Lecture 7: Linear programming models

Duality and optimality

- LP: linear objective, linear constraints
- LP problems can be given a "standard form"
- LP problems are convex problems with a CQ fulfilled (linear constraints \Longrightarrow Abadie)
- Strong duality holds; Lagrangian dual same as LP dual
- KKT necessary and sufficient!
- Simplex method: always satisfies complementarity; always primal feasibility after finding the first feasible solution; searches for a dual feasible point

Basic method and its foundations

- Know that if there exists an optimal solution, at least one of them is an extreme point (Thm. 8.10)
- Search only among extreme points
- Extreme points can be described in algebraic terms (Thm. 3.17). Find such a point
- Generate a descent direction; line search leads to the boundary! Choose direction so that the boundary point is an extreme point
- \Longrightarrow Move to a neighbouring extreme point such that the objective value improves-the Simplex method!
- Convergence finite

An introductory problem-A DUPLO game

- A manufacturer produces two pieces of furniture: tables and chairs
- The production of furniture requires two different pieces of raw-material, large and small pieces
- One table is assembled from two pieces of each; one chair is assembled from one of the larger pieces and two of the smaller pieces

- Data: 6 large and 8 small pieces available. Selling a table gives 1600 SEK, a chair 1000 SEK
- Not trivial to choose an optimal production plan
- What is the problem and how do we solve it?
- Solution by (1) the DUPLO game; (2) graphically;
(3) the Simplex method

$$
\operatorname{maximize} \quad z=1600 x_{1}+1000 x_{2}
$$

$$
\begin{array}{rr}
\text { subject to } & +x_{2}
\end{array} \leq 6, ~ \begin{aligned}
2 x_{1} & \\
2 x_{1} & +2 x_{2}
\end{aligned} \leq 8, ~ x_{2} \geq 0
$$

Further topics

- Sensitivity analysis: What happens with $z^{*}, \boldsymbol{x}^{*}$ if \ldots ?
- A dual problem: A manufacturer (Billy) produce book shelves with same raw material. Billy wish to expand their production; interested in acquiring our resources
- Two questions (with identical answers): (1) what is the lowest bid (price) for the total capacity at which we are willing to sell?; (2) what is the highest bid (price) that Billy are prepared to offer for the resources? The answer is a measure of the wealth of the company in terms of their resources (the shadow price)

A dual problem

- To study the problem, we introduce the variables
$y_{1}=$ the price which Billy offers for each large piece, $y_{2}=$ the price which Billy offers for each small piece, $w=$ the total bid which Billy offers
- Example: Net income for a table is 1600 SEK; need to get at least price bid \boldsymbol{y} such that $2 y_{1}+2 y_{2} \geq 1600$

$$
\begin{aligned}
& \operatorname{minimize} \quad w=6 y_{1}+8 y_{2} \\
& \text { subject to } \quad \\
& 2 y_{1}+2 y_{2} \geq 1600 \\
& \\
& y_{1}+2 y_{2} \geq 1000 \\
& \\
& y_{1}, \quad y_{2} \geq 0
\end{aligned}
$$

- Why the sign? \boldsymbol{y} is a price!
- Optimal solution: $\boldsymbol{y}^{*}=(600,200)^{\mathrm{T}}$. The bid is $w^{*}=5200$ SEK
- Remarks: (1) $z^{*}=w^{*}$! (Strong duality!) Our total income is the same as the value of our resources. (2) The price for a large piece equals its shadow price!

Geometric \Longleftrightarrow Algebraic connections

- Must have equality constraints. Why? Inequalities cannot be manipulated while keeping the same solution set! Equalities can!
- Counter-example:

$$
P=\left\{\boldsymbol{x} \in \mathbb{R}_{+}^{2} \mid x_{1}+x_{2} \geq 1 ; \quad 2 x_{1}+x_{2} \leq 2\right\}
$$

- Good to know: Every polyhedron P can be described in the form

$$
P=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} ; \quad \boldsymbol{x} \geq \mathbf{0}^{n}\right\}
$$

- We call this the standard form
- Slack variables: $\left(\boldsymbol{x} \in \mathbb{R}^{n}, \boldsymbol{b} \in \mathbb{R}^{m}, \boldsymbol{A} \in \mathbb{R}^{m \times n}\right)$

$$
\begin{aligned}
\boldsymbol{A} \boldsymbol{x}+\boldsymbol{I}^{m} \boldsymbol{s} & =\boldsymbol{b}, \\
\boldsymbol{x} & \geq \mathbf{0}^{n}, \\
\boldsymbol{s} & >\mathbf{0}^{m}
\end{aligned} \Longleftrightarrow \begin{aligned}
{\left[\boldsymbol{A} \boldsymbol{I}^{m}\right] \boldsymbol{v} } & =\boldsymbol{b} \\
\boldsymbol{v} & \geq \mathbf{0}^{n+m}
\end{aligned}
$$

- We assume even that $\boldsymbol{b} \geq \mathbf{0}^{m}$; otherwise, multiply necessary rows by -1
- Idea: We describe an extreme point through this characterization of the feasible set; we then prove that moving between "adjacent" extreme points is simple
- Basic feasible solution (Algebra) \Longleftrightarrow Extreme point (Geometry)
- Note: $\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{A x}=\boldsymbol{b} \Longrightarrow$ Linear algebra
- $\boldsymbol{x} \geq \mathbf{0}^{n}: \boldsymbol{A x}=\boldsymbol{b} \Longrightarrow$ Polyhedra, convex analysis
- Sign restrictions? If x_{j} is free of sign, substitute it everywhere by

$$
x_{j}=x_{j}^{+}-x_{j}^{-},
$$

where $x_{j}^{+}, x_{j}^{-} \geq 0$

DUPLO example with slack variables

$$
\begin{align*}
& \text { maximize } z=1600 x_{1}+1000 x_{2} \\
& \text { subject to } \quad 2 x_{1}+\quad x_{2}+s_{1}=6 \tag{1}\\
& 2 x_{1}+2 x_{2}+s_{2}=8 \tag{2}\\
& x_{1}, \quad x_{2}, \quad s_{1}, \quad s_{2} \geq 0
\end{align*}
$$

Basic feasible solutions (BFS)

- Consider an LP in standard form:

$$
\begin{array}{lc}
\operatorname{minimize} & z=\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x} \\
\text { subject to } & \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}, \\
& \boldsymbol{x} \geq \mathbf{0}^{n},
\end{array}
$$

$\boldsymbol{A} \in \mathbb{R}^{m \times n}$ with rank $\boldsymbol{A}=m$ (otherwise, delete rows),
$n>m$, and $\boldsymbol{b} \in \mathbb{R}_{+}^{m}$

- A point $\tilde{\boldsymbol{x}}$ is a basic solution if

1. $\boldsymbol{A} \tilde{\boldsymbol{x}}=\boldsymbol{b}$; and
2. the columns of \boldsymbol{A} corresponding to the non-zero components of $\tilde{\boldsymbol{x}}$ are linearly independent

- A basic solution that satisfies non-negativity is called a basic feasible solution (BFS)
- Additional terms: degenerate, non-degenerate basic solutions
- Connection BFS-extreme points?
- A point \boldsymbol{x} is an extreme point of the set $\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{A x}=\boldsymbol{b} ; \boldsymbol{x} \geq \mathbf{0}^{n}\right\}$ if and only if it is a basic feasible solution
- Proof by the fact that the rank of \boldsymbol{A} is full + Thm. 3.17 (algebraic char. of extreme points)

The Representation Theorem revisited

Let $P=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{A x}=\boldsymbol{b} ; \boldsymbol{x} \geq \mathbf{0}^{n}\right\}$ and $V=\left\{\boldsymbol{v}^{1}, \ldots, \boldsymbol{v}^{k}\right\}$ its set of extreme points. If and only if P is nonempty, V is nonempty (finite). Let
$C=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{A x}=\mathbf{0}^{m} ; \boldsymbol{x} \geq \mathbf{0}^{n}\right\}$ and $D=\left\{\boldsymbol{d}^{1}, \ldots, \boldsymbol{d}^{r}\right\}$ be the set of extreme directions of C. If and only if P is unbounded D is nonempty (finite). Every $\boldsymbol{x} \in P$ is the sum of a convex combination of points in V and a non-negative linear combination of points in D :

$$
\boldsymbol{x}=\sum_{i=1}^{k} \alpha_{i} \boldsymbol{v}^{i}+\sum_{j=1}^{r} \beta_{j} \boldsymbol{d}^{j},
$$

where $\alpha_{1}, \ldots, \alpha_{k} \geq 0: \sum_{i=1}^{k} \alpha_{i}=1$, and $\beta_{1}, \ldots, \beta_{r} \geq 0$

Existence of optimal solutions to LP

- Let the sets P, V and D be defined as in the above theorem and consider the $L P$

$$
\begin{array}{ll}
\operatorname{minimize} & z=\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x} \\
\text { subject to } & \boldsymbol{x} \in P
\end{array}
$$

This problem has a finite optimal solution if and only if P is nonempty and z is lower bounded on P, that is, if $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{d}^{j} \geq 0$ for all $\boldsymbol{d}^{j} \in D$. If the problem has a finite optimal solution, then there exists an optimal solution among the extreme points

- Proof.

Adjacent extreme points

- Consider the following polytope:

- No point on the line segment joining \boldsymbol{x} and \boldsymbol{u} can be written as a convex combination of any pair of points that are not on this line segment. However, this is not true for the points on the line segment between the extreme points \boldsymbol{x} and \boldsymbol{w}. The extreme points \boldsymbol{x} and \boldsymbol{u} are said to be adjacent (while \boldsymbol{x} and \boldsymbol{w} are not adjacent)
- Two extreme points are adjacent if and only if there exist corresponding BFSs whose sets of basic variables differ in exactly one place

