EXERCISE 6: LAGRANGIAN DUALITY

NICLAS ANDREASSON

Exercise 1 (Formulating the Lagrangian dual problem). Consider the problem to

$$
\begin{align*}
& \text { minimize } \quad f(x)=x_{1}+2 x_{2}^{2}+3 x_{3}^{3} \\
& \text { subject to } \quad x_{1}+2 x_{2} \quad+x_{3} \leq 3 \text {, } \tag{1}\\
& 2 x_{1}^{2}+x_{2} \quad \geq 2 \text {, } \tag{2}\\
& 2 x_{1} \quad+x_{3}=2 \text {, } \tag{3}\\
& x_{1}, \quad x_{2}, \quad x_{3} \geq 0
\end{align*}
$$

(a) Formulate the Lagrangian dual problem that originates from a relaxation of the constraints (1)-(3).
(b) State the primal-dual optimality conditions!

ExERCISE 2 (Formulating the Lagrangian dual problem). Consider the linear program

$$
\begin{array}{ll}
\operatorname{minimize} & z=\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x} \\
\text { subject to } & \boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{b} \tag{1}\\
& \boldsymbol{x} \geq \mathbf{0}^{n}
\end{array}
$$

where $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ and $\boldsymbol{b} \in \mathbb{R}^{m}$. Formulate the Lagrangian dual problem that originates from a relaxation of the constraints (1).

Exercise 3 (Primal-dual optimality conditions: Finding optimal solutions). Consider the problem to

$$
\begin{array}{ll}
\operatorname{minimize} & f(\boldsymbol{x})= \\
\text { subject to } & x_{1}^{2}+2 x_{2}^{2} \\
& x_{1}+x_{2} \geq 2 \\
& x_{1}^{2}+x_{2}^{2} \leq 5
\end{array}
$$

Find an optimal solution!
ExErcise 4 (Primal-dual optimality conditions: Finding optimal solutions). Consider the problem to

$$
\begin{array}{ll}
\operatorname{minimize} & f(\boldsymbol{x})=\frac{1}{2}\|\boldsymbol{y}-\boldsymbol{x}\|^{2} \\
\text { subject to } & \boldsymbol{A} \boldsymbol{x}=\mathbf{0}^{m}
\end{array}
$$

where $\boldsymbol{y} \in \mathbb{R}^{n}$ and $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ such that $\operatorname{rank} \boldsymbol{A}=m$. Find an optimal solution!

[^0]EXERCISE 5 (Primal-dual optimality conditions: Investigating feasible solutions). Consider the problem to
$\operatorname{minimize} \quad f(\boldsymbol{x})=-x_{1}+x_{2}$
subject to $\quad x_{1}^{2}+x_{2}^{2} \leq 25$,

$$
x_{1}-x_{2} \leq 1
$$

Is the point $\boldsymbol{x}=(4,3)^{\mathrm{T}}$ a global minimum?

[^0]: Date: February 9, 2005.

