{T}}$ a global minimum?