Lecture 2: Convexity

Convexity of sets

Let $S \subseteq \mathbb{R}^n$. The set S is convex if

$$\left. egin{array}{c} oldsymbol{x}^1,oldsymbol{x}^2\in S \ \lambda\in(0,1) \end{array}
ight\} \quad \Longrightarrow \quad \lambdaoldsymbol{x}^1+(1-\lambda)oldsymbol{x}^2\in S \ \end{array}$$

A set S is convex if, from anywhere in S, all other points are "visible." (See Figure 1) PSfrag replacements

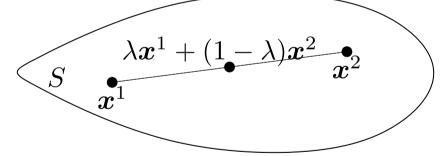
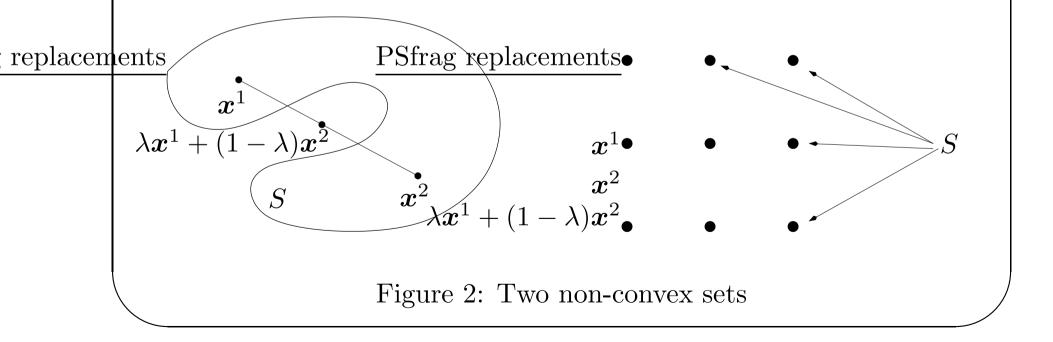


Figure 1: A convex set. (For the intermediate vector shown, the value of λ is $\approx 1/2$)

Examples

- The empty set is a convex set
- The set $\{ x \in \mathbb{R}^n \mid ||x|| \le a \}$ is convex for every value of $a \in \mathbb{R}$
- The set $\{ \boldsymbol{x} \in \mathbb{R}^n \mid ||\boldsymbol{x}|| = a \}$ is non-convex for every a > 0
- The set $\{0, 1, 2\}$ is non-convex

Two non-convex sets are shown in Figure 2



Intersections of convex sets

Suppose that $S_k, k \in \mathcal{K}$, is any collection of convex sets. Then, the intersection $\bigcap_{k \in \mathcal{K}} S_k$ is a convex set

Proof.

Convex and affine hulls

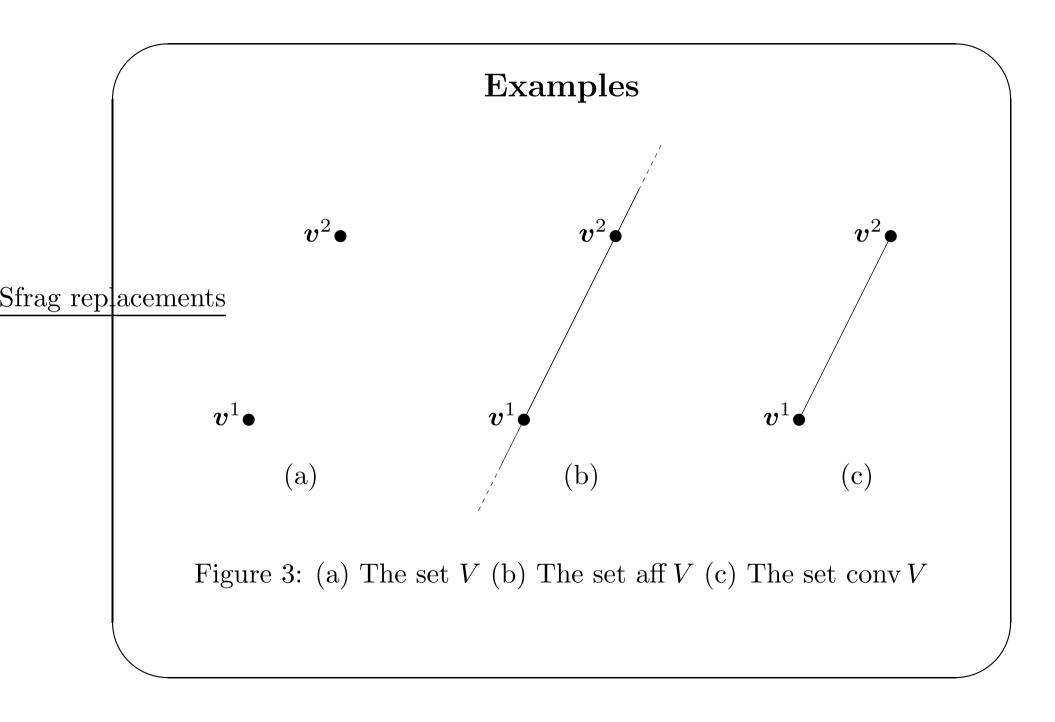
The affine hull of a finite set $V = \{v^1, \ldots, v^k\} \subset \mathbb{R}^n$ is the set

aff
$$V := \left\{ \lambda_1 \boldsymbol{v}^1 + \dots + \lambda_k \boldsymbol{v}^k \mid \lambda_1, \dots, \lambda_k \in \mathbb{R}; \sum_{i=1}^k \lambda_i = 1 \right\}$$

The convex hull of a finite set $V = \{v^1, \ldots, v^k\} \subset \mathbb{R}^n$ is the set

$$\operatorname{conv} V := \left\{ \lambda_1 \boldsymbol{v}^1 + \dots + \lambda_k \boldsymbol{v}^k \mid \lambda_1, \dots, \lambda_k \ge 0; \sum_{i=1}^k \lambda_i = 1 \right\}$$

The sets are defined by all possible affine (convex) combinations of the k points



Carathéodory's Theorem

- The convex hull of $V \subset \mathbb{R}^n$ is the smallest convex set containing V
- Let $V \subseteq \mathbb{R}^n$. Then, conv V is the set of all convex combinations of points of V
- Every point of the convex hull of a set can be written as a convex combination of points from the set. How many do we need?
- [Car.:] Let $x \in \text{conv } V$, where $V \subseteq \mathbb{R}^n$. Then x can be expressed as a convex combination of n + 1 or fewer points of V
- Proof by contradiction: if more than n + 1 points are needed then these points must be affinely dependent \implies can remove at least one such point. Etcetera

Polytope

- A subset P of \mathbb{R}^n is a polytope if it is the convex hull of finitely many points in \mathbb{R}^n
- The set shown in Figure 4 is a polytope

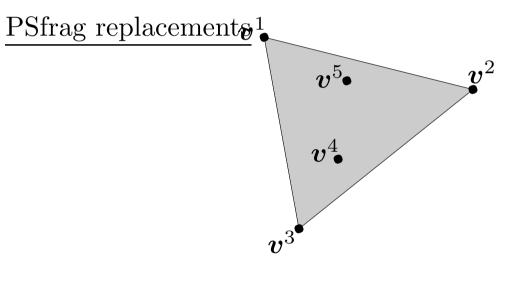


Figure 4: The convex hull of five points in \mathbb{R}^2

• A cube and a tetrahedron are polytopes in \mathbb{R}^3

Extreme points

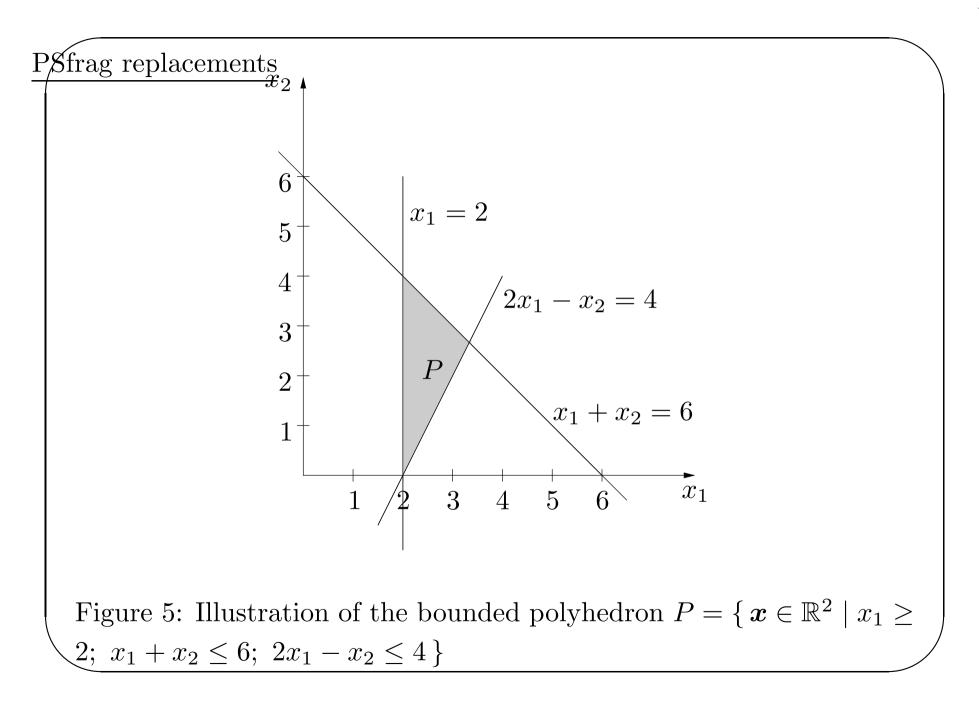
- A point \boldsymbol{v} of a convex set P is called an extreme point if whenever $\boldsymbol{v} = \lambda \boldsymbol{x}^1 + (1 - \lambda) \boldsymbol{x}^2$, where $\boldsymbol{x}^1, \boldsymbol{x}^2 \in P$ and $\lambda \in (0, 1)$, then $\boldsymbol{v} = \boldsymbol{x}^1 = \boldsymbol{x}^2$
- Examples: The set shown in Figure 3(c) has the extreme points *v*¹ and *v*². The set shown in Figure 4 has the extreme points *v*¹, *v*², and *v*³. The set shown in Figure 3(b) does not have any extreme points
- Let P be the polytope conv V, where $V = \{v^1, \ldots, v^k\} \subset \mathbb{R}^n$. Then P is equal to the convex hull of its extreme points

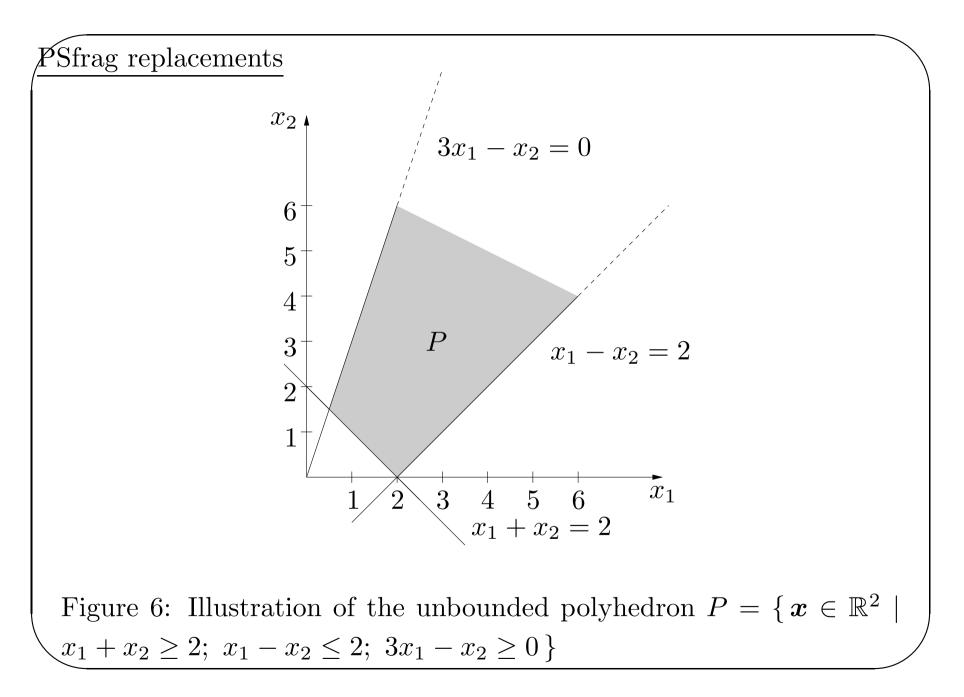
Polyhedra

• A subset P of \mathbb{R}^n is a polyhedron if there exist a matrix $A \in \mathbb{R}^{m \times n}$ and a vector $b \in \mathbb{R}^m$ such that

$$P = \{ \boldsymbol{x} \in \mathbb{R}^n \mid \boldsymbol{A}\boldsymbol{x} \leq \boldsymbol{b} \}$$

- $Ax \leq b \iff a_ix \leq b_i$ for all $i \ (a_i \text{ is row } i \text{ of } A)$
- Intersection of half-spaces. [Hyperplane: $\{x \in \mathbb{R}^n \mid a_i x = b_i\}$]
- Examples: (a) Figure 5 shows the bounded polyhedron $P = \{ \boldsymbol{x} \in \mathbb{R}^2 \mid x_1 \ge 2; \ x_1 + x_2 \le 6; \ 2x_1 - x_2 \le 4 \}$
- (b) The unbounded polyhedron $P = \{ \mathbf{x} \in \mathbb{R}^2 \mid x_1 + x_2 \ge 2; \ x_1 - x_2 \le 2; \ 3x_1 - x_2 \ge 0 \} \text{ is shown}$ in Figure 6





Algebraic characterizations of extreme points

- Let $\tilde{x} \in P = \{ x \in \mathbb{R}^n \mid Ax \leq b \}$, where $A \in \mathbb{R}^{m \times n}$ with rank A = n and $b \in \mathbb{R}^m$. Further, let $\tilde{A}\tilde{x} = \tilde{b}$ be the equality subsystem of $A\tilde{x} \leq b$. Then \tilde{x} is an extreme point of P if and only if rank $\tilde{A} = n$
- Of great importance in Linear Programming: **A** then always has full rank! Hence, can solve special subsystem of linear equalities to obtain an extreme point
- Corollary: The number of extreme points of P is finite
- Corollary: Since the number of extreme points is finite, the convex hull of the extreme points of a polyhedron is a polytope
- Consequence: Algorithm for linear programming!

Cones

- A subset C of \mathbb{R}^n is a cone if $\lambda x \in C$ whenever $x \in C$ and $\lambda > 0$
- Example: Let $A \in \mathbb{R}^{m \times n}$. The set $\{ x \in \mathbb{R}^n \mid Ax \leq 0^m \}$ is a cone
- Figure 7(a) illustrates a convex cone and Figure 7(b) illustrates a non-convex cone in \mathbb{R}^2

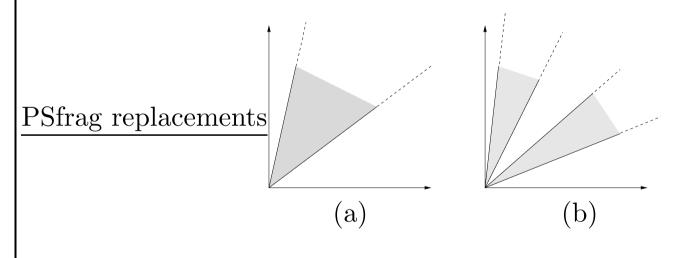


Figure 7: (a) A convex cone in \mathbb{R}^2 (b) A non-convex cone in \mathbb{R}^2

Representation Theorem

- Let Q = { x ∈ ℝⁿ | Ax ≤ b }, P be the convex hull of the extreme points of Q, and C := { x ∈ ℝⁿ | Ax ≤ 0^m }. If rank A = n then
 Q = P + C = { x ∈ ℝⁿ | x = u + v for some u ∈ P and v ∈ C } In other words, every polyhedron (that has at least one extreme point) is the sum of a polytope and a polyhedral cone
- Proof by induction on the rank of the subsystem matrix \tilde{A}
- Central in Linear Programming. Can be used to establish: Optimal solutions to LP problems are found at extreme points!

PSfrag replacements

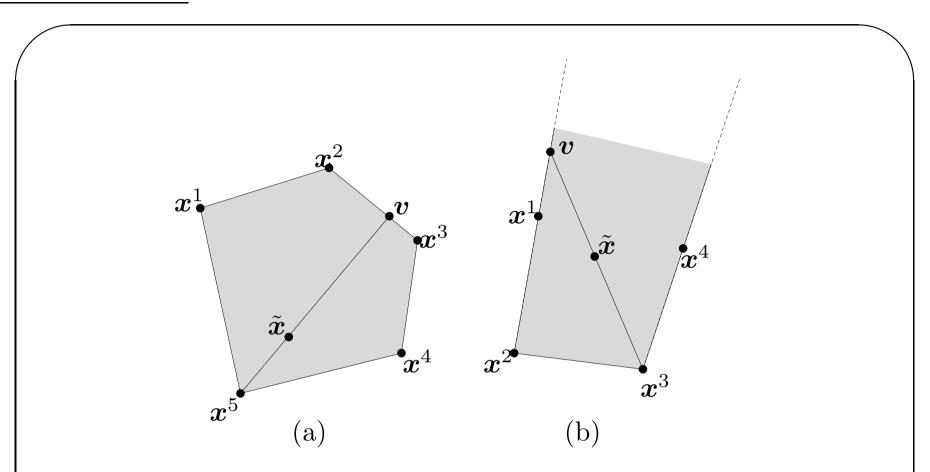


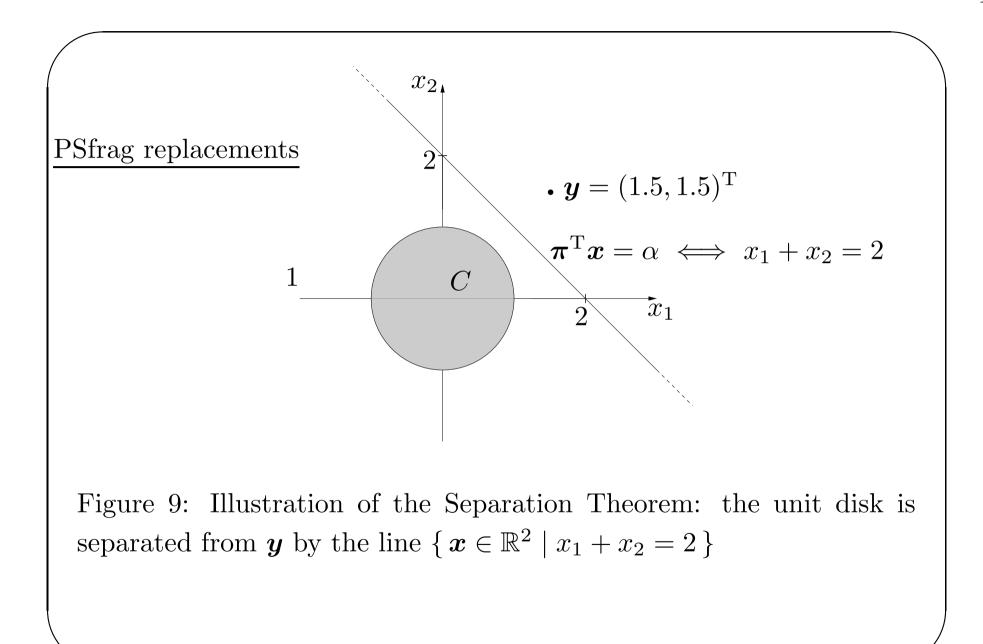
Figure 8: Illustration of the Representation Theorem (a) in the bounded case, and (b) in the unbounded case

Separation Theorem

- "If a point \boldsymbol{y} does not lie in a closed and convex set C, then there exists a hyperplane that separates \boldsymbol{y} from C"
- Suppose that the set $C \subseteq \mathbb{R}^n$ is closed and convex, and that the point \boldsymbol{y} does not lie in C. Then there exist $\alpha \in \mathbb{R}$ and $\boldsymbol{\pi} \neq \boldsymbol{0}^n$ such that $\boldsymbol{\pi}^T \boldsymbol{y} > \alpha$ and $\boldsymbol{\pi}^T \boldsymbol{x} \leq \alpha$ for all $\boldsymbol{x} \in C$
- Proof later—requires existence and optimality conditions
- Consequence: A set P is a polytope if and only if it is a bounded polyhedron. [\Leftarrow trivial; \Longrightarrow constructive]
- A finitely generated cone has the form

cone { $\boldsymbol{v}^1,\ldots,\boldsymbol{v}^m$ } := { $\lambda_1\boldsymbol{v}^1+\cdots+\lambda_m\boldsymbol{v}^m \mid \lambda_1,\ldots,\lambda_m \geq 0$ }

• A convex cone is finitely generated iff it is polyhedral



Farkas' Lemma

• Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Then, exactly one of the systems

$$\begin{aligned} & \boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}, \\ & \boldsymbol{x} \geq \boldsymbol{0}^n, \end{aligned} \tag{I}$$

and

$$A^{\mathrm{T}} \boldsymbol{\pi} \leq \mathbf{0}^{n}, \tag{II}$$
$$b^{\mathrm{T}} \boldsymbol{\pi} > 0,$$

has a feasible solution, and the other system is inconsistent

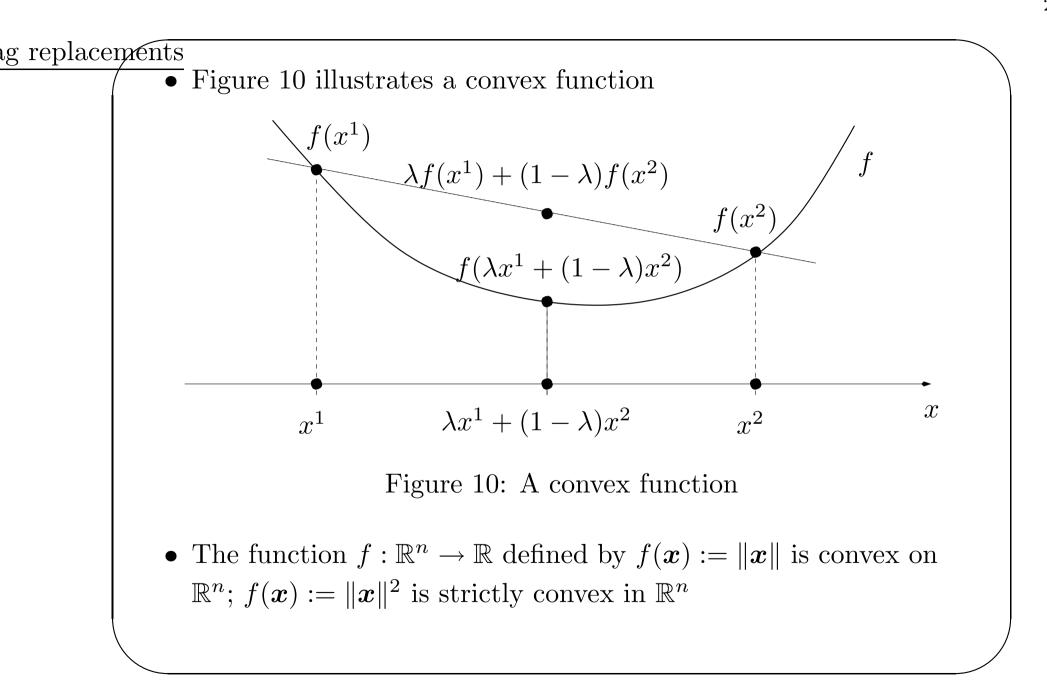
- Farkas' Lemma has many forms. "Theorems of the alternative"
- Crucial for LP theory and optimality conditions
- Simple proof later!

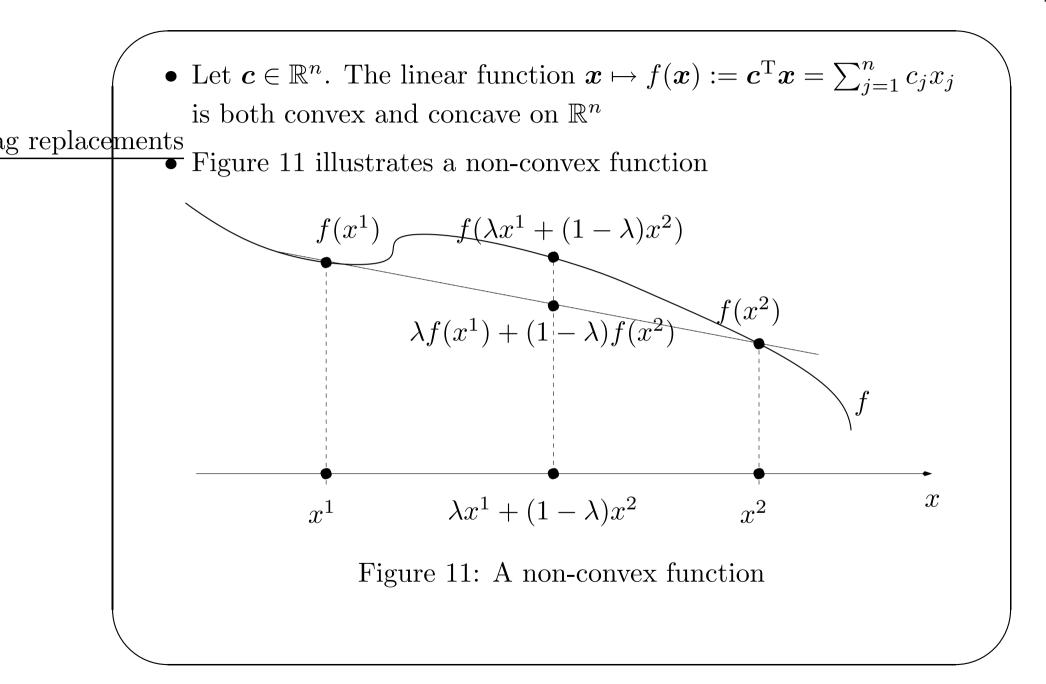
Convexity of functions

• Suppose that $S \subseteq \mathbb{R}^n$ is convex. A function $f : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is convex at $\bar{x} \in S$ if

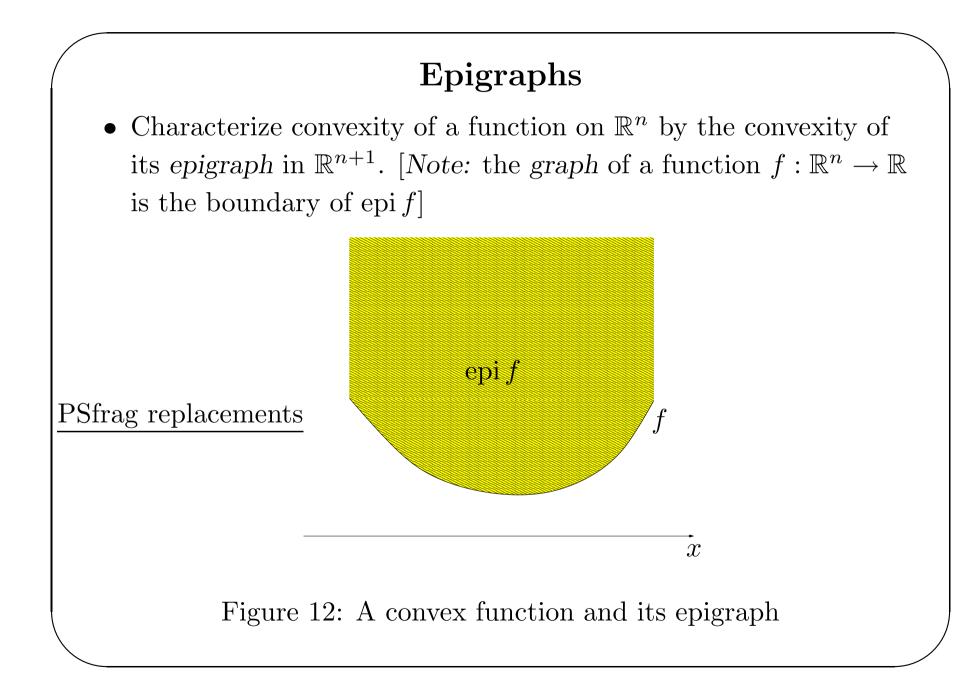
$$\left. \begin{array}{l} \boldsymbol{x} \in S \\ \lambda \in (0,1) \end{array} \right\} \Longrightarrow f(\lambda \bar{\boldsymbol{x}} + (1-\lambda)\boldsymbol{x}) \le \lambda f(\bar{\boldsymbol{x}}) + (1-\lambda)f(\boldsymbol{x}) \end{array} \right.$$

- The function f is convex on S if it is convex at every $\bar{x} \in S$
- The function f is strictly convex on S if < holds in place of \leq above for every $x \neq \bar{x}$
- A convex function is such that a linear interpolation never is lower than the function itself. For a strictly convex function the linear interpolation lies above the function
- (Strict) concavity of $f \iff (\text{strict})$ convexity of -f





- Sums of convex functions are convex
- Composite function: $\boldsymbol{x} \mapsto f(g(\boldsymbol{x}))$
- Suppose that $S \subseteq \mathbb{R}^n$ and $P \subseteq \mathbb{R}$. Let further $g: S \to \mathbb{R}$ be a function which is convex on S, and $f: P \to \mathbb{R}$ be convex and non-decreasing $(y \ge x \Longrightarrow f(y) \ge f(x))$ on P. Then, the composite function f(g) is convex on the set $\{ x \in \mathbb{R}^n \mid g(x) \in P \}$
- The function $\boldsymbol{x} \mapsto -\log(-g(\boldsymbol{x}))$ is convex on the set $\{ \, \boldsymbol{x} \in \mathbb{R}^n \mid g(\boldsymbol{x}) < 0 \, \}$



• The epigraph of a function $f : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is the set

$$\operatorname{epi} f := \{ (\boldsymbol{x}, \alpha) \in \mathbb{R}^{n+1} \mid f(\boldsymbol{x}) \le \alpha \}$$

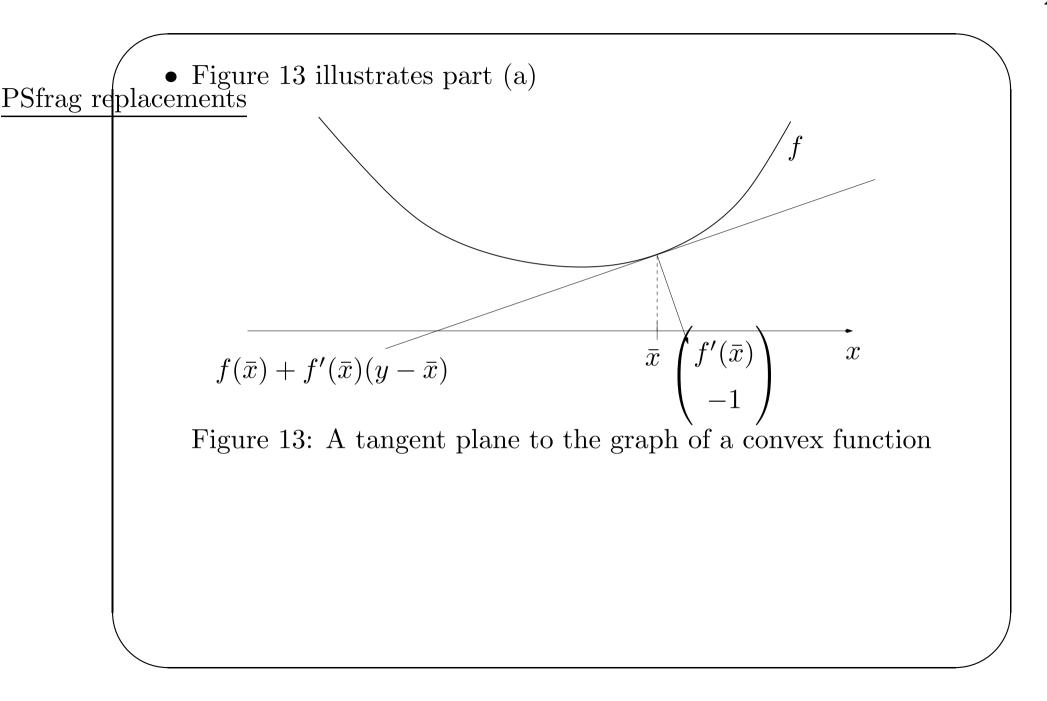
The epigraph of the function f restricted to the set $S \subseteq \mathbb{R}^n$ is

$$\operatorname{epi}_{S} f := \{ (\boldsymbol{x}, \alpha) \in S \times \mathbb{R} \mid f(\boldsymbol{x}) \le \alpha \}$$

- Connection between convex sets and functions; in fact the definition of a convex function stems from that of a convex set!
- Suppose that S ⊆ ℝⁿ is a convex set. Then, the function
 f : ℝⁿ → ℝ ∪ {+∞} is convex on S if, and only if, its epigraph restricted to S is a convex set in ℝⁿ⁺¹

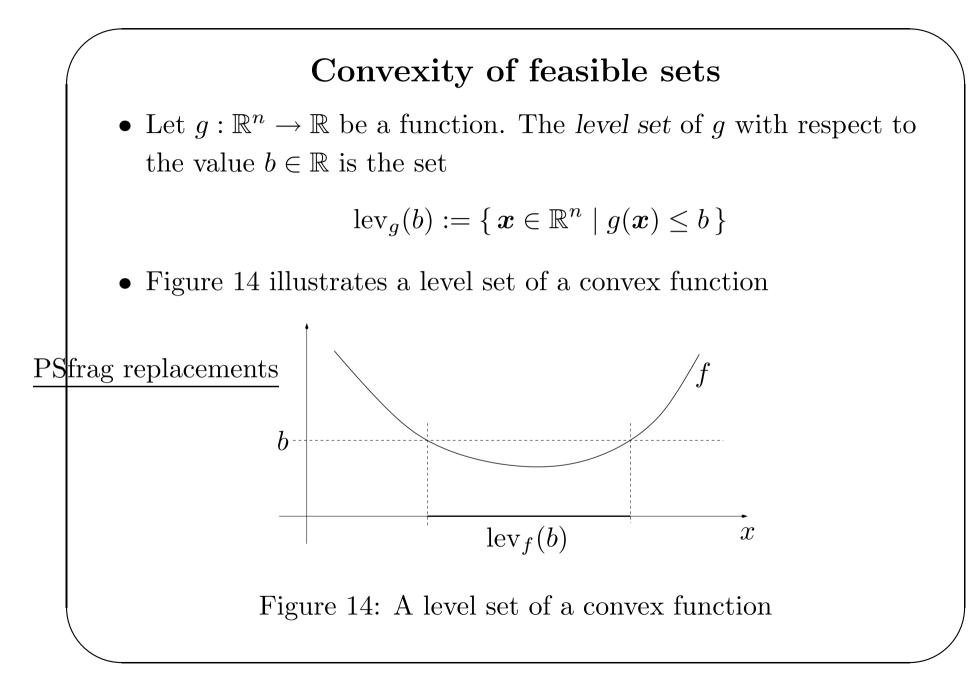
Convexity characterizations in C^1

- C^1 : Differentiable once, gradient continuous
- Let f ∈ C¹ on an open convex set S
 (a) f is convex on S ⇔ f(y) ≥ f(x) + ∇f(x)^T(y x), x, y ∈ S
 (b) f is convex on S ⇔ [∇f(x) ∇f(y)]^T(x y) ≥ 0, x, y ∈ S
- (a): "Every tangent plane to the function surface lies on, or below, the epigraph of f", or, that "a first-order approximation is below f"
- (b) ∇f is "monotone on S." [Note: when n = 1, the result states that f is convex if and only if its derivative f' is non-decreasing, that is, that it is monotonically increasing]
- Proofs use Taylor expansion, convexity and Mean-value Theorem



Convexity characterizations in C^2

- Let f be in C² on an open, convex set S ⊆ ℝⁿ
 (a) f is convex on S ⇔ ∇²f(x) is positive semidefinite for all x ∈ S
 (b) ∇²f(x) is positive definite for all x ∈ S ⇒ f is strictly convex on S
- Note: n = 1, S is an open interval: (a) f is convex on S if and only if f''(x) ≥ 0 for every x ∈ S; (b) f is strictly convex on S if f''(x) > 0 for every x ∈ S
- Proofs use Taylor expansion, convexity and Mean-value Theorem
- Not the direction \Leftarrow in (b)! $[f(x) = x^4 \text{ at } x = 0]$
- Difficult to check convexity; matrix condition for every $oldsymbol{x}$
- Quadratic function: $f(\boldsymbol{x}) = (1/2)\boldsymbol{x}^{\mathrm{T}}\boldsymbol{Q}\boldsymbol{x} \boldsymbol{q}^{\mathrm{T}}\boldsymbol{x}$ convex on \mathbb{R}^{n} iff \boldsymbol{Q} is psd (\boldsymbol{Q} is the Hessian of f, and is independent of \boldsymbol{x})



Suppose that the function g: ℝⁿ → ℝ is convex. Then, for every value of b ∈ ℝ, the level set lev_g(b) is a convex set. It is moreover closed

Proof.

• We speak of a convex problem when f is convex (minimization) and for constraints $g_i(\boldsymbol{x}) \leq 0$, the functions g_i are convex; and for constraints $h_j(\boldsymbol{x}) = 0$, the functions h_j are affine

Euclidean projection

• The Euclidean projection of $\boldsymbol{w} \in \mathbb{R}^n$ is the nearest (in Euclidean norm) vector in S to \boldsymbol{w} . The vector $\boldsymbol{w} - \operatorname{Proj}_S(\boldsymbol{w})$ is normal to S

