Lecture 11: Linearly constrained nonlinear optimization

Feasible-direction methods

- Consider the problem to find

$$
\begin{align*}
& f^{*}=\operatorname{infimum} f(\boldsymbol{x}), \tag{1a}\\
& \quad \text { subject to } \boldsymbol{x} \in X, \tag{1b}
\end{align*}
$$

$X \subseteq \mathbb{R}^{n}$ nonempty, closed and convex; $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is C^{1} on X

- Most methods for (1) manipulate the constraints defining X; in some cases even such that the sequence $\left\{\boldsymbol{x}_{k}\right\}$ is infeasible until convergence. Why?
- Consider a constraint " $g_{i}(\boldsymbol{x}) \leq b_{i}$," where g_{i} is nonlinear
- Checking whether \boldsymbol{p} is a feasible direction at \boldsymbol{x}, or what the maximum feasible step from \boldsymbol{x} in the direction of \boldsymbol{p} is, is very difficult
- For which step length $\alpha>0$ does it happen that $g_{i}(\boldsymbol{x}+\alpha \boldsymbol{p})=b_{i}$? This is a nonlinear equation in α !
- Assuming that X is polyhedral, these problems are not present
- Note: KKT always necessary for a local min for polyhedral sets; methods will find such points

Feasible-direction descent methods

Step 0. Determine a starting point $\boldsymbol{x}_{0} \in \mathbb{R}^{n}$ such that $\boldsymbol{x}_{0} \in X$. Set $k:=0$

Step 1. Determine a search direction $\boldsymbol{p}_{k} \in \mathbb{R}^{n}$ such that \boldsymbol{p}_{k} is a feasible descent direction
Step 2. Determine a step length $\alpha_{k}>0$ such that

$$
f\left(\boldsymbol{x}_{k}+\alpha_{k} \boldsymbol{p}_{k}\right)<f\left(\boldsymbol{x}_{k}\right) \text { and } \boldsymbol{x}_{k}+\alpha_{k} \boldsymbol{p}_{k} \in X
$$

Step 3. Let $\boldsymbol{x}_{k+1}:=\boldsymbol{x}_{k}+\alpha_{k} \boldsymbol{p}_{k}$
Step 4. If a termination criterion is fulfilled, then stop! Otherwise, let $k:=k+1$ and go to Step 1

Notes

- Similar form as the general method for unconstrained optimization
- Just as local as methods for unconstrained optimization
- Search directions typically based on the approximation of f-a "relaxation"
- Search direction often of the form $\boldsymbol{p}_{k}=\boldsymbol{y}_{k}-\boldsymbol{x}_{k}$, where $\boldsymbol{y}_{k} \in X$ solves an approximate problem
- Line searches similar; note the maximum step
- Termination criteria and descent based on first-order optimality and/or fixed-point theory $\left(\boldsymbol{p}_{k} \approx \mathbf{0}^{n}\right)$

LP-based algorithm, I: The Frank-Wolfe method

- The Frank-Wolfe method is based on a first-order approximation of f around the iterate \boldsymbol{x}_{k}. This means that the relaxed problems are LPs, which can then be solved by using the Simplex method
- Remember the first-order optimality condition: If $\boldsymbol{x}^{*} \in X$ is a local minimum of f on X then

$$
\nabla f\left(\boldsymbol{x}^{*}\right)^{\mathrm{T}}\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right) \geq 0, \quad \boldsymbol{x} \in X
$$

holds

- Remember also the following equivalent statement:

$$
\underset{\boldsymbol{x} \in X}{\operatorname{minimum}} \nabla f\left(\boldsymbol{x}^{*}\right)^{\mathrm{T}}\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right)=0
$$

- Follows that if, given an iterate $\boldsymbol{x}_{k} \in X$,

$$
\underset{\boldsymbol{y} \in X}{\operatorname{minimum}} \nabla f\left(\boldsymbol{x}_{k}\right)^{\mathrm{T}}\left(\boldsymbol{y}-\boldsymbol{x}_{k}\right)<0,
$$

and \boldsymbol{y}_{k} is a solution to this LP problem, then the direction of $\boldsymbol{p}_{k}:=\boldsymbol{y}_{k}-\boldsymbol{x}_{k}$ is a feasible descent direction with respect to f at \boldsymbol{x}

- Search direction towards an extreme point of X [one that is optimal in the LP over X with costs $\left.\boldsymbol{c}=\nabla f\left(\boldsymbol{x}_{k}\right)\right]$
- This is the basis of the Frank-Wolfe algorithm
- We assume that X is bounded in order to ensure that the LP always has a finite solution. The algorithm can be extended to allow for unbounded polyhedra
- The search directions then are either towards an extreme point (finite solution to LP) or in the direction of an extreme ray of X (unbounded solution to LP)
- Both cases identified in the Simplex method

Algorithm description, Frank-Wolfe

Step 0. Find $\boldsymbol{x}_{0} \in X$ (for example any extreme point in $X)$. Set $k:=0$

Step 1. Find a solution \boldsymbol{y}_{k} to the problem to

$$
\begin{equation*}
\underset{y \in X}{\operatorname{minimize}} z_{k}(\boldsymbol{y}):=\nabla f\left(\boldsymbol{x}_{k}\right)^{\mathrm{T}}\left(\boldsymbol{y}-\boldsymbol{x}_{k}\right) \tag{2}
\end{equation*}
$$

Let $\boldsymbol{p}_{k}:=\boldsymbol{y}_{k}-\boldsymbol{x}_{k}$ be the search direction
Step 2. Approximately solve the problem to minimize $f\left(\boldsymbol{x}_{k}+\alpha \boldsymbol{p}_{k}\right)$ over $\alpha \in[0,1]$. Let α_{k} be the step length
Step 3. Let $\boldsymbol{x}_{k+1}:=\boldsymbol{x}_{k}+\alpha_{k} \boldsymbol{p}_{k}$
Step 4. If, for example, $z_{k}\left(\boldsymbol{y}_{k}\right)$ or α_{k} is close to zero, then terminate! Otherwise, let $k:=k+1$ and go to Step 1

Convergence

- Suppose $X \subset \mathbb{R}^{n}$ nonempty polytope; f in C^{1} on X
- In Step 2 of the Frank-Wolfe algorithm, we either use an exact line search or the Armijo step length rule
- Then: the sequence $\left\{\boldsymbol{x}_{k}\right\}$ is bounded and every limit point (at least one exists) is stationary;
- $\left\{f\left(\boldsymbol{x}_{k}\right)\right\}$ is descending, and therefore has a limit;
- $z_{k}\left(\boldsymbol{y}_{k}\right) \rightarrow 0\left(\nabla f\left(\boldsymbol{x}_{k}\right)^{\mathrm{T}} \boldsymbol{p}_{k} \rightarrow 0\right)$
- If f is convex on X, then every limit point is globally optimal
- Proof:

The convex case: Lower bounds

- Remember the following characterization of convex functions in C^{1} on $X: f$ is convex on $X \Longleftrightarrow$

$$
f(\boldsymbol{y}) \geq f(\boldsymbol{x})+\nabla f(\boldsymbol{x})^{\mathrm{T}}(\boldsymbol{y}-\boldsymbol{x}), \quad \boldsymbol{x}, \boldsymbol{y} \in X
$$

- Suppose f is convex on X. Then, $f\left(\boldsymbol{x}_{k}\right)+z_{k}\left(\boldsymbol{x}_{k}\right) \leq f^{*}$ (lower bound, LBD), and $f\left(\boldsymbol{x}_{k}\right)+z_{k}\left(\boldsymbol{x}_{k}\right)=f^{*}$ if and only if \boldsymbol{x}_{k} is globally optimal. A relaxation -cf. the Relaxation Theorem!
- Utilize the lower bound as follows: we know that $f^{*} \in\left[f\left(\boldsymbol{x}_{k}\right)+z_{k}\left(\boldsymbol{x}_{k}\right), f\left(\boldsymbol{x}_{k}\right)\right]$. Store the best LBD, and check in Step 4 whether $\left[f\left(\boldsymbol{x}_{k}\right)-\mathrm{LBD}\right] /|\mathrm{LBD}|$ is small, and if so terminate

Notes

- Frank-Wolfe uses linear approximations-works best for almost linear problems
- For highly nonlinear problems, the approximation is bad-the optimal solution may be far from an extreme point. (Compare Steepest descent!)
- In order to find a near-optimum requires many iterations - the algorithm is slow
- Another reason is that the information generated (the extreme points) is forgotten. If we keep the linear subproblem, we can do much better by storing and utilizing this information

LP-based algorithm, II: Simplicial decomposition

- Remember the Representation Theorem (special case for polytopes): Let $P=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{A x}=\boldsymbol{b} ; \boldsymbol{x} \geq \mathbf{0}^{n}\right\}$, be nonempty and bounded, and $V=\left\{\boldsymbol{v}^{1}, \ldots, \boldsymbol{v}^{K}\right\}$ be the set of extreme points of P. Every $\boldsymbol{x} \in P$ can be represented as a convex combination of the points in V, that is,

$$
\boldsymbol{x}=\sum_{i=1}^{K} \alpha_{i} \boldsymbol{v}^{i}
$$

for some $\alpha_{1}, \ldots, \alpha_{k} \geq 0$ such that $\sum_{i=1}^{K} \alpha_{i}=1$

- The idea behind the Simplicial decomposition method is to generate the extreme points \boldsymbol{v}^{i} which can be used to describe an optimal solution \boldsymbol{x}^{*}, that is, the vectors \boldsymbol{v}^{i} with positive weights α_{i} in

$$
\boldsymbol{x}^{*}=\sum_{i=1}^{K} \alpha_{i} \boldsymbol{v}^{i}
$$

- The process is still iterative: we generate a "working set" \mathcal{P}_{k} of indices i, optimize the function f over the convex hull of the known points, and check for stationarity and/or generate a new extreme point

Algorithm description, Simplicial decomposition

Step 0. Find $\boldsymbol{x}_{0} \in X$, for example any extreme point in X. Set $k:=0$. Let $\mathcal{P}_{0}:=\emptyset$

Step 1. Let \boldsymbol{y}_{k} be a solution to the LP problem (2)
Let $\mathcal{P}_{k+1}:=\mathcal{P}_{k} \cup\{k\}$

Step 2. Let $\left(\mu_{k}, \boldsymbol{\nu}_{k+1}\right)$ be an approximate solution to the restricted master problem (RMP) to

$$
\begin{array}{ll}
\underset{(\mu, \boldsymbol{\nu})}{\operatorname{minimize}} & f\left(\mu \boldsymbol{x}_{k}+\sum_{i \in \mathcal{P}_{k+1}} \nu_{i} \boldsymbol{y}^{i}\right) \\
\text { subject to } & \mu+\sum_{i \in \mathcal{P}_{k+1}} \nu_{i}=1, \\
& \mu, \nu_{i} \geq 0, \quad i \in \mathcal{P}_{k+1} \tag{3c}
\end{array}
$$

Step 3. Let $\boldsymbol{x}_{k+1}:=\mu_{k+1} \boldsymbol{x}_{k}+\sum_{i \in \mathcal{P}_{k+1}}\left(\boldsymbol{\nu}_{k+1}\right)_{i} \boldsymbol{y}^{i}$
Step 4. If, for example, $z_{k}\left(\boldsymbol{y}_{k}\right)$ is close to zero, or if
$\mathcal{P}_{k+1}=\mathcal{P}_{k}$, then terminate! Otherwise, let $k:=k+1$ and go to Step 1

- This basic algorithm keeps all information generated, and adds one new extreme point in every iteration
- An alternative is to drop columns (vectors \boldsymbol{y}^{i}) that have received a zero (or, low) weight, or to keep only a maximum number of vectors
- Special case: maximum number of vectors kept $=1 \Longrightarrow$ the Frank-Wolfe algorithm!
- We obviously improve the Frank-Wolfe algorithm by utilizing more information
- Compare with the difference between Newton and steepest descent in unconstrained optimization

Convergence

- It does at least as well as the Frank-Wolfe algorithm: line segment $\left[\boldsymbol{x}_{k}, \boldsymbol{y}_{k}\right]$ feasible in RMP
- If \boldsymbol{x}^{*} unique then convergence is finite if the RMPs are solved exactly, and the maximum number of vectors kept is \geq the number needed to span \boldsymbol{x}^{*}
- Much more efficient than the Frank-Wolfe algorithm in practice (consider the above FW example!)
- We can solve the RMPs efficiently, since the constraints are simple

An illustration of FW vs. SD

- A large-scale nonlinear network flow problem which is used to estimate traffic flows in cities
- Model over the small city of Sioux Falls in North Dakota, USA; 24 nodes, 76 links, and 528 pairs of origin and destination
- Three algorithms for the RMPs were tested-a Newton method and two gradient projection methods (see the next section). A MATLAB implementation
- Remarkable difference-The Frank-Wolfe method suffers from very small steps being taken. Why? Many extreme points active $=$ many routes used

Figure 1: The performance of SD vs. FW on the Sioux Falls network

QP-based algorithm: The gradient projection algorithm

- The gradient projection algorithm is based on the projection characterization of a stationary point: $\boldsymbol{x}^{*} \in X$ is a stationary point if and only if, for any $\alpha>0$,

$$
\boldsymbol{x}^{*}=\operatorname{Proj}_{X}\left[\boldsymbol{x}^{*}-\alpha \nabla f\left(\boldsymbol{x}^{*}\right)\right]
$$

- Let $\boldsymbol{p}:=\operatorname{Proj}_{X}[\boldsymbol{x}-\alpha \nabla f(\boldsymbol{x})]-\boldsymbol{x}$, for any $\alpha>0$. Then, if and only if \boldsymbol{x} is non-stationary, \boldsymbol{p} is a feasible descent direction of f at \boldsymbol{x}
- The gradient projection algorithm is normally stated such that the line search is done over the projection arc, that is, we find a step length α_{k} for which

$$
\begin{equation*}
\boldsymbol{x}_{k+1}:=\operatorname{Proj}_{X}\left[\boldsymbol{x}_{k}-\alpha_{k} \nabla f\left(\boldsymbol{x}_{k}\right)\right], \quad k=1, \ldots \tag{4}
\end{equation*}
$$

has a good objective value. Use the Armijo rule to determine α_{k}.

- Gradient projection becomes steepest descent with Armijo line search when $X=\mathbb{R}^{n}$!

Convergence, I

- $X \subseteq \mathbb{R}^{n}$ nonempty, closed, convex; $f \in C^{1}$ on X;
- for the starting point $\boldsymbol{x}_{0} \in X$ it holds that the level set $\operatorname{lev}_{f}\left(f\left(\boldsymbol{x}_{0}\right)\right)$ intersected with X is bounded
- In the algorithm (4), the step length α_{k} is given by the Armijo step length rule along the projection arc
- Then: the sequence $\left\{\boldsymbol{x}_{k}\right\}$ is bounded;
- every limit point of $\left\{\boldsymbol{x}_{k}\right\}$ is stationary;
- $\left\{f\left(\boldsymbol{x}_{k}\right)\right\}$ descending, lower bounded, hence convergent
- Convergence arguments similar to steepest descent one

Convergence, II

- $X \subseteq \mathbb{R}^{n}$ nonempty, closed, convex;
- $f \in C^{1}$ on $X ; f$ convex;
- an optimal solution \boldsymbol{x}^{*} exists
- In the algorithm (4), the step length α_{k} is given by the Armijo step length rule along the projection arc
- Then: the sequence $\left\{\boldsymbol{x}_{k}\right\}$ converges to an optimal solution
- Note: with $X=\mathbb{R}^{n} \Longrightarrow$ convergence of steepest descent for convex problems with optimal solutions!

