EXERCISE 7: THE GEOMETRY OF LINEAR PROGRAMMING

NICLAS ANDRÉASSON

EXERCISE 1 (LP modelling). Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Formulate the following problem as a linear programming problem:

$$\begin{array}{ll} \text{minimize} & \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b}\|_1 := \sum_{i=1}^m |(\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b})_i| \\ \text{subject to} & \|\boldsymbol{x}\|_\infty := \max_{i=1,\dots,n} |x_i| \leq 1. \end{array}$$

EXERCISE 2 (LP modelling). Consider the sets $V = \{v^1, \ldots, v^k\} \subset \mathbb{R}^n$ and $W = \{w^1, \ldots, w^l\} \subset \mathbb{R}^n$. Formulate the following problem as a linear programming problem: Construct, if possible, a sphere that separates the sets V and W, that is, find a center $x^c \in \mathbb{R}^n$ and a radius $R \geq 0$ such that

$$\|\boldsymbol{v} - \boldsymbol{x}^{c}\|_{2} \leq R, \quad \text{for all } \boldsymbol{v} \in V, \\ \|\boldsymbol{w} - \boldsymbol{x}^{c}\|_{2} \geq R, \quad \text{for all } \boldsymbol{w} \in W.$$

EXERCISE 3 (linear-fractional programming). Consider the linear-fractional program

minimize
$$f(\boldsymbol{x}) = (\boldsymbol{c}^{\mathrm{T}}\boldsymbol{x} + \alpha)/(\boldsymbol{d}^{\mathrm{T}}\boldsymbol{x} + \beta)$$
 (1)
subject to $\boldsymbol{A}\boldsymbol{x} \leq \boldsymbol{b},$

where $c, d \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^m$. Further, assume that the polyhedron $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$ is bounded and that $d^{\mathrm{T}}x + \beta > 0$ for all $x \in P$. Show that (1) can be solved by solving the linear program

minimize
$$g(\boldsymbol{y}, z) = \boldsymbol{c}^{\mathrm{T}} \boldsymbol{y} + \alpha z$$
 (2)
subject to $\boldsymbol{A} \boldsymbol{y} - z \boldsymbol{b} \leq \boldsymbol{0}^{m},$
 $\boldsymbol{d}^{\mathrm{T}} \boldsymbol{y} + \beta z = 1,$
 $z \geq 0.$

EXERCISE 4 (standard form). Transform the linear program

minimize
$$z = x_1 - 5x_2 - 7x_3$$

subject to $5x_1 - 2x_2 + 6x_3 \ge 5$, (1)

$$3x_1 + 4x_2 - 9x_3 = 3, (2)$$

$$7x_1 + 3x_2 + 5x_3 \le 9, \tag{3}$$

$$x_1 \geq -2,$$

into standard form!

Date: February 16, 2005.

EXERCISE 5 (standard form). Consider the linear program

minimize
$$z = 5x_1 + 3x_2 - 7x_3$$

subject to $2x_1 + 4x_2 + 6x_3 = 11,$
 $3x_1 - 5x_2 + 3x_3 + x_4 = 11,$
 $x_1, \quad x_2, \qquad x_4 > 0.$

- (a) Show how to transform this problem into standard form by eliminating the unrestricted variable x_3 .
- (b) Why cannot this technique be used to eliminate variables with non-negativity restrictions?

EXERCISE 6 (basic feasible solutions). Suppose that a linear program includes a free variable x_j . When transforming this problem into standard form, x_j is replaced by

$$x_j = x_j^+ - x_j^-,$$

 $x_j^+, x_j^- \ge 0.$

Show that no basic feasible solution can include both x_j^+ and x_j^- as non-zero basic variables.