EXERCISE 6: LAGRANGIAN DUALITY

NICLAS ANDRÉASSON

EXERCISE 1 (Formulating the Lagrangian dual problem). Consider the problem to

$\operatorname{minimize}$	$f(m{x}) \;= x_1\;+\!2x_2^2\;+\!3x_3^3$	
subject to	$x_1 + 2x_2 + x_3 \le 3,$	(1)
	$2x_1^2 + x_2 \ge 2,$	(2)

$$2x_1 + x_3 = 2, (3)$$

$$x_1, \quad x_2, \quad x_3 \ge 0.$$

- (a) Formulate the Lagrangian dual problem that originates from a relaxation of the constraints (1)-(3).
- (b) State the primal-dual optimality conditions!

EXERCISE 2 (Formulating the Lagrangian dual problem). Consider the linear program

$$\begin{array}{ll} \text{minimize} & z = \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x} \\ \text{subject to} & \boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{b}, \\ & \boldsymbol{x} \geq \boldsymbol{0}^{n}. \end{array}$$
 (1)

where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Formulate the Lagrangian dual problem that originates from a relaxation of the constraints (1).

EXERCISE 3 (Primal-dual optimality conditions: Finding optimal solutions). Consider the problem to

minimize
$$f(x) = x_1^2 + 2x_2^2$$

subject to $x_1 + x_2 \ge 2,$
 $x_1^2 + x_2^2 \le 5.$

Find an optimal solution!

 $\ensuremath{\mathsf{EXERCISE}}\xspace 4$ (Primal-dual optimality conditions: Finding optimal solutions). Consider the problem to

minimize
$$f(\boldsymbol{x}) = \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{x}\|^2$$

subject to $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{0}^m$,

where $y \in \mathbb{R}^n$ and $A \in \mathbb{R}^{m \times n}$ such that rank A = m. Find an optimal solution!

Date: February 9, 2005.

 $\mbox{Exercise 5}$ (Primal-dual optimality conditions: Investigating feasible solutions). Consider the problem to

minimize
$$f(x) = -x_1 + x_2$$

subject to $x_1^2 + x_2^2 \le 25$,
 $x_1 - x_2 \le 1$.

Is the point $\boldsymbol{x} = (4,3)^{\mathrm{T}}$ a global minimum?