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Question 1

(The Simplex method)

a) By introducing a slack variable x5 and two artificial variables a1 and a2, we(2p)
get the Phase I problem to

minimize w = a1 +a2

subject to x1 −x3 +a1 = 3 ,

x1 −x2 −2x4 +a2 = 1 ,

2x1 +x4 +x5 = 7 ,

x1 , x2 , x3 , x4 , x5 , a1 , a2 ≥ 0 .

Let xT
B = (a1, a2, x5) and xT

N = (x1, x2, x3, x4) be the initial basic and
nonbasic vector. The reduced costs of the nonbasic variables are

cT
N − cT

BB−1N = (−2, 1, 1, 2),

which means that x1 is the entering variable. Further, we have

B−1b = (3, 1, 7)T,

B−1N 1 = (1, 1, 2)T,

which gives

argminj:(B−1N 1)j>0

(B−1b)j

(B−1N 1)j

= 2,

so a2 is the leaving variable. The new basic and nonbasic vectors are xT
B =

(a1, x1, x5) and xT
N = (a2, x2, x3, x4), and the reduced costs are

cT
N − cT

BB−1N = (2,−1, 1,−2),

so x4 is the entering variable, and

B−1b = (2, 1, 5)T,

B−1N 4 = (2,−2, 5)T,

which gives

argminj:(B−1N 4)j>0

(B−1b)j

(B−1N 4)j

= 1,

and thus a1 is the leaving variable. The new basic and nonbasic vectors are
xT

B = (x4, x1, x5) and xT
N = (a2, x2, x3, a1), and the reduced costs are

cT
N − cT

BB−1N = (1, 0, 0, 1),
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so xT
B = (x4, x1, x5) is an optimal basic feasible solution of the Phase I

problem. Since w∗ = 0, xB is a basic feasible solution of the Phase II
problem to

minimize z = 2x1

subject to x1 −x3 = 3 ,

x1 −x2 −2x4 = 1 ,

2x1 +x4 +x5 = 7 ,

x1 , x2 , x3 , x4 , x5 ≥ 0 .

If xT
B = (x4, x1, x5) and xT

N = (x2, x3), we get the reduced costs

cT
N − cT

BB−1N = (0, 2).

This means that xB is an optimal basic feasible solution for the Phase II
problem, and we are done! x∗ = (3, 0, 0, 1)T and z∗ = 6.

b) If the primal is infeasible, the dual cannot have an optimal solution. Thus(1p)
it is either infeasible or unbounded.

Question 2

(the KKT conditions)

a) See the Book, system (5.9).(1p)

b) The vector x1 satisfies the KKT conditions (5.9).(1p)

c) Nothing. (Under the conditions given, there may be optimal solutions that(1p)
do not satisfy the KKT conditions.)

Question 3

(short questions on different topics)

a) Yes it is. (1, 0, 1, 0, 0)T is feasible and the columns of A corresponding to(1p)
the positive entries are linearly independent.



EXAM SOLUTION
TMA947/MAN280 — APPLIED OPTIMIZATION 3

b) By multiplying with pk from the left we get(1p)

pT
k (∇2f(xk) + γkI

n)pk = −pT
k ∇f(xk).

Since γk is chosen such that ∇2f(xk) + γkI
n is positive definite [that is,

uT(∇2f(xk) + γkI
n)u > 0 holds for all u ∈ R

n \ {0n}], it follows that
pT

k ∇f(xk) < 0 and pk is therefore a direction of descent.

c) It is not true. Consider for example the problem to(1p)

minimize x1,

subject to x2
1 + x2

2 − 1 = 0,

x ∈ X = {x ∈ R
2 | x1 + x2 ≥ 0 },

which has the two local minima
(

1√
2
,− 1√

2

)

and
(

− 1√
2
, 1√

2

)

, of which only
the latter is a global minimum.

Question 4(3p)

(the separation theorem) See the Book, Theorem 4.28.

Question 5

(LP duality and derivatives)

a) If v(b) is finite, then by LP duality, we have that(1p)

v(b) := maximum
y∈�

m
bTy,

subject to ATy ≤ c, (1)

y free.

At least one maximum in (1) is attained at an extreme point of the dual
polyhedron. Therefore, we can write v(b) = maximumk∈K bTyk, where
{yk}k∈K is the (finite) set of extreme points of the dual polyhedron. The
convexity of v follows simply by using the definition: for λ ∈ (0, 1) and
arbitrary vectors b1 and b2 in R

m it holds that

max
k∈K

[λb1 + (1 − λ)b2]Tyk ≤ λ max
k∈K

(b1)Tyk + (1 − λ) max
k∈K

(b2)Tyk,
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the inequality being a consequence of the added freedom of choice when
separating the optimization problem on the left-hand side of the inequality
with the two optimization problems in the right-hand side. Hence,

v(λb1 + (1 − λ)b2) ≤ λv(b1) + (1 − λ)v(b2),

and we are done.

b) Consider the following inequality:(2p)

v(p) ≥ v(b) + ξT(p − b), ∀p ∈ R
m,

where ξ ∈ R
m. This inequality is the definition of the vector ξ being a

subgradient of the convex function v at b; it in fact characterizes v as being
convex, whenever it is sub-differentiable. Our task is to establish that this
inequality holds when we let ξ = y∗. Since v(b) = bTy∗ by assumption,
the inequality reduces to stating that

v(p) ≥ pTy∗, ∀p ∈ R
m.

But this is true: by definition, v(p) equals the supremum of pTy over all
feasible vectors y, and y∗ is just one out of all the possible choices of dual
feasible vectors.

Finally, differentiability of v at b is equivalent, given its convexity, to the
existence of a unique subgradient of v at b. From the above it is clear that
if there is only one optimal solution to the problem (1) then that must also
be the gradient of v at b.

Question 6(3p)

(modelling) Introduce the variables:

xi is 0 if element i is assigned to computer 1
and it is 1 if assigned to computer 2. i = 1, . . . , n

yk is 1 if edge k is between to elements assigned to different computers.
It is 0 otherwise. k = 1, . . .m

The computing time for the elements is equal to

max

{

η

ν

n
∑

i=1

xi,
η

ν

(

n −
n
∑

i=1

xi

)}

,
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which can be modelled using an auxilary variable t and linear inequalities. The
optimization problem reads:

minimize z =
ηt

ν
+

ρ

ν

m
∑

k=1

yk

subject to
n
∑

i=1

xi ≤ t

n −
n
∑

i=1

xi ≤ t

xEk,1
− xEk,2

≤ yk , k = 1, . . . , m

xEk,2
− xEk,1

≤ yk , k = 1, . . . , m

x ∈ B
n

y ∈ B
m

t ∈ R

Question 7(3p)

(Lagrangian Duality) Lagrangian relax the contraint to get

L(x, λ) = −λb +
n
∑

i=1

x2
i + λ(

n
∑

i=1

xi − b).

L is differentiable and we find the Lagrangian dual function

q(λ) = min
x∈�

n
L(x, λ)

by setting the gradient of L with respect to x equal to zero (convex unconstrained
problem, function in C1). ∇xL(x, λ) = 0 ⇒ x∗

i = −λ
2
, ∀i. We get q(λ) =

−λb − nλ2

4
.

In the Lagrangian dual problem we wish to maximize q(λ) over R (no sign re-
strictions since the multiplier corresponds to an equality constraint). Also here,
q is differentiable and we set the gradient equal to zero ⇒ λ∗ = −2b

n
(we know

that this is a maximum, since q is always concave) ⇒ x∗
i = b

n
, ∀i.

Thus, for any faesible vector x,

z∗ =
∑

i

(

b

n

)2

=
b2

n
≤
∑

i

x2
i ⇔ b2 ≤ n

∑

i

x2
i ⇔

(

n
∑

i=1

xi

)2

≤ n
∑

i

x2
i .
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The objective function is strictly convex, whence the inequality above holds with
equality iff x∗

i = b
n
, ∀i, i.e., if x1 = x2 = . . . = xn.


