TMA947/MAN280 APPLIED OPTIMIZATION

Date: $07-12-17$
Examiner: Michael Patriksson

Question 1

(The Simplex method)
(2p) a) By introducing a slack variable x_{5} and two artificial variables a_{1} and a_{2}, we get the Phase I problem to

$$
\begin{aligned}
& \begin{array}{rlrrrr}
2 x_{1} & & & =7, \\
x_{1}, & x_{2}, & x_{5}, & x_{4}, & x_{5}, & a_{1}, \\
x_{2} & & >0 .
\end{array}
\end{aligned}
$$

Let $\boldsymbol{x}_{B}^{\mathrm{T}}=\left(a_{1}, a_{2}, x_{5}\right)$ and $\boldsymbol{x}_{N}^{\mathrm{T}}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ be the initial basic and nonbasic vector. The reduced costs of the nonbasic variables are

$$
\boldsymbol{c}_{N}^{\mathrm{T}}-\boldsymbol{c}_{B}^{\mathrm{T}} \boldsymbol{B}^{-1} \boldsymbol{N}=(-2,1,1,2),
$$

which means that x_{1} is the entering variable. Further, we have

$$
\begin{gathered}
\boldsymbol{B}^{-1} \boldsymbol{b}=(3,1,7)^{\mathrm{T}} \\
\boldsymbol{B}^{-1} \boldsymbol{N}_{1}=(1,1,2)^{\mathrm{T}}
\end{gathered}
$$

which gives

$$
\operatorname{argmin}_{j:\left(B^{-1} N_{1}\right)_{j}>0} \frac{\left(\boldsymbol{B}^{-1} \boldsymbol{b}\right)_{j}}{\left(\boldsymbol{B}^{-1} \boldsymbol{N}_{1}\right)_{j}}=2,
$$

so a_{2} is the leaving variable. The new basic and nonbasic vectors are $\boldsymbol{x}_{B}^{\mathrm{T}}=$ $\left(a_{1}, x_{1}, x_{5}\right)$ and $\boldsymbol{x}_{N}^{\mathrm{T}}=\left(a_{2}, x_{2}, x_{3}, x_{4}\right)$, and the reduced costs are

$$
\boldsymbol{c}_{N}^{\mathrm{T}}-\boldsymbol{c}_{B}^{\mathrm{T}} \boldsymbol{B}^{-1} \boldsymbol{N}=(2,-1,1,-2),
$$

so x_{4} is the entering variable, and

$$
\begin{aligned}
\boldsymbol{B}^{-1} \boldsymbol{b} & =(2,1,5)^{\mathrm{T}}, \\
\boldsymbol{B}^{-1} \boldsymbol{N}_{4} & =(2,-2,5)^{\mathrm{T}},
\end{aligned}
$$

which gives

$$
\operatorname{argmin}_{j:\left(B^{-1} N_{4}\right)_{j}>0} \frac{\left(\boldsymbol{B}^{-1} \boldsymbol{b}\right)_{j}}{\left(\boldsymbol{B}^{-1} \boldsymbol{N}_{4}\right)_{j}}=1,
$$

and thus a_{1} is the leaving variable. The new basic and nonbasic vectors are $\boldsymbol{x}_{B}^{\mathrm{T}}=\left(x_{4}, x_{1}, x_{5}\right)$ and $\boldsymbol{x}_{N}^{\mathrm{T}}=\left(a_{2}, x_{2}, x_{3}, a_{1}\right)$, and the reduced costs are

$$
\boldsymbol{c}_{N}^{\mathrm{T}}-\boldsymbol{c}_{B}^{\mathrm{T}} \boldsymbol{B}^{-1} \boldsymbol{N}=(1,0,0,1)
$$

so $\boldsymbol{x}_{B}^{\mathrm{T}}=\left(x_{4}, x_{1}, x_{5}\right)$ is an optimal basic feasible solution of the Phase I problem. Since $w^{*}=0, \boldsymbol{x}_{B}$ is a basic feasible solution of the Phase II problem to

$$
\begin{aligned}
& \text { minimize } \quad z=2 x_{1} \\
& \text { subject to } \begin{aligned}
x_{1}-x_{3} & =3, \\
x_{1}-x_{2} & =1,
\end{aligned} \\
& \begin{aligned}
x_{1}-x_{2}-2 x_{4} & =1, \\
2 x_{1} & +x_{4}+x_{5}
\end{aligned}=7,
\end{aligned}
$$

If $\boldsymbol{x}_{B}^{\mathrm{T}}=\left(x_{4}, x_{1}, x_{5}\right)$ and $\boldsymbol{x}_{N}^{\mathrm{T}}=\left(x_{2}, x_{3}\right)$, we get the reduced costs

$$
\boldsymbol{c}_{N}^{\mathrm{T}}-\boldsymbol{c}_{B}^{\mathrm{T}} \boldsymbol{B}^{-1} \boldsymbol{N}=(0,2)
$$

This means that \boldsymbol{x}_{B} is an optimal basic feasible solution for the Phase II problem, and we are done! $\boldsymbol{x}^{*}=(3,0,0,1)^{\mathrm{T}}$ and $z^{*}=6$.
$(\mathbf{1 p}) \quad$ b) If the primal is infeasible, the dual cannot have an optimal solution. Thus it is either infeasible or unbounded.

Question 2

(the KKT conditions)
(1p) a) See the Book, system (5.9).
$(1 \mathbf{p}) \quad$ b) The vector \boldsymbol{x}^{1} satisfies the KKT conditions (5.9).
(1p) c) Nothing. (Under the conditions given, there may be optimal solutions that do not satisfy the KKT conditions.)

Question 3

(short questions on different topics)
(1p) a) Yes it is. $(1,0,1,0,0)^{\mathrm{T}}$ is feasible and the columns of A corresponding to the positive entries are linearly independent.
(1p) b) By multiplying with \boldsymbol{p}_{k} from the left we get

$$
\boldsymbol{p}_{k}^{\mathrm{T}}\left(\nabla^{2} f\left(\boldsymbol{x}_{k}\right)+\gamma_{k} \boldsymbol{I}^{n}\right) \boldsymbol{p}_{k}=-\boldsymbol{p}_{k}^{\mathrm{T}} \nabla f\left(\boldsymbol{x}_{k}\right) .
$$

Since γ_{k} is chosen such that $\nabla^{2} f\left(\boldsymbol{x}_{k}\right)+\gamma_{k} \boldsymbol{I}^{n}$ is positive definite [that is, $\boldsymbol{u}^{\mathrm{T}}\left(\nabla^{2} f\left(\boldsymbol{x}_{k}\right)+\gamma_{k} \boldsymbol{I}^{n}\right) \boldsymbol{u}>0$ holds for all $\left.\boldsymbol{u} \in \mathbb{R}^{n} \backslash\left\{\mathbf{0}^{n}\right\}\right]$, it follows that $\boldsymbol{p}_{k}^{\mathrm{T}} \nabla f\left(\boldsymbol{x}_{k}\right)<0$ and \boldsymbol{p}_{k} is therefore a direction of descent.
$\mathbf{(1 p)}$ c) It is not true. Consider for example the problem to

$$
\begin{array}{ll}
\operatorname{minimize} & x_{1} \\
\text { subject to } & x_{1}^{2}+x_{2}^{2}-1=0 \\
& x \in X=\left\{\boldsymbol{x} \in \mathbb{R}^{2} \mid x_{1}+x_{2} \geq 0\right\}
\end{array}
$$

which has the two local minima $\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$ and $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$, of which only the latter is a global minimum.

(3p) Question 4

(the separation theorem) See the Book, Theorem 4.28.

Question 5

(LP duality and derivatives)
$(\mathbf{1 p}) \quad$ a) If $v(\boldsymbol{b})$ is finite, then by LP duality, we have that

$$
\begin{align*}
& v(\boldsymbol{b}):=\underset{y \in \mathbb{R}^{m}}{\operatorname{maximum}} \quad \boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}, \\
& \text { subject to } \quad \boldsymbol{A}^{\mathrm{T}} \boldsymbol{y} \leq \boldsymbol{c}, \tag{1}\\
& \boldsymbol{y} \text { free. }
\end{align*}
$$

At least one maximum in (1) is attained at an extreme point of the dual polyhedron. Therefore, we can write $v(\boldsymbol{b})=\operatorname{maximum}_{k \in \mathcal{K}} \boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}_{k}$, where $\left\{\boldsymbol{y}_{k}\right\}_{k \in \mathcal{K}}$ is the (finite) set of extreme points of the dual polyhedron. The convexity of v follows simply by using the definition: for $\lambda \in(0,1)$ and arbitrary vectors \boldsymbol{b}^{1} and \boldsymbol{b}^{2} in \mathbb{R}^{m} it holds that

$$
\max _{k \in \mathcal{K}}\left[\lambda \boldsymbol{b}^{1}+(1-\lambda) \boldsymbol{b}^{2}\right]^{\mathrm{T}} \boldsymbol{y}_{k} \leq \lambda \max _{k \in \mathcal{K}}\left(\boldsymbol{b}^{1}\right)^{\mathrm{T}} \boldsymbol{y}_{k}+(1-\lambda) \max _{k \in \mathcal{K}}\left(\boldsymbol{b}^{2}\right)^{\mathrm{T}} \boldsymbol{y}_{k},
$$

the inequality being a consequence of the added freedom of choice when separating the optimization problem on the left-hand side of the inequality with the two optimization problems in the right-hand side. Hence,

$$
v\left(\lambda \boldsymbol{b}^{1}+(1-\lambda) \boldsymbol{b}^{2}\right) \leq \lambda v\left(\boldsymbol{b}^{1}\right)+(1-\lambda) v\left(\boldsymbol{b}^{2}\right),
$$

and we are done.
$(2 \mathrm{p}) \mathrm{b})$ Consider the following inequality:

$$
v(\boldsymbol{p}) \geq v(\boldsymbol{b})+\boldsymbol{\xi}^{\mathrm{T}}(\boldsymbol{p}-\boldsymbol{b}), \quad \forall \boldsymbol{p} \in \mathbb{R}^{m},
$$

where $\boldsymbol{\xi} \in \mathbb{R}^{m}$. This inequality is the definition of the vector $\boldsymbol{\xi}$ being a subgradient of the convex function v at \boldsymbol{b}; it in fact characterizes v as being convex, whenever it is sub-differentiable. Our task is to establish that this inequality holds when we let $\boldsymbol{\xi}=\boldsymbol{y}^{*}$. Since $v(\boldsymbol{b})=\boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}^{*}$ by assumption, the inequality reduces to stating that

$$
v(\boldsymbol{p}) \geq \boldsymbol{p}^{\mathrm{T}} \boldsymbol{y}^{*}, \quad \forall \boldsymbol{p} \in \mathbb{R}^{m}
$$

But this is true: by definition, $v(\boldsymbol{p})$ equals the supremum of $\boldsymbol{p}^{\mathrm{T}} \boldsymbol{y}$ over all feasible vectors \boldsymbol{y}, and \boldsymbol{y}^{*} is just one out of all the possible choices of dual feasible vectors.
Finally, differentiability of v at \boldsymbol{b} is equivalent, given its convexity, to the existence of a unique subgradient of v at \boldsymbol{b}. From the above it is clear that if there is only one optimal solution to the problem (1) then that must also be the gradient of v at \boldsymbol{b}.

(3p) Question 6

(modelling) Introduce the variables:
x_{i} is 0 if element i is assigned to computer 1 and it is 1 if assigned to computer $2 . i=1, \ldots, n$
y_{k} is 1 if edge k is between to elements assigned to different computers.
It is 0 otherwise. $k=1, \ldots m$
The computing time for the elements is equal to

$$
\max \left\{\frac{\eta}{\nu} \sum_{i=1}^{n} x_{i}, \frac{\eta}{\nu}\left(n-\sum_{i=1}^{n} x_{i}\right)\right\}
$$

which can be modelled using an auxilary variable t and linear inequalities. The optimization problem reads:

$$
\begin{aligned}
& \operatorname{minimize} \quad z=\frac{\eta t}{\nu}+\frac{\rho}{\nu} \sum_{k=1}^{m} y_{k} \\
& \text { subject to } \\
& \sum_{i=1}^{n} x_{i} \leq t \\
& n-\sum_{i=1}^{n} x_{i} \leq t \\
& x_{E_{k, 1}}-x_{E_{k, 2}} \leq y_{k}, k=1, \ldots, m \\
& x_{E_{k, 2}}-x_{E_{k, 1}} \leq y_{k}, k=1, \ldots, m \\
& \boldsymbol{x} \in \mathbb{B}^{n} \\
& \boldsymbol{y} \in \mathbb{B}^{m} \\
& t \in \mathbb{R}^{m}
\end{aligned}
$$

(3p) Question 7

(Lagrangian Duality) Lagrangian relax the contraint to get

$$
L(\boldsymbol{x}, \lambda)=-\lambda b+\sum_{i=1}^{n} x_{i}^{2}+\lambda\left(\sum_{i=1}^{n} x_{i}-b\right) .
$$

L is differentiable and we find the Lagrangian dual function

$$
q(\lambda)=\min _{x \in \mathbb{R}^{n}} L(\boldsymbol{x}, \lambda)
$$

by setting the gradient of L with respect to \boldsymbol{x} equal to zero (convex unconstrained problem, function in $\left.C^{1}\right) . \nabla_{x} L(\boldsymbol{x}, \lambda)=\mathbf{0} \Rightarrow x_{i}^{*}=-\frac{\lambda}{2}$, $\forall i$. We get $q(\lambda)=$ $-\lambda b-n \frac{\lambda^{2}}{4}$.

In the Lagrangian dual problem we wish to maximize $q(\lambda)$ over \mathbb{R} (no sign restrictions since the multiplier corresponds to an equality constraint). Also here, q is differentiable and we set the gradient equal to zero $\Rightarrow \lambda^{*}=-\frac{2 b}{n}$ (we know that this is a maximum, since q is always concave) $\Rightarrow x_{i}^{*}=\frac{b}{n}, \forall i$.

Thus, for any faesible vector \boldsymbol{x},

$$
z^{*}=\sum_{i}\left(\frac{b}{n}\right)^{2}=\frac{b^{2}}{n} \leq \sum_{i} x_{i}^{2} \Leftrightarrow b^{2} \leq n \sum_{i} x_{i}^{2} \Leftrightarrow\left(\sum_{i=1}^{n} x_{i}\right)^{2} \leq n \sum_{i} x_{i}^{2} .
$$

The objective function is strictly convex, whence the inequality above holds with equality iff $x_{i}^{*}=\frac{b}{n}$, $\forall i$, i.e., if $x_{1}=x_{2}=\ldots=x_{n}$.

