EXERCISE 7: THE GEOMETRY OF LINEAR PROGRAMMING

NICLAS ANDRÉASSON

ExERCISE 1 (LP modelling). Let $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ and $\boldsymbol{b} \in \mathbb{R}^{m}$. Formulate the following problem as a linear programming problem:

$$
\begin{array}{ll}
\text { minimize } & \|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|_{1}:=\sum_{i=1}^{m}\left|(\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b})_{i}\right| \\
\text { subject to } & \|\boldsymbol{x}\|_{\infty}:=\max _{i=1, \ldots, n}\left|x_{i}\right| \leq 1
\end{array}
$$

EXERCISE 2 (LP modelling). Consider the sets $V=\left\{\boldsymbol{v}^{1}, \ldots, \boldsymbol{v}^{k}\right\} \subset \mathbb{R}^{n}$ and $W=$ $\left\{\boldsymbol{w}^{1}, \ldots, \boldsymbol{w}^{l}\right\} \subset \mathbb{R}^{n}$. Formulate the following problem as a linear programming problem: Construct, if possible, a sphere that separates the sets V and W, that is, find a center $\boldsymbol{x}^{c} \in \mathbb{R}^{n}$ and a radius $R \geq 0$ such that

$$
\begin{aligned}
\left\|\boldsymbol{v}-\boldsymbol{x}^{c}\right\|_{2} \leq R, & \text { for all } \boldsymbol{v} \in V \\
\left\|\boldsymbol{w}-\boldsymbol{x}^{c}\right\|_{2} \geq R, & \text { for all } \boldsymbol{w} \in W
\end{aligned}
$$

ExERCISE 3 (linear-fractional programming). Consider the linear-fractional program

$$
\begin{align*}
& \operatorname{minimize} \quad f(\boldsymbol{x})=\left(\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}+\alpha\right) /\left(\boldsymbol{d}^{\mathrm{T}} \boldsymbol{x}+\beta\right) \tag{1}\\
& \text { subject to } \quad \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b},
\end{align*}
$$

where $\boldsymbol{c}, \boldsymbol{d} \in \mathbb{R}^{n}, \boldsymbol{A} \in \mathbb{R}^{m \times n}$, and $\boldsymbol{b} \in \mathbb{R}^{m}$. Further, assume that the polyhedron $P=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}\right\}$ is bounded and that $\boldsymbol{d}^{\mathrm{T}} \boldsymbol{x}+\beta>0$ for all $\boldsymbol{x} \in P$. Show that (1) can be solved by solving the linear program

$$
\begin{array}{ll}
\operatorname{minimize} & g(\boldsymbol{y}, z)=\boldsymbol{c}^{\mathrm{T}} \boldsymbol{y}+\alpha z \\
\text { subject to } & \boldsymbol{A} \boldsymbol{y}-z \boldsymbol{b} \leq \mathbf{0}^{m}, \\
& \boldsymbol{d}^{\mathrm{T}} \boldsymbol{y}+\beta z=1, \\
& z \geq 0 .
\end{array}
$$

Exercise 4 (standard form). Transform the linear program

$$
\begin{align*}
& \text { minimize } z=x_{1}-5 x_{2}-7 x_{3} \\
& \text { subject to } \quad 5 x_{1}-2 x_{2}+6 x_{3} \geq 5 \text {, } \tag{1}\\
& 3 x_{1}+4 x_{2}-9 x_{3}=3 \text {, } \tag{2}\\
& 7 x_{1}+3 x_{2}+5 x_{3} \leq 9 \text {, } \tag{3}\\
& x_{1} \geq-2,
\end{align*}
$$

into standard form!
Date: February 16, 2005.

Exercise 5 (standard form). Consider the linear program

$$
\begin{array}{lrl}
\operatorname{minimize} \quad z=5 x_{1}+3 x_{2}-7 x_{3} \\
\text { subject to } \quad & 2 x_{1}+4 x_{2}+6 x_{3} & =11 \\
3 x_{1}-5 x_{2}+3 x_{3}+x_{4} & =11 \\
& x_{1}, \quad x_{2}, \quad x_{4} & \geq 0
\end{array}
$$

(a) Show how to transform this problem into standard form by eliminating the unrestricted variable x_{3}.
(b) Why cannot this technique be used to eliminate variables with non-negativity restrictions?

ExERCISE 6 (basic feasible solutions). Suppose that a linear program includes a free variable x_{j}. When transforming this problem into standard form, x_{j} is replaced by

$$
\begin{aligned}
x_{j} & =x_{j}^{+}-x_{j}^{-}, \\
x_{j}^{+}, x_{j}^{-} & \geq 0
\end{aligned}
$$

Show that no basic feasible solution can include both x_{j}^{+}and x_{j}^{-}as non-zero basic variables.

