Lecture 8: The Simplex method

An algebraic derivation of the pricing step

$$
z^{*}=\text { infimum } \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}=\text { infimum } \boldsymbol{c}_{\boldsymbol{B}}^{\mathrm{T}} \boldsymbol{x}_{\boldsymbol{B}}+\boldsymbol{c}_{\boldsymbol{N}}^{\mathrm{T}} \boldsymbol{x}_{\boldsymbol{N}}
$$

$$
\text { subject to } \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}, \quad \text { subject to } \boldsymbol{B} \boldsymbol{x}_{B}+\boldsymbol{N} \boldsymbol{x}_{\boldsymbol{N}}=\boldsymbol{b},
$$

$$
\boldsymbol{x} \geq 0^{n} \quad \boldsymbol{x}_{B} \geq \mathbf{0}^{m} ; \boldsymbol{x}_{N} \geq 0^{n-m}
$$

$$
=\boldsymbol{c}_{\boldsymbol{B}}^{\mathrm{T}} \boldsymbol{B}^{-1} \boldsymbol{b}+\quad \text { infimum }\left[\boldsymbol{c}_{\boldsymbol{N}}^{\mathrm{T}}-\boldsymbol{c}_{\boldsymbol{B}}^{\mathrm{T}} \boldsymbol{B}^{-1} \boldsymbol{N}\right] \boldsymbol{x}_{\boldsymbol{N}}
$$

$$
\text { subject to } \boldsymbol{B}^{-1} \boldsymbol{b}-\boldsymbol{B}^{-1} \boldsymbol{N} \boldsymbol{x}_{\boldsymbol{N}} \geq \mathbf{0}^{m}
$$

$$
\boldsymbol{x}_{\boldsymbol{N}} \geq \mathbf{0}^{n-m}
$$

- $\boldsymbol{x}_{\boldsymbol{N}}=\mathbf{0}^{n-m}$ feasible. Let $\tilde{\boldsymbol{c}}_{N}^{\mathrm{T}}:=\boldsymbol{c}_{\boldsymbol{N}}^{\mathrm{T}}-\boldsymbol{c}_{\boldsymbol{B}}^{\mathrm{T}} \boldsymbol{B}^{-1} \boldsymbol{N}$
- If reduced cost $\tilde{\boldsymbol{c}}_{\boldsymbol{N}} \geq \mathbf{0}^{n-m}$ then $\boldsymbol{x}_{\boldsymbol{N}}=\mathbf{0}^{n-m}$ is optimal
- If $\tilde{\boldsymbol{c}}_{N} \nsupseteq \mathbf{0}^{n-m}$ then $\exists j \in N$ with $\tilde{c}_{j}<0$. Then the current point $\boldsymbol{x}_{\boldsymbol{N}}=\mathbf{0}^{n-m}$ may be non-optimal
- Generate a feasible descent direction
- Choose one that leads to a neighboring extreme point
- Swap one variable in B for one in N
- Increase one variable in N from zero
- Choose J^{*} to be among $\arg \operatorname{minimum}_{j \in N} \tilde{c}_{j}$
- We have then decided on the search direction

The basis change

- What is this direction?

- In $\boldsymbol{x}_{\boldsymbol{B}}$-space: $\boldsymbol{x}_{\boldsymbol{B}}=\boldsymbol{B}^{-1} \boldsymbol{b}-\boldsymbol{B}^{-1} \boldsymbol{N} \boldsymbol{x}_{\boldsymbol{N}} \Longrightarrow$

$$
\boldsymbol{p}_{B}=-\boldsymbol{B}^{-1} \boldsymbol{N} \boldsymbol{p}_{\boldsymbol{N}}=-\boldsymbol{B}^{-1} \boldsymbol{N}_{\mathrm{J}^{*}}
$$

- So, search direction in \mathbb{R}^{n} :

$$
\boldsymbol{p}=\binom{\boldsymbol{p}_{B}}{\boldsymbol{p}_{N}}=\binom{-\boldsymbol{B}^{-1} \boldsymbol{N}_{\mathrm{J}^{*}}}{\boldsymbol{e}_{\mathrm{J}^{*}}}
$$

- Descent? Yes, because $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{p}=\tilde{c}_{\mathrm{J}^{*}}<0$!
- Feasible? Must check that $\boldsymbol{A p}=\mathbf{0}^{m}$ and that $p_{i} \geq 0$ if $x_{i}=0, i \in B$. The first true by construction:
- (a) $\boldsymbol{A p}=\boldsymbol{B} \boldsymbol{p}_{B}+\boldsymbol{N} \boldsymbol{p}_{\boldsymbol{N}}=-\boldsymbol{B} \boldsymbol{B}^{-1} \boldsymbol{N}_{\mathrm{J}^{*}}+\boldsymbol{N} \boldsymbol{e}_{\mathrm{J}^{*}}=\mathbf{0}^{m}$
- (b) Suppose that $\boldsymbol{x}_{\boldsymbol{B}}>\mathbf{0}^{m}$. Then, at least a small step in \boldsymbol{p} keeps $\boldsymbol{x}_{\boldsymbol{B}} \geq \mathbf{0}^{m}$.
But if there is an l^{*} with $\left(\boldsymbol{x}_{\boldsymbol{B}}\right)_{1^{*}}=0$ and $\left(\boldsymbol{p}_{\boldsymbol{B}}\right)_{\mathrm{1}^{*}}<0$ then it is not a feasible direction
- Must then perform a basis change without moving! A degenerate basis change: swap $x_{\mathrm{J}^{*}}$ for $x_{1^{*}}$ in the basis
- Otherwise (and normally), we utilize the unit direction
- Line search? Linear objective; move the maximum step!
- Maximum step: If $\boldsymbol{p}_{B} \geq \mathbf{0}^{m}$ there is no finite maximum step! We have found an extreme direction \boldsymbol{p} along which $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}$ tends to $-\infty$! Unbounded solution
- Otherwise: Some basic variables will reach zero eventually. Choose as the outgoing variable a variable $i \in B$ with minimum in

$$
x_{\mathrm{J}^{*}}:=\underset{i \in B}{\operatorname{minimum}}\left\{\left.\frac{\left(\boldsymbol{B}^{-1} \boldsymbol{b}\right)_{i}}{\left(\boldsymbol{B}^{-1} \boldsymbol{N}_{\mathrm{J}^{*}}\right)_{i}} \right\rvert\,\left(\boldsymbol{B}^{-1} \boldsymbol{N}_{\mathrm{J}^{*}}\right)_{i}>0\right\}
$$

- Done. In the basis, replace 1^{*} by J^{*}; goto pricing step
- If $x_{\mathrm{J}^{*}}=0$ then the above corresponds to a "degenerate basis change"

Computational notes-how do we do all of this?

- Given basis matrix \boldsymbol{B}, solve

$$
B x_{B}=b
$$

- Gives us BFS: $\boldsymbol{x}_{\boldsymbol{B}}=\boldsymbol{B}^{-1} \boldsymbol{b}$
- Pricing step: (a) Solve

$$
\boldsymbol{B}^{\mathrm{T}} \boldsymbol{y}=\boldsymbol{c}_{\boldsymbol{B}} \quad \Longrightarrow \quad \boldsymbol{y}^{\mathrm{T}}=\boldsymbol{c}_{\boldsymbol{B}}^{\mathrm{T}} \boldsymbol{B}^{-1}
$$

- (b) Calculate $\tilde{\boldsymbol{c}}_{N}^{\mathrm{T}}=\boldsymbol{c}_{N}^{\mathrm{T}}-\boldsymbol{y}^{\mathrm{T}} \boldsymbol{N}$, the reduced cost vector
- Choose the incoming variable, $x_{\mathrm{J}}{ }^{*}$
- Outgoing variable: Solve

$$
B p_{B}=-\boldsymbol{N}_{\mathrm{J}^{*}}
$$

- Quotient rule for $\left(\boldsymbol{B}^{-1} \boldsymbol{b}\right)_{i} /\left(-\boldsymbol{p}_{B}\right)_{i}$ gives outgoing variable, $x_{1^{*}}$, and value of the new basic variable, $x_{\mathrm{J}^{*}}$
- Note: Three similar linear systems in \boldsymbol{B} ! LU factorization + three triangular substitutions
- Factorizations can be updated after basis change rather than done from scratch
- LP solvers like Cplex and XPRESS-MP have excellent numerical solvers for linear systems
- Linear systems the bulk of the work in solving an LP

Convergence

- If all of the basic feasible solutions are non-degenerate, then the Simplex algorithm terminates after a finite number of iterations
- Proof: (Rough argument) Non-degeneracy implies that the step length is >0; hence, we cannot return to an old BFS once we have left it. There are finitely many BFSs
- Degeneracy: Can actually lead to cycling - the same sequence of BFSs is returned to indefinitely!
- Remedy: Change the incoming/outgoing criteria! Bland's rule: Sort variables according to some index ordering. Take the first possible index in the list. Incoming variable first in the list with the right sign of the reduced cost; outgoing variable the first in the list among the minima in the quotient rule

Initial BFS: Phase I of the Simplex method

- If a starting BFS cannot be found, do the following:
- Suppose $\boldsymbol{b} \geq \mathbf{0}^{m}$. Introduce artificial variables a_{i} in every row (or rows without a unit column)
- Solve the following Phase-I problem:

$$
\begin{aligned}
& \operatorname{minimize} \quad w=\quad\left(\mathbf{1}^{m}\right)^{\mathrm{T}} \boldsymbol{a} \\
& \text { subject to } \quad \boldsymbol{A} \boldsymbol{x}+\boldsymbol{I}^{m} \boldsymbol{a}
\end{aligned}=\boldsymbol{b}, ~ 子 \begin{aligned}
& \\
& \boldsymbol{x} \quad \\
&
\end{aligned}
$$

- Possible cases: (a) $w^{*}=0$, meaning that $\boldsymbol{a}^{*}=\mathbf{0}^{m}$ must hold. There is then a BFS in the original problem
- Start Phase-II, to solve the original problem, starting from this BFS
- (b) $w^{*}>0$. The optimal basis then has some $a_{i}^{*}>0$; due to the objective function construction, there exists no BFS in the original problem. The problem is then infeasible!
- What to do then? Modelling errors? Can be detected from the optimal solution. In fact, some LP problems are pure feasibility problems

