
Chalmers/GU
Mathematics

EXAM SOLUTION

TMA947/MAN280
APPLIED OPTIMIZATION

Date: 05–03–14

Examiner: Michael Patriksson



EXAM SOLUTION
TMA947/MAN280 — APPLIED OPTIMIZATION 1

Question 1

(the Simplex method and sensitivity analysis in linear programming)

The problem in standard form is to

minimize z =−2x1 +(5 + c)x2 −2x3

subject to x1 −3x2 +4x3+x4 = 2,

3x1 −x2 −3x3 +x5 = 3 − b,

x1, x2, x3 ≥ 0.

a) The reduced costs of xN = (x2, x4, x5)
T are (2.2, 0.8, 0.4)T > (0, 0, 0)T which(1p)

means that xB = (x1, x3)
T corresponds to the unique optimal solution.

b) For b = 0 the current basis is optimal if and only if c ≥ −11/5, and for(1p)
c = 0 the basis is optimal if and only if −3 ≤ b ≤ 18/4.

c) By choosing the entering and leaving variables according to the dual simplex(1p)
method we get that x3 is the leaving variable and x2 the entering. The new
basis becomes xB = (x1, x2)

T, and it turns out that it is primal feasible and
hence corresponds to an optimal solution to the modified problem.

Question 2(3p)

(Newton’s method)

We have

∇f(x, y) = (x2/2, y)T and ∇2f(x, y) =

(

x 0
0 1

)

.

Hence the first search direction is computed by solving the system

(

x0 0
0 1

)

p0 =

(

−x2
0/2

−y0

)

⇐⇒ p0 =

(

−x0/2
−y0

)

.

Hence we get that x1 = x0 + p0 = (x0/2, 0)T, and it follows that the assertion is
true for k = 1. Then use induction to show the general assertion.

The method converges to (0, 0)T, which is not an optimal solution since the
problem is unbounded.
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Question 3

(Farkas’ Lemma and other theorems of the alternative)

a) Farkas’ Lemma is proved in the course notes.(2p)

b) We rewrite the system (I’) by adding slack variables, thus producing(1p)

Ax − Ins = b, (J’)

(xT, sT)T ≥ 0n × 0m.

This system is of the form (I) where the matrix A is replaced by (A, In)
and x by (xT, sT)T. Thus, we can apply Farkas’ Lemma to this system and
obtain a corresponding dual system,

ATy ≤ 0n, (JJ’)

−y ≤ 0n,

bTy > 0.

This system then has a solution if and only if (J’) does not, and vice versa.
Since the system (JJ’) is the same as (II’), we have completed the proof.

Question 4

(optimality)

a) Abadie’s CQ is fulfilled, since the four constraints all are linear (or, affine).(1p)

At x∗ we satisfy all primal constraints, so it is primal feasible. The active
constraints have the form

g1(x) := −x1 + 1 ≤ 0,

g3(x) := −x2 + 1 ≤ 0.

Since we have that ∇f(x∗) = (e, 1)T, solving the system of equations

∇f(x∗) +
∑

i∈I(x∗)

µ∗
i∇gi(x

∗) = 0n

yields µ∗ = (e, 0, 1, 0)T. Since µ∗ ≥ 04, we satisfy the KKT conditions.
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b) At x∗ the matrix ∇2f(x∗) is not positive semi-definite; it is actually in-(1p)
definite, so the problem is not convex. Therefore, the fact that the KKT
conditions are satisfied cannot be used to conclude that x∗ is a global op-
timum.

However, we can conclude that it is a global optimum, in fact the unique
global optimum, by studying the objective function on the feasible region.
It is clear that the first term is non-negative on this set, and the second
term is strictly increasing in x1 and therefore has a minimum at x1 = 1. A
lower bound for the objective value on the feasible set therefore is e, which
is exactly what is attained at x∗. Hence, it is globally optimal.

c) Since the problem is convex, the KKT conditions imply that x∗ is globally(1p)
optimal, regardless of any CQ being fulfilled or not.

Question 5(3p)

(the variational inequality)

Consider the equivalent problem (in the sense that it has the same set of optimal
solutions as the original problem) to

minimize g(x) := − ln

(

n
∑

i=1

cixi

)

− ln

(

n
∑

i=1

1

ci

xi

)

subject to
n
∑

i=1

xi = 1,

xi ≥ 0, i = 1, . . . , n.

From the variational inequality it follows that

xi > 0 =⇒
∂g

∂xi

(x) ≤
∂g

∂xj

(x), j = 1, . . . , n, (1)

for every optimal solution x. We have

∂g

∂xi

(x) = −
ci

∑n
k=1 ckxk

−
1

ci (
∑n

k=1 xk/ck)
.

Let a :=
∑n

k=1 ckxk and b :=
∑n

k=1 xk/ck, and consider the function

h(t) := −at −
1

bt
=⇒ h(ci) =

∂g

∂xi

(x).
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We have that

h′(t) = −a +
1

bt2
, h′′(t) = −

2

bt3
,

which means that h is strictly concave for all t > 0. Hence, since c1 < ci < cn for
i = 2, . . . , n − 1, it holds that

h(ci) > min{h(c1), h(cn)}, i = 2, . . . , n − 1.

This together with (1) imply that x2 = x3 = · · · = xn−1 = 0 for every optimal
solution. Now, assume that x1, xn > 0. Then by (1) it must hold that

h(c1) = h(cn) ⇐⇒ x1 = xn

and since
∑n

i=1 xi = 1 we get x1 = xn = 1/2. The other possibilities are that
x1 = 1, xn = 0, or x1 = 0, xn = 1. Assume that x1 = 1 and xn = 0. Then it
follows that h(c1) = −2. But we also have that

h(cn) = −
cn

c1
−

c1

cn

= −
(cn − c1)

2

c1cn

− 2 < −2,

which means that h(c1) > h(cn), so (1) is not fulfilled and x1 = 1, xn = 0 cannot
be an optimal solution. Similarly it follows that x1 = 0, xn = 1 cannot be
optimal. Therefore we only have one solution, i.e. x1 = xn = 1/2, that might
fulfill the variational inequality, and since the existence of an optimal solution is
clear, this solution must be the unique optimal solution.

Question 6(3p)

(modelling)

Introduce the variables

xijd =







1 if player i meets player j day d,

0 otherwise,

zij =







1 if there has been a meeting between player i and j during the week,

0 otherwise,

and introduce the set I = {1, . . . , 20}. Then the following integer linear program
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solves the problem:

maximize
19
∑

i=1

20
∑

j=i+1

zij

subject to
∑

j∈I\{i}

xijd = 3, i ∈ I, d = 1, . . . , 7,

xijd = xjid, i, j ∈ I, d = 1, . . . , 7,

xikd − xjkd ≤ 1 − xijd, i ∈ I, j ∈ I \ {i}, k ∈ I \ {i, j},

zij ≤
7
∑

d=1

xijd, i = 1, . . . , 19, j = i + 1, . . . , 20,

xijd, zij ∈ {0, 1}.

Note that the integer requirements on the zij-variables can be relaxed.

Question 7

(convex analysis)

a) We establish the result thus: 1 =⇒ 2 =⇒ 3 =⇒ 1:(2p)

[1 =⇒ 2] By the statement 1., we have that f(y) ≥ f(x∗) for every y ∈
R

n. This implies that for g = 0n, we satisfy the subgradient inequality
(1). This establishes the statement 2.

[2 =⇒ 3] With g = 0n the definition of ∂f(x∗) in (4) yields immediately
the statement 3.

[3 =⇒ 1] By (3) and the compactness of the subdifferential (cf. Weier-
strass’ Theorem) the maximum is attained at some g ∈ ∂f(x∗). It
follows that, in the subgradient inequality, we get that

f(x∗ + p) ≥ f(x∗) + gTp ≥ f(x∗), ∀p ∈ R
n,

which is equivalent to the statement 1.

b) The answer is no.(1p)

Example 1: f(x) := x3, and x∗ = 0. This is an example where the derivative
is zero, yet p = −1 is a descent direction.

Example 2: Any non-convex function f ∈ C2 where x∗ is a saddle point.
In this case, ∇f(x∗) = 0n, but there exists a descent direction given by
an eigenvector corresponding to a negative eigenvalue of ∇2f(x∗). Suppose
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that λ is a negative eigenvalue of ∇2f(x∗), and that p is a corresponding
eigenvector. Then,

∇2f(x∗)p = λp =⇒

pT∇2f(x∗)p = λ‖p‖2 < 0 =⇒

f(x∗ + αp) = f(x∗) + α∇f(x∗)Tp +
α2

2
pT∇2f(x∗)p + o(α2)

< f(x∗)

for every small enough α > 0.


